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Abstract

Oblivious RAM (ORAM) is a cryptographic primitive

that hides memory access patterns as seen by untrusted

storage. This paper proposes Ring ORAM, the most

bandwidth-efficient ORAM scheme for the small client

storage setting in both theory and practice. Ring ORAM

is the first tree-based ORAM whose bandwidth is in-

dependent of the ORAM bucket size, a property that

unlocks multiple performance improvements. First,

Ring ORAM’s overall bandwidth is 2.3× to 4× better

than Path ORAM, the prior-art scheme for small client

storage. Second, if memory can perform simple un-

trusted computation, Ring ORAM achieves constant on-

line bandwidth (∼ 60× improvement over Path ORAM

for practical parameters). As a case study, we show Ring

ORAM speeds up program completion time in a secure

processor by 1.5× relative to Path ORAM. On the the-

ory side, Ring ORAM features a tighter and significantly

simpler analysis than Path ORAM.

1 Introduction

With cloud computing and storage gaining popularity,

privacy of users’ sensitive data has become a large con-

cern. It is well known, however, that encryption alone

is not enough to ensure data privacy. Even after encryp-

tion, a malicious server still learns a user’s access pattern,

e.g., how frequently each piece of data is accessed, if the

user scans, binary searches or randomly accesses her data

at different stages. Prior works have shown that access

patterns can reveal a lot of information about encrypted

files [14] or private user data in computation outsourc-

ing [32, 18].

Oblivious RAM (ORAM) is a cryptographic primi-

tive that completely eliminates the information leakage

in memory access traces. In an ORAM scheme, a client

(e.g., a local machine) accesses data blocks residing on

a server, such that for any two logical access sequences

of the same length, the observable communications be-

tween the client and the server are computationally in-

distinguishable.

ORAMs are traditionally evaluated by bandwidth—

the number of blocks that have to be transferred between

the client and the server to access one block, client stor-

age—the amount of trusted local memory required at the

client side, and server storage—the amount of untrusted

memory required at the server side. All three metrics

are measured as functions of N, the total number of data

blocks in the ORAM.

A factor that determines which ORAM scheme to use

is whether the client has a large (GigaBytes or larger) or

small (KiloBytes to MegaBytes) storage budget. An ex-

ample of large client storage setting is remote oblivious

file servers [30, 17, 24, 3]. In this setting, a user runs on

a local desktop machine and can use its main memory

or disk for client storage. Given this large client storage

budget, the preferred ORAM scheme to date is the SSS

construction [25], which has about 1 · logN bandwidth

and typically requires GigaBytes of client storage.

In the same file server application, however, if the user

is instead on a mobile phone, the client storage will have

to be small. A more dramatic example for small client

storage is when the client is a remote secure processor

— in which case client storage is restricted to the pro-

cessor’s scarce on-chip memory. Partly for this reason,

all secure processor proposals [18, 16, 8, 31, 22, 7, 5, 6]

have adopted Path ORAM [27] which allows for small

(typically KiloBytes of) client storage.

The majority of this paper focuses on the small client

storage setting and Path ORAM. In fact, our construc-

tion is an improvement to Path ORAM. However, in

Section 7, we show that our techniques can be eas-

ily extended to obtain a competitive large client storage

ORAM.
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Figure 1: Path ORAM server and client storage. Sup-

pose the black block is mapped to the shaded path. In

that case, the block may reside in any slot along the path

or in the stash (client storage).

1.1 Path ORAM and Challenges

We now give a brief overview of Path ORAM (for more

details, see [27]). Path ORAM follows the tree-based

ORAM paradigm [23] where server storage is structured

as a binary tree of roughly logN levels. Each node in

the tree is a bucket that can hold up to a small num-

ber Z of data blocks. Each path in the tree is defined

as the sequence of buckets from the root of the tree to

some leaf node. Each block is mapped to a random path,

and must reside somewhere on that path. To access a

block, the Path ORAM algorithm first looks up a posi-

tion map, a table in client storage which tracks the path

each block is currently mapped to, and then reads all the

(∼ Z logN) blocks on that path into a client-side data

structure called the stash. The requested block is then

remapped to a new random path and the position map

is updated accordingly. Lastly, the algorithm invokes an

eviction procedure which writes the same path we just

read from, percolating blocks down that path. (Other

tree-based ORAMs use different eviction algorithms that

are less effective than Path ORAM, and hence the worse

performance.)

The bandwidth of Path ORAM is 2Z logN because

each access reads and writes a path in the tree. To

prevent blocks from accumulating in client storage, the

bucket size Z has to be at least 4 (experimentally veri-

fied [27, 18]) or 5 (theoretically proven [26]).

We remind readers not to confuse the above read/write

path operation with reading/writing data blocks. In

ORAM, both reads and writes to a data block are served

by the read path operation, which moves the requested

block into client storage to be operated upon secretly.

The sole purpose of the write path operation is to evict

blocks from the stash and percolate blocks down the

tree.

Despite being a huge improvement over prior

Online Bandwidth Overall Bandwidth

Path ORAM Z logN = 4logN 2Z logN = 8logN

Ring ORAM ∼ 1 · logN 3-3.5logN

Ring ORAM + XOR ∼ 1 2-2.5logN

Table 1: Our contributions. Overheads are relative to an in-

secure system. Ranges in constants for Ring ORAM are due to

different parameter settings. The bandwidth cost of tree ORAM

recursion [23, 26] is small (< 3%) and thus excluded. XOR

refers to the XOR technique from [3].

schemes, Path ORAM is still plagued with several im-

portant challenges. First, the constant factor 2Z ≥ 8 is

substantial, and brings Path ORAM’s bandwidth over-

head to > 150× for practical parameterizations. In con-

trast, the SSS construction does not have this bucket size

parameter and can achieve close to 1 · logN bandwidth.

(This bucket-size-dependent bandwidth is exactly why

Path ORAM is dismissed in the large client storage set-

ting.)

Second, despite the importance of overall bandwidth,

online bandwidth—which determines response time—

is equally, if not more, important in practice. For Path

ORAM, half of the overall bandwidth must be incurred

online. Again in contrast, an earlier work [3] reduced

the SSS ORAM’s online bandwidth to O(1) by grant-

ing the server the ability to perform simple XOR compu-

tations. Unfortunately, their techniques do not apply to

Path ORAM.

1.2 Our Contributions

In this paper, we propose Ring ORAM to address both

challenges simultaneously. Our key technical achieve-

ment is to carefully re-design the tree-based ORAM such

that the online bandwidth is O(1), and the amortized

overall bandwidth is independent of the bucket size. We

compare bandwidth overhead with Path ORAM in Ta-

ble 1. The major contributions of Ring ORAM include:

• Small online bandwidth. We provide the first

tree-based ORAM scheme that achieves ∼ 1 online

bandwidth, relying only on very simple, untrusted

computation logic on the server side. This repre-

sents at least 60× improvement over Path ORAM

for reasonable parameters.

• Bucket-size independent overall bandwidth.

While all known tree-based ORAMs incur an over-

all bandwidth cost that depends on the bucket size,

Ring ORAM eliminates this dependence, and im-

proves overall bandwidth by 2.3× to 4× relative to

Path ORAM.

• Simple and tight theoretical analysis. Using novel

proof techniques based on Ring ORAM’s eviction
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algorithm, we obtain a much simpler and tighter

theoretical analysis than that of Path ORAM. Of in-

dependent interest, we note that the proof of Lemma

1 in [27], a crucial lemma for both Path ORAM and

this paper, is incomplete (the lemma itself is cor-

rect). We give a rigorous proof for that lemma in

this paper.

As mentioned, one main application of small client

storage ORAM is for the secure processor setting. We

simulate Ring ORAM in the secure processor setting and

confirm that the improvement in bandwidth over Path

ORAM translates to a 1.5× speedup in program comple-

tion time. Combined with all other known techniques,

the average program slowdown from using an ORAM is

2.4× over a set of SPEC and database benchmarks.

