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Constellation Shaping for Pragmatic Turbo-Coded
Modulation With High Spectral Efficiency
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Abstract—We propose a new turbo-encoding scheme for
high spectral efficiency with performance close to the Gaussian
channel capacity. The scheme combines nonuniform signaling on a
Gaussian channel with pragmatic turbo-coded modulation (TCM)
for simple and flexible implementation. A variable-rate turbo code
is followed by a Huffmann code mapping onto nonequiprobable
points in a quadrature amplitude modulation constellation. The
rate of the turbo code is matched to the Huffmann code by vari-
able puncturing, such that both the input bit rate and the output
symbol rate are constant. It is shown that the new scheme provides
shaping gains of 0.6 and 0.9 dB, at rates 2 and 3 b/dimension,
respectively, compared with the equiprobable pragmatic TCM,
and reach about 1 dB from the continuous input Gaussian channel
capacity.

Index Terms—high spectral efficiency modulation, signal
shaping, turbo codes.

I. INTRODUCTION

HE idea behind constellation shaping is that signals with

large norm are used less frequently than signals with small
norm, thus improving the overall gain by adding shaping gain to
their original coding gain [1]. The nonuniform signaling reduces
the entropy of the transmitter output, and hence, the average
bit rate. However, if points with small energy are chosen more
often than points with large one, energy savings may compen-
sate for this loss in bit rate. Theoretically, constellation points
would be selected according to a continuous Gaussian distribu-
tion at every dimension, and thus achieve the maximum shaping
gain. Practically, in finite constellations, a smaller gain can be
achieved.

For Gaussian channels, turbo-coded modulation (TCM)
techniques can be broadly classified into binary schemes and
turbo trellis-coded modulation (TTCM) [2]. The first group
can be further divided into “pragmatic” schemes with a single
component binary turbo code, and multilevel binary turbo
codes [3]. The pragmatic approach for a bandwidth-efficient
turbo-coding scheme has been presented in [4]. This approach
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is simple and versatile, and is much less complex to design and
to implement than TTCM. It uses only one turbo decoder, and
by modifying its puncturing function and modulation signal
constellation, it can obtain a large family of TCM schemes. It
is possible to include shaping in the framework of multilevel
codes [3]. The multilevel approach may be less attractive
than the pragmatic approach due to its increased complexity,
delay (from the multistage decoding), and sophisticated design
rules. The shaping that was applied to multilevel codes is
multidimensional trellis-shaping code, which is much more
complex than the method proposed here. The performance
obtained in the multilevel approach is similar (within 0.1 dB)
to our results. TTCM was shown to obtain the highest per-
formance in the coding of equiprobable quadrature amplitude
modulation (QAM). Fragouli and Wesel [5] have shown that
by careful code selection and interleaver design, it is possible
to reach a signal-to-noise ratio (SNR) of 0.5-0.6 dB from the
(constrained) capacity. Moreover, by combining nonuniform
constellations [6] with the symbol-interleaved encoder, they
achieved a shaping gain of approximately 0.2 dB [7].

Many authors suggested various forms of shaping within the
framework of TCM, like the trellis shaping of Forney [8]. An-
other approach to achieve shaping was already proposed in the
1960s by Gallager [9]. He showed that optimal coding for the
Gaussian channel can be made by grouping bits from a binary
code, where the larger group is assigned to the less probable
points in the constellation, and smaller to the more frequent.
Obviously, such a method leads to a variable-rate input to the
channel. A more detailed analysis of the method and close to
optimal variable-rate code was suggested in [10], which showed
that a close-to-optimal solution is the Huffmann prefix code.
The variable-rate scheme of [10] is simple to encode, but re-
quires variable-rate input, which results in system problems
such as buffering and resynchronization.

In this letter, we propose a practical method that uses this
idea while overcoming the variable-rate input disadvantage.
We combine the powerful but simple pragmatic turbo-code
principle with this shaping method and supply a practical
decoding scheme with good results. The matching is done
by dynamic puncturing of a low-rate turbo code to match the
symbol-dependent rate of the prefix code. For further improve-
ment, we also apply a feedback to the log-likelihood ratio
(LLR) calculation block, as suggested in [11]. We consider
one-dimensional (1-D) pulse-amplitude modulation (PAM)
constellations that are equivalent, on an additive white Gaussian
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noise (AWGN) channel, to square QAM constellations of twice
the symbol rate.

