
Constellation Visualization: Augmenting Program

Dependence with Dynamic Information

Fang Deng

Department of Informatics

University of California, Irvine

Irvine, California 92617-3440

Email: fdeng@ics.uci.edu

Nicholas DiGiuseppe

Department of Informatics

University of California, Irvine

Irvine, California 92617-3440

Email: ndigiuse@ics.uci.edu

James A. Jones

Department of Informatics

University of California, Irvine

Irvine, California 92617-3440

Email: jajones@ics.uci.edu

Abstract—This paper presents a scalable, statement-level vi-
sualization that shows related code in a way that supports
human interpretation of clustering and context. The visualiza-
tion is applicable to many software-engineering tasks through
the utilization and visualization of problem-specific meta-data.
The visualization models statement-level code relations from a
system-dependence-graph model of the program being visualized.
Dynamic, run-time information is used to augment the static
program model to further enable visual cluster identification
and interpretation. In addition, we performed a user study of
our visualization on an example program domain. The results of
the study show that our new visualization successfully revealed
relevant context to the programmer participants.

I. INTRODUCTION

To perform various software-engineering tasks, developers

often need to understand large software systems and how

the various components of the software influence and relate

to others. Software systems often contain many modules,

files, and lines of code. To a certain degree, these software

components are often organized in a logical, coherent fashion.

For example, related files are placed in packages, and lines of

code are organized with other, related lines in methods and

classes. However, classes and files between packages often

interact in fundamental and important ways. Similarly, lines

within methods may call other methods or set field or global

variables that are read by other lines in other methods. These

relationships often form so-called cross-cutting, yet scattered

functionalities. Understanding these relationships at both the

high and low levels of granularity can be a difficult and time-

consuming task for a developer, especially as the size of the

software increases.

One popular software visualization that is capable of

showing both high- and low-level program components is

the SeeSoft visualization proposed by Eick et al. [4]. The

SeeSoft visualization scales well to large programs and en-

codes problem-specific meta-data through its use of color for

the software component representations. Its strengths come

from the fact that it scales well, is able to present problem-

specific information through color, and preserves the structure

of the code. The preservation of the structure of the code

helps developers in that it presents the code in a way that

is familiar. However, SeeSoft does not explicitly encode the

relationships among the components in the code, leaving that

task to developers’ manual search and interpretation.

The low-level relationships among lines of code can be

obtained from dependence graph models of the software such

as program and system dependence graphs (PDGs and SDGs).

These models are seldom visualized as they tend to be quite

large, both in terms of the number of nodes (statements)

and edges (dependencies or relationships). While there are

some exceptions, such as those proposed by Krinke [11] and

Würthinger et al. [15], they generally do not present the

program in a scalable form for medium to large programs.

Dietrich et al. [1] enabled a certain degree of scalability

by visualizing dependence graphs of programs at a higher

level of granularity: the class level. These works initiated an

exploration of the possibilities for leveraging these dependence

graph models of programs to highlight relationships among

program components.

In this work, we extend such notions of dependence graph

visualizations to enable a system-wide visualization of soft-

ware at a low-level of granularity. Our objectives are to make

this visualization: scalable, helpful in enabling developers to

identify relationships among statements in the code, applicable

to problem-specific software-engineering tasks, and capable of

interfacing with other visualizations.

To address these objectives, we created a novel program

visualization that we are calling the Constellation Visualiza-

tion. We present the system-dependence graph at the statement

level. We make it scalable by hiding edges (by default) and

presenting nodes as singular points. We depict relationships

among statements in the program based on their proximity

in the visualization; related code forms visual clusters. These

clusters reveal related and relevant code context, often reveal-

ing core cross-cutting, yet scattered functionality. The static

dependency model of the program is augmented with various

forms of dynamic, run-time information that further supports

the ability for the user of the visualization to identify related

and relevant code context specific for a particular software

engineering task. This dynamic information can be gathered

from commonplace testing tools which impose low run-time

overhead. Our visualization supports a number of software-

engineering tasks by incorporating problem-specific meta-data

and encoding it with color. It also works seamlessly with other

visualizations through interactivity to leverage the strengths of

each.



The main contributions of this work are:

• A novel visualization: the Constellation Visualization.

We augment the scalable view of the system-dependence

graph with lightweight dynamic information in a way that

depicts related, clustered code. The visualization supports

various software-engineering tasks through the use of

problem-specific meta-data.