Extension to larger client storage. Although our ini-

tial motivation was to design an optimized ORAM

scheme under small client storage, as an interesting by-

product, Ring ORAM can be easily extended to achieve

competitive performance in the large client storage set-

ting. This makes Ring ORAM a good candidate in obliv-

ious cloud storage, because as a tree-based ORAM, Ring

ORAM is easier to analyze, implement and de-amortize

than hierarchical ORAMs like SSS [25]. Therefore, Ring

ORAM is essentially a united paradigm for ORAM con-

structions in both large and small client storage settings.

Organization. In the rest of this introduction, we give

an overview of our techniques to improve ORAM’s on-

line and overall bandwidth. Section 2 gives a formal se-

curity definition for ORAM. Section 3 explains the Ring

ORAM protocol in detail. Section 4 gives a complete for-

mal analysis for bounding Ring ORAM’s client storage.

Section 5 analyzes Ring ORAM’s bandwidth and gives

a methodology for setting parameters optimally. Section

6 compares Ring ORAM to prior work in terms of band-

width vs. client storage and performance in a secure pro-

cessor setting. Section 7 describes how to extend Ring

ORAM to the large client storage setting. Section 8 gives

related work and Section 9 concludes.

1.3 Overview of Techniques

We now explain our key technical insights. At a high

level, our scheme also follows the tree-based ORAM

paradigm [23]. Server storage is a binary tree where each

node (a bucket) contains up to Z blocks and blocks per-

colate down the tree during ORAM evictions. We intro-

duce the following non-trivial techniques that allow us

to achieve significant savings in both online and overall

bandwidth costs.

Eliminating online bandwidth’s dependence on

bucket size. In Path ORAM, reading a block would

amount to reading and writing all Z slots in all buckets on

a path. Our first goal is to read only one block from each

bucket on the path. To do this, we randomly permute

each bucket and store the permutation in each bucket as

additional metadata. Then, by reading only metadata,

the client can determine whether the requested block is

in the present bucket or not. If so, the client relies on

the stored permutation to read the block of interest from

its random offset. Otherwise, the client reads a “fresh”

(unread) dummy block, also from a random offset. We

stress that the metadata size is typically much smaller

than the block size, so the cost of reading metadata can

be ignored.

For the above approach to be secure, it is impera-

tive that each block in a bucket should be read at most

once—a key idea also adopted by Goldreich and Ostro-

vsky in their early ORAM constructions [11]. Notice that

any real block is naturally read only once, since once a

real block is read, it will be invalidated from the present

bucket, and relocated somewhere else in the ORAM tree.

But dummy blocks in a bucket can be exhausted if the

bucket is read many times. When this happens (which

is public information), Ring ORAM introduces an early

reshuffle procedure to reshuffle the buckets that have

been read too many times. Specifically, suppose that

each bucket is guaranteed to have S dummy blocks, then

a bucket must be reshuffled every S times it is read.

We note that the above technique also gives an addi-

tional nice property: out of the O(logN) blocks the client

reads, only 1 of them is a real block (i.e., the block of

interest); all the others are dummy blocks. If we allow

some simple computation on the memory side, we can

immediately apply the XOR trick from Burst ORAM [3]

to get O(1) online bandwidth. In the XOR trick, the

server simply XORs these encrypted blocks and sends a

single, XOR’ed block to the client. The client can recon-

struct the ciphertext of all the dummy blocks, and XOR

them away to get back the encrypted real block.

Eliminating overall bandwidth’s dependence on

bucket size. Unfortunately, naı̈vely applying the above

strategy will dramatically increase offline and overall

bandwidth. The more dummy slots we reserve in each

bucket (i.e., a large S), the more expensive ORAM evic-

tions become, since they have to read and write all the

blocks in a bucket. But if we reserve too few dummy

slots, we will frequently run out of dummy blocks and

have to call early reshuffle, also increasing overall band-

width.

We solve the above problem with several additional

techniques. First, we design a new eviction procedure

that improves eviction quality. At a high level, Ring
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ORAM performs evictions on a path in a similar fashion

as Path ORAM, but eviction paths are selected based on

a reverse lexicographical order [9], which evenly spreads

eviction paths over the entire tree. The improved eviction

quality allows us to perform evictions less frequently,

only once every A ORAM accesses, where A is a new

parameter. We then develop a proof that crucially shows

A can approach 2Z while still ensuring negligible ORAM

failure probability. The proof may be of independent

interest as it uses novel proof techniques and is signifi-

cantly simpler than Path ORAM’s proof. The amortized

offline bandwidth is now roughly 2Z
A

logN, which does

not depend on the bucket size Z either.

Second, bucket reshuffles can naturally piggyback on

ORAM evictions. The balanced eviction order further

ensures that every bucket will be reshuffled regularly.

Therefore, we can set the reserved dummy slots S in ac-

cordance with the eviction frequency A, such that early

reshuffles contribute little (< 3%) to the overall band-

width.

Putting it all Together. None of the aforementioned

ideas would work alone. Our final product, Ring ORAM,

stems from intricately combining these ideas in a non-

trivial manner. For example, observe how our two

main techniques act like two sides of a lever: (1) per-

muted buckets such that only 1 block is read per bucket;

and (2) high quality and hence less frequent evictions.

While permuted buckets make reads cheaper, they re-

quire adding dummy slots and would dramatically in-

crease eviction overhead without the second technique.

At the same time, less frequent evictions require increas-

ing bucket size Z; without permuted buckets, ORAM

reads blow up and nullify any saving on evictions. Addi-

tional techniques are needed to complete the construc-

tion. For example, early reshuffles keep the number

of dummy slots small; piggyback reshuffles and load-

balancing evictions keep the early reshuffle rate low.

Without all of the above techniques, one can hardly get

any improvement.

2 Security Definition

We adopt the standard ORAM security definition. In-

formally, the server should not learn anything about: 1)

which data the client is accessing; 2) how old it is (when

it was last accessed); 3) whether the same data is be-

ing accessed (linkability); 4) access pattern (sequential,

random, etc); or 5) whether the access is a read or a

write. Like previous work, we do not consider informa-

tion leakage through the timing channel, such as when or

how frequently the client makes data requests.

Notation Meaning

N Number of real data blocks in ORAM

L Depth of the ORAM tree

Z Maximum number of real blocks per bucket

S Number of slots reserved for dummies per bucket

B Data block size (in bits)

A Eviction rate (larger means less frequent)

P(l) Path l

P(l, i) The i-th bucket (towards the root) on P(l)

P(l, i, j) The j-th slot in bucket P(l, i)

Table 2: ORAM parameters and notations.

Definition 1. (ORAM Definition) Let

←−y = ((opM,addrM,dataM), . . . ,(op1,addr1,data1))

denote a data sequence of length M, where opi denotes

whether the i-th operation is a read or a write, addri de-

notes the address for that access and datai denotes the

data (if a write). Let ORAM(←−y ) be the resulting se-

quence of operations between the client and server under

an ORAM algorithm. The ORAM protocol guarantees

that for any ←−y and ←−y ′, ORAM(←−y ) and ORAM(←−y ′)
are computationally indistinguishable if |←−y |= |←−y ′|, and

also that for any ←−y the data returned to the client by

ORAM is consistent with←−y (i.e., the ORAM behaves like

a valid RAM) with overwhelming probability.

We remark that for the server to perform computations

on data blocks [3], ORAM(←−y ) and ORAM(←−y ′) include

those operations. To satisfy the above security definition,

it is implied that these operations also cannot leak any

information about the access pattern.

3 Ring ORAM Protocol

3.1 Overview

We first describe Ring ORAM in terms of its server and

client data structures. All notation used throughout the

rest of the paper is summarized in Table 2.