Our method can be applied to any binary turbo or turbo-like
code, including parallel concatenation, serial concatenation, and
low-density parity-check (LDPC) codes.

II. SIGNAL SHAPING IN A FINITE CONSTELLATION

It is well known that the maximum theoretical shaping gain,
or the maximum reduction in average transmit power for con-
stellations of rates R bits/dimension (dim) — oo is given by
G max = 10log;y(me/6) = 1.53 dB.

In practice, when using signal sets with finite transmis-
sion rates, this gain can never be achieved. Therefore, in
order to calculate the real gain that can be achieved when
using small signal sets, we turn to the calculation of the
capacity gain [3], which is the optimization of the mutual
information of the AWGN channel with discrete inputs.
Consider an AWGN channel having discrete inputs c¢ taking
on the values {c;} for j = 0,...,J — 1, with probabilities
P.(c) = {P.(co),Pi(c1),...,Pr(cs—1)}.

The capacity of the discrete input AWGN channel is given by
the maximum of the mutual information

C = maxp, ()I(c;Y)

J—1 00
= mMaxp,(c) Z Pr(cj) / Q(Y | Cj)
]:0 J —00
QY |¢)
Yo Pel(e)Q(Y | )

The SNR is given by (S/N) =
input signal power

log ()

(P/a?), where P is the average

P.(c;) - c2 2)

and o2 is the noise variance. Optimizing the mutual informa-
tion with respect to the input probabilities P,(c) will give the
lowest required SNR when transmitting at various rates R = C
bits/dim. We consider the maximum SNR reduction, compared
to the equiprobable transmission, as the desired capacity gain.
In [12], the authors proposed a numerical method that optimizes
the mutual information for a power-constrained finite constella-
tion. We found out that the Maxwell-Boltzmann (MB) distribu-
tion suggested by [10] provides a very good approximation to
the optimal solution, and is obtained by the distribution

P.(c;) —A|6j|27

=K(\)-e A>0 3)

where
-1

KO\ = | Y el @

cj

is the distribution normalization factor. This distribution maxi-
mizes the entropy of a finite constellation H (c) under an energy
constraint [3], [10], but does not necessarily optimize the mu-
tual information. The parameter A governs the tradeoff between
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the average power P of signal points and the entropy H (c). For
A = 0, the uniform distribution arises, while increasing A results
in more concentrated distributions close to the origin. By se-
lecting A properly, the minimum average energy can be achieved
for a given transmission rate, and consequently, the minimum
SNR in the calculation of (1). The idea is best explained using
an example.

Example 1: Consider the transmission of R = 2.0
b/dim using a 16-PAM signal constellation. In this con-
stellation, the signal set c consists of the 1-D signals
{-15,-13,-11,...,-1,1,3,5,...,13,15}. We first as-
sume uniform distribution for each constellation point of
P.(cj) = 1/16, which gives an average input signal power
P = 85. Applying (1) for a rate-R = 2.0 b/dim, we get

2 = 4.74, which gives an SNR S/N = 17.9. We now apply
the MB distribution (3) and (4) to the constellation. If we apply
a discrete Gaussian distribution (3) with an optimized value
of Aopt = 1/9 to the constellation points ¢ and use (1) again,
we get the average power P = 16.975 and a minimum SNR
S/N = 15.0. Therefore, the capacity gain that we achieve here
is

101logy, (g—g) = (0.768 dB. 5)

Similarly, using the same procedure for rate-R = 3.0 b/dim
with an optimal discrete distribution of the 16-PAM constella-
tion with Aop¢ = 0.047, we achieve a capacity gain

82.6
101ogyg = 1.074 dB. (6)
64.5
The losses in (5) and (6), with respect to the gains achieved by
the ideal continuous AWGN channel at similar rates, are 0.001

and 0.106 dB, respectively.

III. COMBINING SHAPING AND THE PRAGMATIC BINARY TCM
A. Construction of a Binary Distribution

We apply the theoretical considerations of the previous sec-
tion to practical schemes. For practical reasons, the probabili-
ties of the constellation points from the MB distribution (3) are
rounded to the closest 2% The results for a 16-ary PAM con-
stellation is (the result holds for both R = 2.0 b/symbol and
R = 3.0 b/symbol)

Pr(c=41,+£3) =27
Po(c=45+7,49) =27
P(c=+11)=275

P,(c =413, +15) = 276, @)