• A user study that compares two visualizations, the

SeeSoft and Constellation visualizations, to determine

if a benefit would be had by incorporating dependency

information for a task which requires context to be

ascertained.

• Examples of several software-engineering tasks for which

we speculate that the new visualization will be helpful

as an augment to traditional software visualizations, and

describe how the visualization can be mapped to those

domains.

II. BACKGROUND

A. SeeSoft Visualization

Eick et al. [4] created the SeeSoft visualization as a scalable

program visualization that presents source code in a miniature,

or zoomed-away, view. It presents each line of code as a single

line of pixels that are colored to represent some aspect of

the software. Eick et al. proposed a number of classes of

source-code meta-data that can be mapped to colors, such as

code authorship, program slices, and code age. An advantage

of the SeeSoft visualization is that the code structure (e.g.,

indentation, statement length, and blank lines) is preserved in

the visualization so that it is easily interpretable by developers.

A potential area for improvement and extension could be had

in enabling developers to understand how parts of the program

can affect other parts of the program — this is the motivation

for our new visualization.

As an example, one use of SeeSoft is for fault-localization.

Jones et al. [9] proposed a technique (called TARANTULA)

for identifying lines of code that are “suspicious” of causing

failures, i.e., being the bug or fault causing those failures. The

technique determines the strength of the correlation between

statement execution and test-case failure — those statements

that are primarily executed by failing test cases, but rarely

executed by passing test cases are considered more likely of

causing those failures. Those statements whose execution is

highly correlated with failure are considered “suspicious” and

are colored in a red hue; those statements whose execution is

highly correlated with passing test cases are considered non-

suspicious and are colored in a green hue; and statements

whose execution is correlated to a degree in between these

extremes are colored according to a continuous sub-spectrum

of hues varying from red to yellow to green.

Figure 1 presents a program and a problem-domain that we

will use as a running example in this and the next section. In

this figure, we demonstrate the use of the SeeSoft visualization

using this fault-localization technique. The program being

visualized is a version of the Gzip Unix utility which contains

Fig. 1: An example of a SeeSoft view with coloring from the

TARANTULA tool.

over 9000 lines of code and a single fault causing test case

failures. Notice that the fault-localization technique determines

that a subset of the program is suspicious of causing the

failures. This visualization would be presented to the devel-

opers, whose responsibility would be to interpret the results,

investigate those statements, and ascertain the relationships (or

absence of relationships) among the disparate suspicious (red)

statements.

Notice that in this visualization, the red lines are scattered

into different parts of the source code. As such, developers

would have no indication of where to begin their search

or how the disparately located suspicious code interrelates.

Anecdotally, we have found that in interpreting and exploring

the code, the suspicious lines are most often interrelated

and form a logical cohesion that is descriptive of the faulty

behavior causing failures. Based on this experience, we sought

to incorporate information that describes relationships between

statements, however disparately located they may be.

B. Dependency Graphs

To describe these relationships between statements in code,

researchers have proposed various dependency graphs. These

dependency graphs often describe two types of relationships

within the software: control and data. Control dependencies

occur when a part of the program (e.g. a statement) controls the

execution of another part of the program. For example, an if

statement controls whether the code in its block is executed.

Data dependencies occur when a part of the program assigns

a value to a variable that another part of the program uses.

For example, a read of a variable depends upon the definition

of the variable that assigned its value.

Ottenstein and Ottenstein [14] proposed the program-

dependence graph (PDG), which is an intra-procedural model

that captures both control and data dependence among state-

ments. Horwitz et al. [8] extended the PDG model by pro-

ducing an inter-procedural model that in addition conveys

dependencies between procedures. This model is called a

system-dependence graph (SDG).



The traditional form of graph visualization — where a node

is represented as an oval whose label describes the entity that it

represents, and where an edge is represented as a line between

nodes — is typically unscalable. The difficulty in scaling such

a visualization stems from the fact that the number of nodes

is roughly proportional and consistent with the number of

statements in the source code, and more so for the multitude

of interconnecting dependency edges.

Nevertheless, researchers have visualized such program

dependence graphs. Krinke [11] proposed a visualization ap-

proach which uses a dedicated, declarative layout for program

dependence graphs. It aims at making the graph more com-

prehensible than generic graph layout algorithms. Würthinger

et al. [15] developed a tool to visualize program dependence

graphs of Sun Microsystems’ Java HotSpotTM server com-

piler. They provide additional features such as filtering mech-

anisms to allow manipulation on the program elements and a

mechanism that shows the evolution of the graph. Dietrich

et al. [1] visualize a higher-level dependency graph (i.e.,

dependencies among classes) using a “betweenness” clustering

algorithm to compute the modular structure of programs so as

to assist identifying component boundaries.