Server storage is organized as a binary tree of buckets

where each bucket has a small number of slots to hold

blocks. Levels in the tree are numbered from 0 (the root)

to L (inclusive, the leaves) where L = O(logN) and N is

the number of blocks in the ORAM. Each bucket has Z+
S slots and a small amount of metadata. Of these slots,

up to Z slots may contain real blocks and the remaining

S slots are reserved for dummy blocks as described in

Section 1.3. Our theoretical analysis in Section 4 will

show that to store N blocks in Ring ORAM, the physical

ORAM tree needs roughly 6N to 8N slots. Experiments
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show that server storage in practice for both Ring ORAM

and Path ORAM can be 2N or even smaller.

Client storage is made up of a position map and a

stash. The position map is a dictionary that maps each

block in the ORAM to a random leaf in the ORAM tree

(each leaf is given a unique identifier). The stash buffers

blocks that have not been evicted to the ORAM tree and

additionally stores Z(L+ 1) blocks on the eviction path

during an eviction operation. We will prove in Section 4

that stash overflow probability decreases exponentially

as stash capacity increases, which means our required

stash size is the same as Path ORAM. The position map

stores N ∗L bits, but can be squashed to constant storage

using the standard recursion technique (Section 3.7).

Main invariants. Ring ORAM has two main invari-

ants:

1. (Same as Path ORAM): Every block is mapped to a

leaf chosen uniformly at random in the ORAM tree.

If a block a is mapped to leaf l, block a is contained

either in the stash or in some bucket along the path

from the root of the tree to leaf l.

2. (Permuted buckets) For every bucket in the tree,

the physical positions of the Z +S dummy and real

blocks in each bucket are randomly permuted with

respect to all past and future writes to that bucket.

Since a leaf uniquely determines a path in a binary tree,

we will use leaves/paths interchangeably when the con-

text is clear, and denote path l as P(l).

Access and Eviction Operations. The Ring ORAM

access protocol is shown in Algorithm 1. Each access

is broken into the following four steps:

1.) Position Map lookup (Lines 3-5): Look up the po-

sition map to learn which path l the block being accessed

is currently mapped to. Remap that block to a new ran-

dom path l′.
This first step is identical to other tree-based

ORAMs [23, 27]. But the rest of the protocol differs

substantially from previous tree-based schemes, and we

highlight our key innovations in bold.

2.) Read Path (Lines 6-15): The ReadPath(l,a) oper-

ation reads all buckets along P(l) to look for the block

of interest (block a), and then reads that block into the

stash. The block of interest is then updated in stash on a

write, or is returned to the client on a read. We remind

readers again that both reading and writing a data block

are served by a ReadPath operation.

Unlike prior tree-based schemes, our ReadPath op-

eration only reads one block from each bucket—the

Algorithm 1 Non-recursive Ring ORAM.

1: function ACCESS(a,op,data′)
2: Global/persistent variables: round

3: l′← UniformRandom(0,2L−1)
4: l ← PositionMap[a]
5: PositionMap[a]← l′

6: data← ReadPath(l,a)
7: if data=⊥ then

8: ⊲ If block a is not found on path l, it must

9: be in Stash ⊳

10: data← read and remove a from Stash

11: if op= read then

12: return data to client

13: if op= write then

14: data← data′

15: Stash← Stash∪ (a, l′,data)

16: round← round+1 mod A

17: if round
?
= 0 then

18: EvictPath()

19: EarlyReshuffle(l)

block of interest if found or a previously-unread

dummy block otherwise. This is safe because of In-

variant 2, above: each bucket is permuted randomly, so

the slot being read looks random to an observer. This

lowers the bandwidth overhead of ReadPath (i.e., online

bandwidth) to L+ 1 blocks (the number of levels in the

tree) or even a single block if the XOR trick is applied

(Section 3.2).

3.) Evict Path (Line 16-18): The EvictPath operation

reads Z blocks (all the remaining real blocks, and po-

tentially some dummy blocks) from each bucket along a

path into the stash, and then fills that path with blocks

from the stash, trying to push blocks as far down towards

the leaves as possible. The sole purpose of an eviction

operation is to push blocks back to the ORAM tree to

keep the stash occupancy low.

Unlike Path ORAM, eviction in Ring ORAM selects

paths in the reverse lexicographical order, and does

not happen on every access. Its rate is controlled by

a public parameter A: every A ReadPath operations

trigger a single EvictPath operation. This means Ring

ORAM needs much fewer eviction operations than Path

ORAM. We will theoretically derive a tight relationship

between A and Z in Section 4.
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4.) Early Reshuffles (Line 19): Finally, we perform

a maintenance task called EarlyReshuffle on P(l), the

path accessed by ReadPath. This step is crucial in

maintaining blocks randomly shuffled in each bucket,

which enables ReadPath to securely read only one block

from each bucket.

We will present details of ReadPath, EvictPath and

EarlyReshuffle in the next three subsections. We de-

fer low-level details for helper functions needed in these

three subroutines to Appendix A. We explain the security

for each subroutine in Section 3.5. Finally, we discuss

additional optimizations in Section 3.6 and recursion in

Section 3.7.

3.2 Read Path Operation

Algorithm 2 ReadPath procedure.

1: function ReadPath(l,a)

2: data←⊥
3: for i← 0 to L do

4: offset← GetBlockOffset(P(l, i),a)
5: data′← P(l, i,offset)
6: Invalidate P(l, i,offset)
7: if data′ 6=⊥ then

8: data← data′

9: P(l, i).count←P(l, i).count+1

return data

The ReadPath operation is shown in Algorithm 2. For

each bucket along the current path, ReadPath selects a

single block to read from that bucket. For a given bucket,

if the block of interest lives in that bucket, we read and

invalidate the block of interest. Otherwise, we read and

invalidate a randomly-chosen dummy block that is still

valid at that point. The index of the block to read (either

real or random) is returned by the GetBlockOffset func-

tion whose detailed description is given in Appendix A.

Reading a single block per bucket is crucial for our

bandwidth improvements. In addition to reducing online

bandwidth by a factor of Z, it allows us to use larger Z

and A to decrease overall bandwidth (Section 5). Without

this, read bandwidth is proportional to Z, and the cost of

larger Z on reads outweighs the benefits.

Bucket Metadata. Because the position map only

tracks the path containing the block of interest, the client

does not know where in each bucket to look for the block

of interest. Thus, for each bucket we must store the

permutation in the bucket metadata that maps each real

block in the bucket to one of the Z + S slots (Lines 4,

GetBlockOffset) as well as some additional metadata.

Once we know the offset into the bucket, Line 5 reads

the block in the slot, and invalidates it. We describe all

metadata in Appendix A, but make the important point

that the metadata is small and independent of the block

size.

One important piece of metadata to mention now is a

counter which tracks how many times it has been read

since its last eviction (Line 9). If a bucket is read too

many (S) times, it may run out of dummy blocks (i.e.,

all the dummy blocks have been invalidated). On fu-

ture accesses, if additional dummy blocks are requested

from this bucket, we cannot re-read a previously inval-

idated dummy block: doing so reveals to the adversary

that the block of interest is not in this bucket. Therefore,

we need to reshuffle single buckets on-demand as soon as

they are touched more than S times using EarlyReshuffle

(Section 3.4).

XOR Technique. We further make the following key

observation: during our ReadPath operation, each block

returned to the client is a dummy block except for

the block of interest. This means our scheme can

also take advantage of the XOR technique introduced

in [3] to reduce online bandwidth overhead to O(1).
To be more concrete, on each access ReadPath re-

turns L+ 1 blocks in ciphertext, one from each bucket,

Enc(b0,r0),Enc(b2,r2), · · · ,Enc(bL,rL). Enc is a ran-

domized symmetric scheme such as AES counter mode

with nonce ri. With the XOR technique, ReadPath

will return a single ciphertext — the ciphertext of

all the blocks XORed together, namely Enc(b0,r0)⊕
Enc(b2,r2)⊕ ·· · ⊕ Enc(bL,rL). The client can recover

the encrypted block of interest by XORing the returned

ciphertext with the encryptions of all the dummy blocks.