If we use this probability mapping again in (1) for transmis-
sion rates R = 2.0 and 3.0 b/dim, we achieve gains of 0.682
and 0.948 dB, which are quite close to the capacity gains of
the MB distribution achieved in (5) and (6). Moreover, these
probabilities can easily be implemented by using a table that
maps equiprobable input words of six bits into nonequiprob-
able words of four bits having the probabilities specified in (7).
Table I shows a way to do it. The columns bg, by, . .., bs repre-
sent the input bits. The signal points in the first column show
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Fig. 1. Pragmatic binary TCM encoder.
TABLE 1 Fig. 1. The encoded bits are mapped onto an M -ary phase-shift

SIGNAL MAPPER WITH BINARY PROBABILITIES OF TYPE 2% &k = 3,4,5,
AND 6, FOR A 16-PAM CONSTELLATION

Signal Point | by by by b3 by by
15 o 0 0 0 0 o0
13 o 0 0 O O 1
11 0O 0 0 O 1 x2
9 0 0 0 1 x2 x2
7 0 0 1 1 x2 x2
5 0 0 1 0 x2 x2
3 0 1 1 x2 x2 x2
1 0 I 0 x2 x2 x2
-1 1 1 0 x2 x2 x2
-3 I 1 1 x2 x2 x2
-5 1 0 1 0 x2 x2
-7 1 0 1 1 x2 x2
-9 1 0 0 1 x2 x2
-11 1 0 0 O 1 X2
-13 1 0 0 0 O 1
-15 1 0 0 0 0 O

how to map each input word into one of the 16 signals. The no-
tation [x 2] in the table means that a certain input bit in that loca-
tion can take on the values zero or one. In this way, four words
are mapped, for example, to the signal point 9.0, and eight are
mapped to 1.0, and so on. Clearly, the probability of each input
word is 1/64, whereas probabilities of the output words become
8/64,4/64,2/64, and 1/64. As requested, the output probabil-
ities are equal to the binary probabilities in (7).

It should be noticed that Table I actually performs prefix
code mapping onto the constellation. This can be seen by dis-
regarding the [x 2] entries of each input word. What is left is a
variable-length Huffman prefix code.

B. Applying to TCM

We now apply the nonequiprobable distribution derived
above to TCM. In pragmatic binary TCM [4], a single binary
turbo code of rate 1/3 is used as the component code. Its
encoder outputs are suitably multiplexed and punctured to
obtain m parity bits and m — mm information bits, as shown in

keying (PSK) or M-QAM signal set. For simplicity, we used
an M-PAM signal set, which is equivalent to an M?2-QAM
having a spectral efficiency of 2(m — m) b/s/Hz.

The signal mapper associates each word of m encoded bits to
one of the M -PAM channel symbols available in the modulator.
In an equiprobable signaling scheme, we map m encoded bits
onto one of the M = 2™ symbols using Gray code. Otherwise,
in anonequiprobable scheme, we apply atable (e.g., Table I) that
maps m-bits equiprobable input words onto nonequiprobable
M-PAM symbols.

It is clear that the mapping through the table onto the
nonequiprobable constellation is a form of an additional punc-
turing because of the [x 2] ambiguity of some of the bits. On the
other hand, as long as we keep the systematic bits unpunctured,
the gain achieved by the nonequiprobable signaling scheme
more than compensates for this loss in code strength. Thus,
our scheme actually implements a variable-rate turbo code,
because the number of parity bits given to each information bit
varies as a function of the input combination.

The receiver, shown in Fig. 2, calculates the LLR calcula-
tion block for each encoded bit based on the received noisy
symbol. The stream of the bit-likelihood values is then bit dein-
terleaved, demultiplexed, and depunctured before passing to the
binary turbo decoder which is based on the maximum a pos-
teriori (MAP) algorithm, e.g., [13]. As suggested in [11], the
LLR calculation block is used in the turbo decoder iterations.
The extrinsic coded data shown in Fig. 2 are the new values of
the output turbo decoder MAP LLRs, for both systematic and
parity bits, in each turbo iteration. This data will be used by the
LLR calculation block as a priori input to the next iteration. To
illustrate this, consider the calculation of the LLR for each en-
coded bit b,

Dbyt XD (g (r = 2)%) - Pp(x ] b = 1)
Zz:btzo exp (_#(T - $)2) : PT('T | bt = 0)
(3)

A(by) = log
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Fig. 2. Pragmatic binary TCM decoder.

where z is a symbol at the output of the mapping table, having
inputs b; = 0 or 1, r is the received symbol, and o2 is the
noise variance. Each new turbo iteration will update the variable
P, (x| b;) and thus improve the stream of bit LLRs entering the
decoder for the next iteration.