In addition to the difficulty in scaling such visualizations,

these depict the static model of the program: all dependen-

cies that may be fulfilled in any execution are given equal

strength in informing node positions regardless of whether

any executions actually do fulfill them. This static-only view

of the dependency graph can be problematic because not all

dependencies are fulfilled during execution, and those depen-

dencies that are fulfilled are given equal strength regardless of

fulfillment frequency. As such, such visualizations are unable

to inform users of the degree to which program components

actually depend on each other. We think that incorporating

dynamic information is likely to give a better intuition of

which dependencies are feasible or infeasible, weak or strong.

III. VISUALIZATION

In this section, we describe our new visualization by de-

scribing, in turn, each of the refinement steps that we applied

to traditional dependence graph visualizations. Each step is

described in its own section along with a running example

visualization to demonstrate the benefit that that refinement

brought. First, we describe a traditional method of visualizing

dependence graphs in Section III-A. Then, we describe each

of our refinement steps:

Step 1: For scalability of layout computation and human

interpretation, do not visualize edges. (Section III-B)

Step 2: For scalability of interpretation, visualize each

node as a single point. (Section III-C)

Step 3: For applicability to specific problem domains,

color each node to encode problem-specific meta-data.

(Section III-D)

Step 4: For ease of interpretation and pattern recognition,

inform edge strength with dynamic information of the

visualized program. (Section III-E)

Step 5: For further optimizing problem-specific interpreta-

tion and pattern recognition, allow for preferential treat-

ment of categories of executions informing the dynamic

information. (Section III-F)

Finally, we discuss our prototype implementation which

supports interactive exploration of the visualizations in Sec-

tion III-G. Each section contains a figure that presents an

evolving visualization resulting from the refinement step.

A. (Step 0) Traditional Dependence Graph Visualization

Fig. 2: An example of a traditional representation of a system-

dependence graph for the Gzip source code. (Step 0)

Traditionally, program dependence graphs are seldom vi-

sualized, especially for large programs and at a fine-level of

granularity (e.g., the statement level). Tools and developers

seldom visualize such graphs primarily due to their inability

to scale, both in terms of computational time and in terms of

human interpretation of a large and complex graph.

The difficulty in allowing large, fine-grained graphs to be

visualized comes, in part from the computational expense

in providing a useful graph layout. Graph-layout algorithms

typically attempt to minimize edge crossings to enable users

of the graph visualization to easily visually traverse them. Such

edge-crossing minimization accounts for a significant portion

of such layout computation [6].

Another difficulty relating to scalability is that the resulting

graph visualization is often too large to be represented on a

typically computer display or print-out. Nodes are represented

as ovals, which often contain text to allow the user to un-

derstand each node’s purpose. Despite the best edge-crossing

algorithms and their required inordinate amounts of time for

computation, for large and complex graphs, edges still cross.

The result often resembles a nest of oval nodes and connecting

edges such that the developer cannot easily traverse the graph

or display the graph in its entirety.

Graph visualizations often employ a layout algorithm such

as a force-directed graph (FDG) algorithm [5]. In such FDG

algorithms, nodes repel each other due to an electro-static

repulsion force, and edges bind their incident nodes with a

spring force. The initial position of each node is randomly



assigned on a Cartesian coordinate system of a given size.

Then, iteratively, each node is moved to lower its affecting

forces: away from other repelling nodes (due to the node

repulsive forces) and toward other connected binding nodes

(due to the edge spring forces). The state of the layout iterates

until the graph has found a local minimal overall energy and

the layout reaches a stasis.

Figure 2 demonstrates a resulting graph visualization of the

system-dependence graph for the same Gzip program from

the running example first presented in Section II. In this

visualization, each statement in the program is represented by

a node which is depicted by an oval. Dependencies between

statements are depicted as lines between their corresponding

nodes. This naı̈ve graph visualization demonstrates the diffi-

culties that a user would likely face if attempting to interpret

the program, its elements, and their relationships.