To make computing each dummy block’s encryption

easy, the client can set the plaintext of all dummy blocks

to a fixed value of its choosing (e.g., 0).

3.3 Evict Path Operation

Algorithm 3 EvictPath procedure.

1: function EvictPath

2: Global/persistent variables G initialized to 0

3: l ← G mod 2L

4: G← G+1

5: for i← 0 to L do

6: Stash← Stash∪ReadBucket(P(l, i))
7: for i← L to 0 do

8: WriteBucket(P(l, i),Stash)
9: P(l, i).count← 0

The EvictPath routine is shown in Algorithm 3. As

mentioned, evictions are scheduled statically: one evic-

6



Time

G = 0 G = 1 G = 2 G = 3

Figure 2: Reverse-lexicographic order of paths used by

EvictPath. After path G = 3 is evicted to, the order re-

peats.

tion operation happens after every A reads. At a high

level, an eviction operation reads all remaining real

blocks on a path (in a secure fashion), and tries to push

them down that path as far as possible. The leaf-to-root

order in the writeback step (Lines 7) reflects that we wish

to fill the deepest buckets as fully as possible. (For read-

ers who are familiar with Path ORAM, EvictPath is like

a Path ORAM access where no block is accessed and

therefore no block is remapped to a new leaf.)

We emphasize two unique features of Ring ORAM

eviction operations. First, evictions in Ring ORAM are

performed to paths in a specific order called the reverse-

lexicographic order, first proposed by Gentry et al. [9]

and shown in Figure 2. The reverse-lexicographic order

eviction aims to minimize the overlap between consecu-

tive eviction paths, because (intuitively) evictions to the

same bucket in consecutive accesses are less useful. This

improves eviction quality and allows us to reduce the fre-

quency of eviction. Evicting using this static order is also

a key component in simplifying our theoretical analysis

in Section 4.

Second, buckets in Ring ORAM need to be randomly

shuffled (Invariant 2), and we mostly rely on EvictPath

operations to keep them shuffled. An EvictPath oper-

ation reads Z blocks from each bucket on a path into

the stash, and writes out Z + S blocks (only up to Z

are real blocks) to each bucket, randomly permuted.

The details of reading/writing buckets (ReadBucket and

WriteBucket) are deferred to Appendix A.

3.4 Early Reshuffle Operation

Algorithm 4 EarlyReshuffle procedure.

1: function EarlyReshuffle(l)

2: for i← 0 to L do

3: if P(l, i).count≥ S then

4: Stash← Stash∪ReadBucket(P(l, i))
5: WriteBucket(P(l, i),Stash)
6: P(l, i).count← 0

Due to randomness, a bucket can be touched > S

times by ReadPath operations before it is reshuffled

by the scheduled EvictPath. If this happens, we call

EarlyReshuffle on that bucket to reshuffle it before the

bucket is read again (see Section 3.2). More precisely,

after each ORAM access EarlyReshuffle goes over all

the buckets on the read path, and reshuffles all the buck-

ets that have been accessed more than S times by per-

forming ReadBucket and WriteBucket. ReadBucket

and WriteBucket are the same as in EvictPath: that

is, ReadBucket reads exactly Z slots in the bucket

and WriteBucket re-permutes and writes back Z + S

real/dummy blocks. We note that though S does not af-

fect security (Section 3.5), it clearly has an impact on

performance (how often we shuffle, the extra cost per

reshuffle, etc.). We discuss how to optimally select S in

Section 5.

3.5 Security Analysis

Claim 1. ReadPath leaks no information.

The path selected for reading will look random to

any adversary due to Invariant 1 (leaves are chosen

uniformly at random). From Invariant 2, we know that

every bucket is randomly shuffled. Moreover, because

we invalidate any block we read, we will never read the

same slot. Thus, any sequence of reads (real or dummy)

to a bucket between two shuffles is indistinguishable.

Thus the adversary learns nothing during ReadPath. �

Claim 2. EvictPath leaks no information.

The path selected for eviction is chosen statically,

and is public (reverse-lexicographic order). ReadBucket

always reads exactly Z blocks from random slots.

WriteBucket similarly writes Z + S encrypted blocks in

a data-independent fashion. �

Claim 3. EarlyShuffle leaks no information.

To which buckets EarlyShuffle operations occur is

publicly known: the adversary knows how many times a

bucket has been accessed since the last EvictPath to that

bucket. ReadBucket and WriteBucket are secure as per

observations in Claim 2. �

The three subroutines of the Ring ORAM algorithm

are the only operations that cause externally observable

behaviors. Claims 1, 2, and 3 show that the subroutines

are secure. We have so far assumed that path remap-

ping and bucket permutation are truly random, which

gives unconditional security. If pseudorandom numbers

are used instead, we have computational security through

similar arguments.
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3.6 Other Optimizations

Minimizing roundtrips. To keep the presentation sim-

ple, we wrote the ReadPath (EvictPath) algorithms to

process buckets one by one. In fact, they can be per-

formed for all buckets on the path in parallel which re-

duces the number of roundtrips to 2 (one for metadata

and one for data blocks).

Tree-top caching. The idea of tree-top caching [18] is

simple: we can reduce the bandwidth for ReadPath and

EvictPath by storing the top t (a new parameter) levels of

the Ring ORAM tree at the client as an extension of the

stash1. For a given t, the stash grows by approximately

2tZ blocks.

De-amortization. We can de-amortize the expensive

EvictPath operation through a period of A accesses, sim-

ply by reading/writing a small number of blocks on the

eviction path after each access. After de-amortization,

worst-case overall bandwidth equals average overall

bandwidth.

3.7 Recursive Construction

With the construction given thus far, the client needs to

store a large position map. To achieve small client stor-

age, we follow the standard recursion idea in tree-based

ORAMs [23]: instead of storing the position map on the

client, we store the position map on a smaller ORAM

on the server, and store only the position map for the

smaller ORAM. The client can recurse until the final

position map becomes small enough to fit in its stor-

age. For reasonably block sizes (e.g., 4 KB), recursion

contributes very little to overall bandwidth (e.g., < 5%

for a 1 TB ORAM) because the position map ORAMs

use much smaller blocks [26]. Since recursion for Ring

ORAM behaves in the same way as all the other tree-

based ORAMs, we omit the details.

4 Stash Analysis

In this section we analyze the stash occupancy for a non-

recursive Ring ORAM. Following the notations in Path

ORAM [27], by ORAM
Z,A
L we denote a non-recursive

Ring ORAM with L + 1 levels, bucket size Z and one

eviction per A accesses. The root is at level 0 and the

leaves are at level L. We define the stash occupancy

st(SZ) to be the number of real blocks in the stash after a

sequence of ORAM sequences (this notation will be fur-

ther explained later). We will prove that Pr [st(SZ)> R]

1We call this optimization tree-top caching following prior work.

But the word cache is a misnomer: the top t levels of the tree are per-

manently stored by the client.

decreases exponentially in R for certain Z and A combi-

nations. As it turns out, the deterministic eviction pattern

in Ring ORAM dramatically simplifies the proof.

We note here that the reshuffling of a bucket does not

affect the occupancy of the bucket, and is thus irrelevant

to the proof we present here.