IV. SIMULATION RESULTS

We used the standard rate-1/3 turbo-encoder, e.g., [14],
made up of two elementary encoders with memory size four
and the same generator polynomial 37-23 (octal number 23
represents feedback connections, and 37 represents feed-for-
ward connections). The generator polynomial was taken from
[15], which states the optimal encoders for various turbo-code
rates and memory sizes. Turbo decoding was performed in 18
iterations on blocks of 32768, 16384, and 8192 information
bits using pseudorandom interleaving. We applied two schemes
for spectral efficiencies of 2 and 3 b/dim. The first one used
a rate-1/3 turbo encoder and nonequiprobable signaling. This
scheme applied Table I for a mapping of six-bit input words
including two information bits onto 16-PAM symbols having
a binary distribution, as in (7). It was compared to a rate-2/3
turbo code using equiprobable signaling with three-bit 8-PAM
symbols, as in the standard pragmatic binary TCM technique
[4]. The second scheme used a rate-1/2 turbo encoder and a
similar nonequiprobable signaling technique, where this time,
three information bits were mapped onto six-bit input words. It
was compared with a rate-3/4 equiprobable 16-PAM pragmatic
binary TCM. The bit-error rate (BER) versus Ej /Ny for the
two schemes are shown in Figs. 3 and 4. The capacity limits
for the 16-PAM constellation and the continuous-input AWGN
channel at both transmission rates are also reported.

The error-floor effect we have encountered occurred at
BERs below 10~° for the information block lengths we used.
We can notice that for rate-2.0 b/dim and Py(e) = 1075,
the nonequiprobable scheme produces gains of 0.59 dB
(N = 32768), 0477 dB (N = 16384), and 0.57 dB
(N = 8192) compared with the equiprobable one. The only
power-constrained, continuous-input channel-capacity limit of
the AWGN channel is £ /Ny = 5.74 dB. The performance of
our decoder at Py(e) = 107> for the longest block length is
about 1.1 dB from this limit. At 3.0 b/dim, the nonequiprobable

Puncturer and
Bit interleaver

i
—A— Nonequi. N=32,768
o A Equi. N=32,768
R -2 Nonequi. N=16,384
O- Equi. N=16,384
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O Equi. N=8,192
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Eb/NO [dB]
Fig. 3. Performance comparison between two schemes of nonequiprobable

and equiprobable signaling at rate-2 b/dim using pragmatic binary TCM with
18 iterations and block lengths N = 32768, N = 16384, and N = 8192
b. Channel capacity limit is 5.74 dB, equiprobable 16-PAM capacity limit is
6.6 dB.

107 ; T
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Fig. 4. Performance comparison between two schemes of nonequiprobable
and equiprobable signaling at rate-3 b/dim using pragmatic binary TCM with
18 iterations and block lengths N = 32768, N = 16384,and N = 8192
b. Channel capacity limit is 10.2 dB, equiprobable 16-PAM capacity limit is
11.38 dB.
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scheme produces gains of 0.87 dB (N = 32768), 0.86 dB
(N = 16384), and 0.82 dB (N = 8192) compared with the
equiprobable one for the same BER, the channel capacity limit
is Ey/No = 10.2 dB, and we achieve Py(e) = 10~° for the
longest block length within 1.1 dB of this limit.

It may be interesting to compare our results with the recent
results of [7], where the authors used an 8-PAM TTCM scheme
and shaping using nonuniform constellations for rate-2 b/dim.
Using an input block size of 16 384 bits, they achieved P,(e) =
10~ at SNR of E,/Ny = 7.05 dB, which is about 0.15 dB
higher than our results. By increasing the block length to N =
32768 and the number of decoder iterations, our results are
better within 0.25 dB.

V. CONCLUSION

In this letter, we presented a new scheme for improving the
performance of pragmatic binary TCM by using nonequiprob-
able signaling. We described a nonequiprobable signaling tech-
nique that makes it possible to approach the maximum capacity
gain of a finite-constellation AWGN channel. Our nonuniform
signaling scheme is very easy to implement, and adds negli-
gible load on the turbo decoder. We showed for an example
of 6 b/QAM symbol, a gain of 0.9 dB relative to the equiprob-
able scheme performance, and transmission within 1.1 dB of the
Shannon limit. Note that the difference between the capacities
of the equiprobable and nonequiprobable schemes is 1.07 dB.
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