B. (Step 1) Omit Edge Visualization

Fig. 3: Edges are omitted by default to enable greater scala-

bility. (Step 1)

As a first refinement step to allow greater scalability of

visualizing traditional dependence graphs, we propose to omit

the rendering of edges by default. The choice to do so may

be inapplicable to some uses of the visualization, however in

cases where not all edges need to be visualized, all the time,

we consider this a useful and enabling step. The omission

of the drawing of these edges has two beneficial effects on

scalability: (1) graph layout algorithms need not optimize

for minimizing edge crossings and (2) users will be not

be overwhelmed with all edges at all times. Edges inform

node positions in the graph layout in their traditional ways

(described in Section III-A) despite not being rendered by

default. We allow the edges which are incident on a particular

node to be drawn through user interaction with the interface to

allow for exploration. However, by default, edges are hidden,

and their crossings do not need to be minimized. While

the edges are removed generally, they can be observed by

interacting with the visualization.

Figure 3 demonstrates the same program as as our running

example. Notice that the graph is less cluttered, although it is

quite difficult to interpret given the large number of nodes.

C. (Step 2) Represent Nodes as Points

Fig. 4: Nodes are represented as a single point to enable greater

scalability. (Step 2)

Our second refinement step to allow greater scalability of

visualizing dependence graphs is to represent each node not

as an oval containing text which describes it, but instead to

represent each node as a single point or dot. In doing so, more

nodes are able to be visualized with less clutter. However, the

identifying information which was previously contained within

the node label is lost. We overcome this through interactivity

of the visualization which will be described in Section III-G.

Figure 4 demonstrates the effect of Step 2 on the same

program depicted in Figures 2 and 3. While proximity of

nodes indicates relationships, edges can be observed through

interaction, and node identity can be queried through inter-

action (described in Section III-G). In this visualization, the

graph scales well, but may be difficult to interpret without the

assistance of problem-specific information.

D. (Step 3) Color to Encode Problem-specific Meta-data

Fig. 5: Color encodes problem-specific meta-data. (Step 3)

To help the user of the visualization interpret its results,

we encode specific problem-specific meta-data using color.

We color nodes according to properties attributed to the



statements that they represent. For example, for automated

fault-localization techniques, much like the TARANTULA tech-

nique [9], red can be used to encode suspicious statements in

the program and green to encode non-suspicious statements

(with a continuous spectrum going through yellow in be-

tween). Alternatively, slices can be visualized using color, code

authorship (with each developer assigned a different color),

and many other possible uses of color. Eick et al. described a

number of uses of color for individual program statements [4].

We provide more such example uses of color in Section III-H

and the potential uses of viewing these along with their related

and dependent statements.

Figure 5 demonstrates the effect of coloring nodes according

to Step 3. This visualization depicts the same program as our

running example. The color in this visualization is informed

by dynamic, run-time information and the TARANTULA fault-

localization technique. Notice that now, the most suspicious

statements (i.e., red statements, which number over 200)

produce a loose cluster in the upper, left-hand corner. Notice

that the equivalent SeeSoft visualization from Figure 1 depicts

these same red statements as scattered throughout the program.

E. (Step 4) Inform Edge Strength with Dynamic Information

Fig. 6: Dynamic information used to influence node positions.

(Step 4)

To further help the user interpret the results and patterns

found in the visualization, we utilize dynamic, run-time in-

formation to influence node positions. In this way, we want

to highlight and give prominence to dependencies that are

realized during actual execution. In each of the visualizations

thus far (Steps 0–3), the graph being visualized represents a

static dependency graph. That is, each dependency (which is

represented visually as an edge) represents a dependency that

may occur in any possible execution (and these are often over-

approximations of dependency possibilities). By enhancing

dependencies that are realized often, and diminishing depen-

dencies which are seldom or never realized, we hope to better

allow users to identify clusters or patterns in the resulting

visualization.

To do so, we assign each edge a weight which influ-

ences its spring force. The weight is informed by lightweight

and commonplace statement-coverage information. Using such

statement-coverage information, we calculate, for each edge

(dependency), the set similarity of the set of test cases which

executed each of its incident nodes (statements). We use

the Jaccard set-similarity metric to assess the similarity and

thus inform the edge weight. We use this as a lightweight

approximation of the likelihood of dependency traversal.

Figure 6 demonstrates the effect of utilizing dynamic infor-

mation to inform edge strength which influences the force-

directed graph layout algorithm. Notice that the suspicious

(red) nodes cluster to a greater degree than the static-only

layout presented in Figure 5. Another interesting quality of this

visualization is that the unexecuted statement nodes (colored

gray) have no spring force and are thus free to “float away.”

The executed statements are attracted to the statements that

are most often executed with them.