4.1 Proof outline

The proof consists of the two steps. The first step is the

same as Path ORAM, and needs Lemma 1 and Lemma 2

in the Path ORAM paper [27], which we restate in Sec-

tion 4.2. We introduce ∞-ORAM, which has an infinite

bucket size and after a post-processing step has exactly

the same distribution of blocks over all buckets and the

stash (Lemma 1). Lemma 2 says the stash occupancy

of ∞-ORAM after post-processing is greater than R if

and only if there exists a subtree T in ∞-ORAM whose

“occupancy” exceeds its “capacity” by more than R. We

note, however, that the Path ORAM [27] paper only gave

intuition for the proof of Lemma 1, and unfortunately

did not capture of all the subtleties. We will rigorously

prove that lemma, which turns out to be quite tricky and

requires significant changes to the post-processing algo-

rithm.

The second step (Section 4.3) is much simpler than

the rest of Path ORAM’s proof, thanks to Ring ORAM’s

static eviction pattern. We simply need to calculate the

expected occupancy of subtrees in ∞-ORAM, and apply

a Chernoff-like bound on their actual occupancy to com-

plete the proof. We do not need the complicated eviction

game, negative association, stochastic dominance, etc.,

as in the Path ORAM proof [26].

For readability, we will defer the proofs of all lemmas

to Appendix B.

4.2 ∞-ORAM

We first introduce ∞-ORAM, denoted as ORAM
∞,A
L . Its

buckets have infinite capacity. It receives the same input

request sequence as ORAM
Z,A
L . We then label buckets

linearly such that the two children of bucket bi are b2i and

b2i+1, with the root bucket being b1. We define the stash

to be b0. We refer to bi of ORAM
∞,A
L as b∞

i , and bi of

ORAM
Z,A
L as bZ

i . We further define ORAM state, which

consists of the states of all the buckets in the ORAM, i.e.,

the blocks contained by each bucket. Let S∞ be the state

of ORAM
∞,A
L and SZ be the state of ORAM

Z,A
L .

We now propose a new greedy post-processing algo-

rithm G (different from the one in [27]), which by re-

assigning blocks in buckets makes each bucket b∞
i in ∞-

ORAM contain the same set of blocks as bZ
i . Formally, G

takes as input S∞ and SZ after the same access sequence

with the same randomness. For i from 2L+1−1 down to
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1 (note that the decreasing order ensures that a parent is

always processed later than its children), G processes the

blocks in bucket b∞
i in the following way:

1. For those blocks that are also in bZ
i , keep them in

b∞
i .

2. For those blocks that are not in bZ
i but in some an-

cestors of bZ
i , move them from b∞

i to b∞
i/2

(the parent

of b∞
i , and note that the division includes flooring).

If such blocks exist and the number of blocks re-

maining in b∞
i is less than Z, raise an error.

3. If there exists a block in b∞
i that is in neither bZ

i nor

any ancestor of bZ
i , raise an error.

We say GSZ
(S∞) = SZ , if no error occurs during G

and b∞
i after G contains the same set of blocks as bZ

i for

i = 0,1, · · ·2L+1.

Lemma 1. GSZ
(S∞) = SZ after the same ORAM access

sequence with the same randomness.

Next, we investigate what state S∞ will lead to the

stash occupancy of more than R blocks in a post-

processed ∞-ORAM. We say a subtree T is a rooted sub-

tree, denoted as T ∈ ORAM
∞,A
L if T contains the root of

ORAM
∞,A
L . This means that if a node in ORAM

∞,A
L is

in T , then so are all its ancestors. We define n(T ) to

be the total number of nodes in T . We define c(T ) (the

capacity of T ) to be the maximum number of blocks T

can hold; for Ring ORAM c(T ) = n(T ) · Z. Lastly, we

define X(T ) (the occupancy of T ) to be the actual num-

ber of real blocks that are stored in T . The following

lemma characterizes the stash size of a post-processed

∞-ORAM:

Lemma 2. st(GSZ
(S∞)) > R if and only if ∃T ∈

ORAM
∞,A
L s.t. X(T )> c(T )+R before post-processing.

By Lemma 1 and Lemma 2, we have

Pr [st(SZ)> R] = Pr [st(GSZ
(S∞))> R]

≤ ∑
T∈ORAM

∞,A
L

Pr [X(T )> c(T )+R]

< ∑
n≥1

4n max
T :n(T )=n

Pr [X(T )> c(T )+R] (1)

The above inequalities used a union bound and a bound

on Catalan sequences.

4.3 Bounding the Stash Size

We first give a bound on the expected bucket load:

Lemma 3. For any rooted subtree T in ORAM
∞,A
L , if the

number of distinct blocks in the ORAM N ≤ A ·2L−1, the

expected load of T has the following upper bound:

∀T ∈ ORAM
∞,A
L ,E[X(T )]≤ n(T ) ·A/2.

Let X(T ) = ∑i Xi(T ), where each Xi(T ) ∈ {0,1} and

indicates whether the i-th block (can be either real or

stale) is in T . Let pi = Pr [Xi(T ) = 1]. Xi(T ) is com-

pletely determined by its time stamp i and the leaf label

assigned to block i, so they are independent from each

other (refer to the proof of Lemma 3). Thus, we can

apply a Chernoff-like bound to get an exponentially de-

creasing bound on the tail distribution. To do so, we first

establish a bound on E
[

etX(T )
]

where t > 0,

E
[

etX(T )
]

= E
[

et ∑i Xi(T )
]

= E
[

Πie
tXi(T )

]

= ΠiE
[

etXi(T )
]

(by independence)

= Πi

(

pi(e
t −1)+1

)

≤Πi

(

epi(e
t−1)

)

= e(e
t−1)Σi pi

= e(e
t−1)E[X(T )] (2)

For simplicity, we write n = n(T ) and a = A/2. By

Lemma 3, E[X(T )] ≤ n · a. By the Markov Inequality,

we have for all t > 0,

Pr [X(T )> c(T )+R] = Pr
[

etX(T ) > et(nZ+R)
]

≤ E
[

etX(T )
]

· e−t(nZ+R)

≤ e(e
t−1)an · e−t(nZ+R)

= e−tR · e−n[tZ−a(et−1)]

Let t = ln(Z/a),

Pr [X(T )> c(T )+R]≤ (a/Z)R · e−n[Z ln(Z/a)+a−Z] (3)

Now we will choose Z and A such that Z > a and q =
Z ln(Z/a)+a−Z− ln4> 0. If these two conditions hold,

from Equation (1) we have t = ln(Z/a) > 0 and that the

stash overflow probability decreases exponentially in the

stash size R:

Pr [st(SZ)> R]≤ ∑
n≥1

(a/Z)R · e−qn <
(a/Z)R

1− e−q
.

4.4 Stash Size in Practice

Now that we have established that Z ln(2Z/A)+A/2−
Z − ln4 > 0 ensures an exponentially decreasing stash

overflow probability, we would like to know how tight

this requirement is and what the stash size should be in

practice.

We simulate Ring ORAM with L = 20 for over 1 Bil-

lion accesses in a random access pattern, and measure

the stash occupancy (excluding the transient storage of a

path). For several Z values, we look for the maximum A

that results in an exponentially decreasing stash overflow
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Figure 3: For each Z, determine analytically and em-

pirically the maximum A that results in an exponentially

decreasing stash failure probability.

Z,A Parameters

4,3 8,8 16,20 32,46 16,23

Max Stash Size

λ

80 32 41 65 113 197

128 51 62 93 155 302

256 103 120 171 272 595

Table 3: Maximum stash occupancy for realistic security

parameters (stash overflow probability 2−λ ) and several

choices of A and Z. A = 23 is the maximum achievable

A for Z = 16 according to simulation.

probability. In Figure 3, we plot both the empirical curve

based on simulation and the theoretical curve based on

the proof. In all cases, the theoretical curve indicates a

only slightly smaller A than we are able to achieve in

simulation, indicating that our analysis is tight.

To determine required stash size in practice, Table 3

shows the extrapolated required stash size for a stash

overflow probability of 2−λ for several realistic λ . We

show Z = 16, A = 23 for completeness: this is an aggres-

sive setting that works for Z = 16 according to simulation

but does not satisfy the theoretical analysis; observe that

this point requires roughly 3× the stash occupancy for a

given λ .