F. (Step 5) Bias Dynamic Information

Fig. 7: Dynamic information is categorized and differentially

utilized to inform node positions. (Step 5)

To tailor the visualization further for the specific problem

domain, we next differentiate the treatment of dynamic data

informing the edge strengths. In our running example of

showing fault-localization information with its context, we

may choose to treat passing and failing information differently.

Because in this example domain the user is most interested in

failure-related behavior, we can give a greater weight to failing

test-case traversals than passing.

Other problem domains may require a different differenti-

ation of test-case execution information. For example, if at-

tempting to highlight and locate all cross-cutting functionality

that relate to a particular feature (say, the GUI) those test cases

that exhibit that behavior can be treated more strongly. Or, in

another example, test cases which exhibit poor performance

may be used to highlight and cluster code that may give rise

to such performance issues.

To attribute edge strength with biasing (i.e., differentiation

or preferencing), we compute the set similarity in the same

way as described in Step 4, however, we treat each subclass

of test cases separately. Each subclass’s similarity is scaled to



the appropriate proportion as desired, and summed to produce

the overall edge strength.

Figure 7 demonstrates the effect of utilizing biased dynamic

information to inform edge strength. In this figure, failing test-

case similarity accounts for 98% of the total edge strength

and the passing test-case similarity accounts for just 2%. We

can observe that the (red) failure-correlated code — consisting

of over 200 lines — clusters to an even greater degree than

before, while the (green) passing-correlated code is allowed to

float away.

G. Supporting Interactive Exploration

Because the Constellation visualization provides strengths

such as enabling relationships, patterns, and clusters of code

to be observed, yet has the limitation of not displaying the code

in a way that is familiar to the developer, we envisioned its use

in concert with the SeeSoft view. While both are scalable, the

SeeSoft view has, in some ways, opposite strengths: it displays

code in a way with which developers should be familiar. By

incorporating these two visualizations, plus a standard full-size

source-code listing, the benefits of each can be had.

We implemented a three-paned view which incorporates all

three of these views of the software: (1) the Constellation

visualization, (2) the SeeSoft visualization, and the (3) the full-

sized source-code view. Each of these enables brushing [10]

with the other two. For example, a node can be clicked in

the Constellation, and the appropriate code is loaded and

highlighted in the other two views.

H. Applications

Much like the SeeSoft visualization from which we were

inspired by its use of color to encode problem-specific meta-

data, the Constellation visualization accommodates a plethora

of applications such as assessing code authorship, evaluating

system modularity, and performing feature searching. To give

the reader a sense for such possibilities and for how the new

visualization can be useful in these contexts, we describe a

few such applications here.

Code authorship: Many development teams contain mul-

tiple developers that are working on the same code base. In

these circumstances a project manager benefits from knowing

the author of a section of code. The Constellation visualization

would take as input developer authorship data (presumably

gained through a repository) — each developer may be as-

signed a distinct color. The Constellation visualization then

colors and clusters the system based upon dependency data

and (if available) run-time data, allowing users to identify

which sections of code were created by which developer. Ad-

ditionally, through the use of the visual clustering, developers

who have code that depends closely upon each other can be

made aware of those close relationships, potentially informing

collaborative maintenance efforts.

System modularity: Similar in aim to work by Kuhn et

al. [12], the clustering of system dependence nodes based

on structure and execution may enable developers to become

aware of prominent features and their modularity in the code.

Tracking the coupling and cohesion of a system between lines

of code within different classes and packages can inform

developers of crucial system design decisions and potential

maintenance problems. The Constellation visualization could

take class and package hierarchy information as input and

color statement nodes accordingly. It then could cluster the

system based upon dependency data and (if available) run-

time data, allowing developers in the early stages of design to

understand more explicitly how the system is evolving, which

classes and components across class and package boundaries

form cross-cutting functionality. These revealed features may

inform potential future areas to refactor the code.

Feature search: If a developer were interested in identifying

all code that related to certain functionality, and test cases

exist that specifically target that functionality, a technique

very similar to the fault-localization example presented in

Sections II and III could be utilized. In such an application,

the test cases that test for that functionality could be correlated

with statement execution. The statements could be colored

to indicate the degree to which they are correlated with the

feature of interest. Additionally, the dynamic information that

informs edge strength can be treated separately according to

whether it is from the test cases which test the feature of

interest. Even if the code that implements the feature is scat-

tered among multiple parts of the program, the visualization

is likely to cluster this code, revealing related and relevant

code, and also revealing feature-correlated code that does

not cluster, which may indicate duplicated functionality (i.e.,

clones). Additionally, the visualization is likely to not only

expose the code that is directly feature-related, but also reveal

code that provides the context for it.