5 Bandwidth Analysis

In this section, we answer an important question: how

do Z (the maximum number of real blocks per bucket),

A (the eviction rate) and S (the number of extra dummies

per bucket) impact Ring ORAM’s performance (band-

width)? By the end of the section, we will have a

theoretically-backed analytic model that, given Z, selects

optimal A and S to minimize bandwidth.

We first state an intuitive trade-off: for a given Z, in-

creasing A causes stash occupancy to increase and band-
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Figure 4: For different Z, and the corresponding optimal

A, vary S and plot bandwidth overhead. We only consider

S≥ A

width overhead to decrease. Let us first ignore early

reshuffles and the XOR technique. Then, the overall

bandwidth of Ring ORAM consists of ReadPath and

EvictPath. ReadPath transfers L+ 1 blocks, one from

each bucket. EvictPath reads Z blocks per bucket and

writes Z + S blocks per bucket, (2Z + S)(L+ 1) blocks

in total, but happens every A accesses. From the re-

quirement of Lemma 3, we have L = log(2N/A), so

the ideal amortized overall bandwidth of Ring ORAM

is (1+(2Z + S)/A) log(4N/A). Clearly, a larger A im-

proves bandwidth for a given Z as it reduces both evic-

tion frequency and tree depth L. So we simply choose

the largest A that satisfies the requirement from the stash

analysis in Section 4.3.

Now we consider the extra overhead from early

reshuffles. We have the following trade-off in choos-

ing S: as S increases, the early reshuffle rate de-

creases (since we have more dummies per bucket) but

the cost to read+write buckets during an EvictPath and

EarlyReshuffle increases. This effect is shown in Figure 4

through simulation: for S too small, early shuffle rate is

high and bandwidth increases; for S too large, eviction

bandwidth dominates.

To analytically choose a good S, we analyze the early

reshuffle rate. First, notice a bucket at level l in the Ring

ORAM tree will be processed by EvictPath exactly once

for every 2lA ReadPath operations, due to the reverse-

lexicographic order of eviction paths (Section 3.3). Sec-

ond, each ReadPath operation is to an independent and

uniformly random path and thus will touch any bucket in

level l with equal probability of 2−l . Thus, the distribu-

tion on the expected number of times ReadPath opera-

tions touch a given bucket in level l, between two consec-

utive EvictPath calls, is given by a binomial distribution

of 2lA trials and success probability 2−l . The probabil-

ity that a bucket needs to be early reshuffled before an

EvictPath is given by a binomial distribution cumula-

10



Find largest A≤ 2Z such that

Z ln(2Z/A)+A/2−Z− ln4 > 0 holds.

Find S≥ 0 that minimizes

(2Z +S)(1+Poiss cdf(S,A))

Ring ORAM offline bandwidth is

(2Z+S)(1+Poiss cdf(S,A))
A

· log(4N/A)

Table 4: Analytic model for choosing parameters, given

Z.
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Figure 5: Overall bandwidth as a function of Z. Kinks

are present in the graph because we always round A to the

nearest integer. For Path ORAM, we only study Z = 4

since a larger Z strictly hurts bandwidth.

tive density function Binom cdf(S,2lA,2−l).2 Based on

this analysis, the expected number of times any bucket

is involved in ReadPath operations between consecutive

EvictPath operations is A. Thus, we will only consider

S ≥ A as shown in Figure 4 (S < A is clearly bad as it

needs too much early reshuffling).

We remark that the binomial distribution quickly con-

verges to a Poisson distribution. So the amortized overall

bandwidth, taking early reshuffles into account, can be

accurately approximated as (L+1)+(L+1)(2Z+S)/A ·
(1+Poiss cdf(S,A)). We should then choose the S that

minimizes the above formula. This method always finds

the optimal S and perfectly matches the overall band-

width in our simulation in Figure 4.

We recap how to choose A and S for a given Z in Ta-

ble 4. For the rest of the paper, we will choose A and S

this way unless otherwise stated. Using this method to

set A and S, we show online and overall bandwidth as a

function of Z in Figure 5. In the figure, Ring ORAM does

not use the XOR technique on reads. For Z = 50, we

achieve ∼ 3.5logN bandwidth; for very large Z, band-

width approaches 3 logN. Applying the XOR technique,

online bandwidth overhead drops to close to 1 which re-

duces overall bandwidth to ∼ 2.5logN for Z = 50 and

2The possibility that a bucket needs to be early reshuffled twice

before an eviction is negligible.
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1 TB ORAM capacities and ORAM failure probability

2−80.

2 logN for very large Z.

6 Evaluation

6.1 Bandwidth vs. Client Storage

To give a holistic comparison between schemes, Figure 6

shows the best achievable bandwidth, for different client

storage budgets, for Path ORAM and Ring ORAM. For

each scheme in the figure, we apply all known optimiza-

tions and tune parameters to minimize overall bandwidth

given a storage budget. For Path ORAM we choose Z = 4

(increasing Z strictly hurts bandwidth) and tree-top cache

to fill remaining space. For Ring ORAM we adjust Z, A

and S, tree-top cache and apply the XOR technique.

To simplify the presentation, “client storage” includes

all ORAM data structures except for the position map

– which has the same space/bandwidth cost for both

Path ORAM and Ring ORAM. We remark that applying

the recursion technique (Section 3.7) to get a small on-

chip position map is cheap for reasonably large blocks.

For example, recursing the on-chip position map down

to 256 KiloBytes of space when the data block size

is 4 KiloBytes increases overall bandwidth for Ring

ORAM and Path ORAM by < 3%.

The high order bit is that across different block sizes

and client storage budgets, Ring ORAM consistently re-

duces overall bandwidth relative to Path ORAM by 2-

2.7×. We give a summary of these results for several rep-

resentative client storage budgets in Table 5. We remark

that for smaller block sizes, Ring ORAM’s improvement

over Path ORAM (∼ 2× for 64 Byte blocks) is smaller

relative to when we use larger blocks (2.7× for 4 Kilo-

Byte blocks). The reason is that with small blocks, the

cost to read bucket metadata cannot be ignored, forcing

Ring ORAM to use smaller Z.
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Online, Overall Bandwidth overhead

Block Size (Bytes) Z, A (Ring ORAM only) Ring ORAM Ring ORAM (XOR) Path ORAM

64 10,11 48×, 144× 24×, 118× 120×, 240×
4096 33,48 20×, 82× ∼ 1×, 60× 80×, 160×

Table 5: Breakdown between online and offline bandwidth given a client storage budget of 1000× the block size for several

representative points (Section 6.1). Overheads are relative to an insecure system. Parameter meaning is given in Table 2.
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Figure 7: SPEC benchmark slowdown.

6.2 Case Study: Secure Processors

In this study, we show how Ring ORAM improves the

performance of secure processors over Path ORAM. We

assume the same processor/cache architecture as [5],

given in Table 4 of that work. We evaluate a 4 GigaByte

ORAM with 64-Byte block size (matching a typical pro-

cessor’s cache line size). Due to the small block size,

we parameterize Ring ORAM at Z = 5, A = 5, X = 2

to reduce metadata overhead. We use the optimized

ORAM recursion techniques [22]: we apply recursion

three times with 32-Byte position map block size and get

a 256 KB final position map. We evaluate performance

for SPEC-int benchmarks and two database benchmarks,

and simulate 3 billion instructions for each benchmark.

We assume a flat 50-cycle DRAM latency, and com-

pute ORAM latency assuming 128 bits/cycle processor-

memory bandwidth. We do not use tree-top caching

since it proportionally benefits both Ring ORAM and

Path ORAM. Today’s DRAM DIMMs cannot perform

any computation, but it is not hard to imagine having

simple XOR logic either inside memory, or connected to

O(logN) parallel DIMMs so as not to occupy processor-

memory bandwidth. Thus, we show results with and

without the XOR technique.

Figure 7 shows program slowdown over an insecure

DRAM. The high order bit is that using Ring ORAM

with XOR results in a geometric average slowdown of

2.8× relative to an insecure system. This is a 1.5× im-

provement over Path ORAM. If XOR is not available, the

slowdown over an insecure system is 3.2×.

We have also repeated the experiment with the unified

ORAM recursion technique and its parameters [5]. The

geometric average slowdown over an insecure system is

2.4× (2.5× without XOR).

7 Ring ORAM with Large Client Storage

If given a large client storage budget, we can first choose

very large A and Z for Ring ORAM, which means band-

width approaches 2 logN (Section 5).3 Then remaining

client storage can be used to tree-top cache (Section 3.6).

For example, tree-top caching t = L/2 levels requires

O(
√

N) storage and bandwidth drops by a factor of 2

to 1 · logN—which roughly matches the SSS construc-

tion [25].

Burst ORAM [3] extends the SSS construction to han-

dle millions of accesses in a short period, followed by

a relatively long idle time where there are few requests.

The idea to adapt Ring ORAM to handle bursts is to de-

lay multiple (potentially millions of) EvictPath opera-

tions until after the burst of requests. Unfortunately, this

strategy means we will experience a much higher early

reshuffle rate in levels towards the root. The solution

is to coordinate tree-top caching with delayed evictions:

For a given tree-top size t, we allow at most 2t delayed

EvictPath operations. This ensures that for levels ≥ t,

the early reshuffle rate matches our analysis in Section 5.

We experimentally compared this methodology to the

dataset used by Burst ORAM and verified that it gives

comparable performance to that work.

8 Related Work

ORAM was first proposed by Goldreich and Ostro-

vsky [10, 11]. Since then, there have been numerous

follow-up works that significantly improved ORAM’s ef-

ficiency in the past three decades [21, 20, 2, 1, 29, 12,

13, 15, 25, 23, 9, 27, 28]. We have already reviewed two

state-of-the-art schemes with different client storage re-

quirements: Path ORAM [27] and the SSS ORAM [25].

Circuit ORAM [28] is another recent tree-based ORAM,

which requires only O(1) client storage, but its band-

width is a constant factor worse than Path ORAM.

Reducing online bandwidth. Two recent works

[3, 19] have made efforts to reduce online bandwidth

(response time). Unfortunately, the techniques in Burst

ORAM [3] do not work with Path ORAM (or more

generally any existing tree-based ORAMs). On the

3We assume the XOR technique because large client storage implies

a file server setting.
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other hand, Path-PIR [19], while featuring a tree-based

ORAM, employs heavy primitives like Private Informa-

tion Retrieval (PIR) or even FHE, and thus requires a

significant amount of server computation. In compari-

son, our techniques efficiently achieve O(1) online cost

for tree-based ORAMs without resorting to PIR/FHE,

and also improve bursty workload performance similar

to Burst ORAM.

Subsequent work. Techniques proposed in this paper

have been adopted by subsequent works. For example,

Tiny ORAM [6] and Onion ORAM [4] used part of our

eviction strategy in their design for different purposes.

9 Conclusion

This paper proposes Ring ORAM, the most bandwidth-

efficient ORAM scheme for the small (constant or poly-

log) client storage setting. Ring ORAM is simple, flexi-

ble and backed by a tight theoretic analysis.

Ring ORAM is the first tree-based ORAM whose

online and overall bandwidth are independent of tree

ORAM bucket size. With this and additional proper-

ties of the algorithm, we show that Ring ORAM im-

proves online bandwidth by 60× (if simple computa-

tion such as XOR is available at memory), and overall

bandwidth by 2.3× to 4× relative to Path ORAM. In a

secure processor case study, we show that Ring ORAM’s

bandwidth improvement translates to an overall program

performance improvement of 1.5×. By increasing Ring

ORAM’s client storage, Ring ORAM is competitive in

the cloud storage setting as well.
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A Bucket Structure

Table 6 lists all the fields in a Ring ORAM bucket and

their size. We would like to make two remarks. First,

only the data fields are permuted and that permutation

is stored in ptrs. Other bucket fields do not need to

be permuted because when they are needed, they will

be read in their entirety. Second, count and valids are

stored in plaintext. There is no need to encrypt them

since the server can see which bucket is accessed (deduc-

ing count for each bucket), and which slot is accessed in

each bucket (deducing valids for each bucket). In fact,

if the server can do computation and is trusted to follow

Algorithm 5 Helper functions.

count, valids, addrs, leaves, ptrs, data are fields of the

input bucket in each of the following three functions

1: function GetBlockOffset(bucket,a)

2: read in valids, addrs, ptrs

3: decrypt addrs, ptrs

4: for j← 0 to Z−1 do

5: if a = addrs[ j] and valids[ptrs[ j]] then

6: return ptrs[ j] ⊲ block of interest
return a pointer to a random valid dummy

1: function ReadBucket(bucket)

2: read in valids, addrs, leaves, ptrs

3: decrypt addrs, leaves, ptrs

4: z← 0 ⊲ track # of remaining real blocks

5: for j← 0 to Z−1 do

6: if valids[ptrs[ j]] then

7: data′ ← read and decrypt data[ptrs[ j]]
8: z← z+1

9: if addrs[ j] 6=⊥ then

10: block← (addr[ j], leaf[ j],data′)
11: Stash← Stash∪block
12: for j← z to Z−1 do

13: read a random valid dummy

1: function WriteBucket(bucket,Stash)

2: find up to Z blocks from Stash that can reside

3: in this bucket, to form addrs, leaves, data′

4: ptrs← PRP(0,Z +S) ⊲ or truly random

5: for j← 0 to Z−1 do

6: data[ptrs[ j]]← data′[ j]

7: valids← {1}Z+S

8: count← 0

9: encrypt addrs, leaves, ptrs, data

10: write out count, valids, addrs, leaves, ptrs, data

the protocol faithfully, the client can let the server up-

date count and valids. All the other structures should be

probabilistically encrypted.

Having defined the bucket structure, we can be more

specific about some of the operations in earlier sec-

tions. For example, in Algorithm 2 Line 5 means

reading P(l, i).data[offset], and Line 6 means setting

P(l, i).valids[offset] to 0.

Now we describe the helper functions in detail.

GetBlockOffset reads in the valids, addrs, ptrs field, and

looks for the block of interest. If it finds the block of

interest, meaning that the address of a still valid block

matches the block of interest, it returns the permuted lo-

cation of that block (stored in ptrs). If it does not find

the block of interest, it returns the permuted location of

a random valid dummy block.
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Notation Size (bits) Meaning

count log(S) # of times this bucket has been touched by ReadPath since it was last shuffled

valids (Z +S)∗1 Indicates whether each of the Z +S blocks is valid

addrs Z ∗ log(N) Address for each of the Z (potentially) real blocks

leaves Z ∗L Leaf label for each of the Z (potentially) real blocks

ptrs Z ∗ log(Z +S) Offset in the bucket for each of the Z (potentially) real blocks

data (Z +S)∗B Data field for each of the Z +S blocks, permuted according to ptrs

EncSeed λ (security parameter) Encryption seed for the bucket; count and valids are stored in the clear

Table 6: Ring ORAM bucket format. All logs are taken to their ceiling.

ReadBucket reads all of the remaining real blocks in a

bucket into the stash. For security reasons, ReadBucket

always reads exactly Z blocks from that bucket. If the

bucket contains less than Z valid real blocks, the remain-

ing blocks read out are random valid dummy blocks. Im-

portantly, since we allow at most S reads to each bucket

before reshuffling it, it is guaranteed that there are at least

Z valid (real + dummy) blocks left that have not been

touched since the last reshuffle.

WriteBucket evicts as many blocks as possible (up to

Z) from the stash to a certain bucket. If there are z′ ≤ Z

real blocks to be evicted to that bucket, Z+S−z′ dummy

blocks are added. The Z + S blocks are then randomly

shuffled based on either a truly random permutation or a

Pseudo Random Permutation (PRP). The permutation is

stored in the bucket field ptrs. Then, the function resets

count to 0 and all valid bits to 1, since this bucket has

just been reshuffled and no blocks have been touched.

Finally, the permuted data field along with its metadata

are encrypted (except count and valids) and written out

to the bucket.

B Proof of the Lemmas

To prove Lemma 1, we made a little change to the Ring

ORAM algorithm. In Ring ORAM, a ReadPath opera-

tion adds the block of interest to the stash and replaces it

with a dummy block in the tree. Instead of making the

block of interest in the tree dummy, we turn it into a stale

block. On an EvictPath operation to path l, all the stale

blocks that are mapped to leaf l are turned into dummy

blocks. Stale blocks are treated as real blocks in both

ORAM
Z,A
L and ORAM

∞,A
L (including GZ) until they are

turned into dummy blocks. Note that this trick of stale

blocks is only to make the proof go through. It hurts

the stash occupancy and we will not use it in practice.

With the stale block trick, we can use induction to prove

Lemma 1.

Proof of Lemma 1. Initially, the lemma obviously holds.

Suppose GSZ
(S∞) = SZ after some accesses. We need to

show that GS
′
Z
(S∞) = S ′Z where S ′Z and S ′∞ are the states

after the next operation (either ReadPath or EvictPath).

A ReadPath operation adds a block to the stash (the root

bucket) for both ORAM
Z,A
L and ORAM

∞,A
L , and does not

move any blocks in the tree except turning a real block

into a stale block. Since stale blocks are treated as real

blocks, GS
′
Z
(S∞) = S ′Z holds.

Now we show the induction holds for an EvictPath

operation. Let EPZ
l be an EvictPath operation to P(l)

(path l) in ORAM
Z,A
L and EP∞

l be an EvictPath operation

to P(l) in ORAM
∞,A
L . Then, S ′Z = EPZ

l (SZ) and S ′∞ =

EP∞
l (S∞). Note that EPZ

l has the same effect as EP∞
l

followed by post-processing, so

S ′Z = EPZ
l (SZ) = GS

′
Z
(EP∞

l (SZ))

= GS
′
Z
(EP∞

l (GSZ
(S∞)))

The last equation is due to the induction hypothesis.

It remains to show that

GS
′
Z
(EP∞

l (GSZ
(S∞))) = GS

′
Z
(EP∞

l (S∞)) ,

which is GS
′
Z
(S ′∞). To show this, we decompose G into

steps for each bucket, i.e., GSZ
(S∞) = g1g2 · · ·g2L+1 (S∞)

where gi processes bucket b∞
i in reference to bZ

i . Sim-

ilarly, we decompose GS
′
Z

into g′1g′2 · · ·g′2L+1 where

each g′i processes bucket b′∞i of S ′∞ in reference

to b′Zi of S ′Z . We now only need to show that

for any 0 < i < 2L+1, GS
′
Z
(EP∞

l (g1g2 · · ·gi (S∞))) =

GS
′
Z
(EP∞

l (g1g2 · · ·gi−1 (S∞))). This is obvious if we

consider the following three cases separately:

1. If bi ∈ P(l), then gi before EP∞
l has no effect since

EP∞
l moves all blocks on P(l) into the stash before

evicting them to P(l).
2. If bi 6∈ P(l) and bi/2 6∈ P(l) (neither bi nor

its parent is on Path l), then gi and EP∞
l

touch non-overlapping buckets and do not in-

terfere with each other. Hence, their order

can be swapped, GS
′
Z
(EP∞

l (g0g1g2 · · ·gi (S∞))) =

GS
′
Z
gi (EP

∞
l (g0g1g2 · · ·gi−1 (S∞))). Furthermore,
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bZ
i = b′Zi (since EP∞

l does not change the content

of bi), so gi has the same effect as g′i and can be

merged into GS
′
Z
.

3. If bi 6∈ P(l) but bi/2 ∈ P(l), the blocks moved into

bi/2 by gi will stay in bi/2 after EP∞
l since bi/2 is

the highest intersection (towards the leaf) that these

blocks can go to. So gi can be swapped with EP∞
l

and can be merged into GS
′
Z

as in the second case.

We remind the readers that because we only remove stale

blocks that are mapped to P(l), the first case is the only

case where some stale blocks in bi may turn into dummy

blocks. And the same set of stale blocks are removed

from ORAM
Z,A
L and ORAM

∞,A
L .

This shows

GS
′
Z
(EP∞

l (GSZ
(S∞))) = GS

′
Z
(EP∞

l (S∞))

= GS
′
Z

(

S ′∞
)

and completes the proof.

The proof of Lemma 2 remains unchanged from the

Path ORAM paper [27], and is replicated here for com-

pleteness.

Proof of Lemma 2. If part: Suppose T ∈ ORAM
∞,A
L and

X(T ) > c(T )+R. Observe that G can assign the blocks

in a bucket only to an ancestor bucket. Since T can store

at most c(T ) blocks, more than R blocks must be as-

signed to the stash by G.

Only if part: Suppose that st(GSZ
(S∞)) > R. Let T

be the maximal rooted subtree such that all the buck-

ets in T contain exactly Z blocks after post-processing

G. Suppose b is a bucket not in T . By the maximality

of T , there is an ancestor (not necessarily proper ances-

tor) bucket b′ of b that contains less than Z blocks after

post-processing, which implies that no block from b can

go to the stash. Hence, all blocks that are in the stash

must have originated from T . Therefore, it follows that

X(T )> c(T )+R.

Proof of Lemma 3. For a bucket b in ORAM
∞,A
L , de-

fine Y (b) to be the number of blocks in b before post-

processing. It suffices to prove that ∀b ∈ ORAM
∞,A
L ,

E[Y (b)]≤ A/2.

If b is a leaf bucket, the blocks in it are put there by the

last EvictPath operation to that leaf/path. Note that only

real blocks could be put in b by that operation, although

some of them may have turned into stale blocks. Stale

blocks can never be moved into a leaf by an EvictPath

operation, because that EvictPath operation would re-

move all the stale blocks mapped to that leaf. There are

at most N distinct real blocks and each block has a prob-

ability of 2−L to be mapped to b independently. Thus

E[Y (b)]≤ N ·2−L ≤ A/2.

If b is not a leaf bucket, we define two variables m1 and

m2: the last EvictPath operation to b’s left child is the

m1-th EvictPath operation, and the last EvictPath oper-

ation to b’s right child is the m2-th EvictPath operation.

Without loss of generality, assume m1 < m2. We then

time-stamp the blocks as follows. When a block is ac-

cessed and remapped, it gets time stamp m∗, which is

the number of EvictPath operations that have happened.

Blocks with m∗ ≤ m1 will not be in b as they will go

to either the left child or the right child of b. Blocks

with m∗ > m2 will not be in b as the last access to b

(m2-th) has already passed. Therefore, only blocks with

time stamp m1 < m∗ ≤ m2 will be put in b by the m2-

th access. (Some of them may be accessed again after

the m2-th access and become stale, but this does not af-

fect the total number of blocks in b as stale blocks are

treated as real blocks.) There are at most d = A|m1−m2|
such blocks, and each goes to b independently with a

probability of 2−(i+1), where i is the level of b. The de-

terministic nature of evictions in Ring ORAM ensures

|m1−m2| = 2i. (One way to see this is that a bucket b

at level i will be written every 2i EvictPath operations,

and two consecutive EvictPath operations to b always

travel down the two different children of b.) Therefore,

E[Y (b)] ≤ d · 2−(i+1) = A/2 for any non-leaf bucket as

well.
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