IV. USER EXPERIMENT

The goal of our study was to assess the degree to which

relevant context is encoded into our visualization, as well as

the traditional SeeSoft visualization. We included the SeeSoft

visualization because it is also a scalable program visualization

that works at the statement level and encodes problem-specific

meta-data using color. We wanted to assess whether the code

structure as implemented by the developers was sufficient

to encode such context. Our choice of application for the

visualizations is the same as that of our running example

presented in Sections II and III: the TARANTULA fault-

localization technique.

We describe our user study by presenting first our object

programs, then our experimental variables, next our experi-

mental setup, and finally our results and analysis.

A. Objects of Analysis

In this experiment we used four C-language subjects: Flex

version 2.5.4, Gzip version 1.0.7, Sed version 3.02, and Space.

All four subjects, are real world programs: Flex, Gzip, and

Sed, are Unix utility programs; while Space is an interpreter

for an array definition language created by the European Space

Agency. These programs vary in size with Flex comprising

15895 LOC, Gzip 9251 LOC, Sed 11699 LOC, and Space



6445 LOC. All four subjects were downloaded from the

Subject Infrastructure Repository (SIR) [3] together with their

faulty versions and test suites. Like Reference [2] mutants

are utilized to create a sufficient fault base and replace faults

when SIR’s faults cause no failures. Our mutant creation

adheres to the framework Offut et al. establish in [13] —

employing random mutant operators at random positions in

the code. After our mutation, each subject program has at

least 20 different single fault versions. In all, we produced

over 300 visualizations: at least one Constellation and one

SeeSoft visualization per fault per object program.

B. Experimental Setup

Our experimental subjects were 30 information and com-

puter science students at the University of California, Irvine.

These students varied in degrees of expertise from 1 to 20

years of software-development experience.

We began by creating a visualization for every faulty version

from each program. To create the visualizations, we injected

each fault, one at a time, into its object program, ran its test

suite, gathered execution coverage information, and computed

the TARANTULA suspiciousness metric for each source-code

statement. For the Constellation visualization, we utilized the

CodeSurfer tool by GrammaTech [7] to produce the system-

dependence graphs.

Then, random visualizations were selected (without re-

placement until all versions were used) from the SeeSoft

and Constellation visualizations. Each participant viewed five

SeeSoft and five Constellation visualizations. The subjects

were informed about the basic layout of each visualization and

the colored meta-data. Each participant identified a location

where they believed the fault to be located according the

visualization.

To evaluate the effectiveness of the conveyed context, we

determined the total lines of code which would need to be

inspected starting from the subject-prescribed fault location

to find the fault. Because each visualization demonstrates

information differently, we use the following two methods to

evaluate them. For the Constellation visualization, we employ

increasingly large concentric circles centered at the subject-

prescribed fault location until the fault is circumscribed. We

then assessed the quantity of nodes in that circle. This method

is chosen because it mimics a breadth-first traversal, which

fits well with Constellation visualization’s graph structure. For

the SeeSoft view, we started at the subject-prescribed fault

location and expanded the context in both the forward and

backward directions in the source file until the fault was found.

This method is chosen because it utilizes the traditional code

structure which is the foundation on which SeeSoft is built.

Additionally, it enables us to determine whether relevance is

already encoded by developer choice of code location, and thus

whether the additional Constellation visualization is needed

at all. Our goal is to most nearly approximate a structural

traversal or intended use.

Constellation SeeSoft
0

2000

4000

6000

8000

10000

12000

14000

Li
ne

s 
of

 C
od

e

(a) Search results for Flex.

Constellation SeeSoft
0

500

1000

1500

2000

2500

3000

Li
ne

s 
of

 C
od

e

(b) Search results for Gzip.

Constellation SeeSoft
0

500

1000

1500

2000

2500

Li
ne

s 
of

 C
od

e

(c) Search results for Sed.

Constellation SeeSoft
0

1000

2000

3000

4000

5000

6000

Li
ne

s 
of

 C
od

e

(d) Search results for Space.

Fig. 8: Number of statements which need to be explored until

the fault is found, for each program and visualization type.

C. Results and Analysis

The results of our user study are presented in Figure 8. Each

subfigure displays a boxplot which depicts the lines of code

that needed to be examined for each subject with both visu-

alizations. Each figure shows the Constellation visualization

in the left box and SeeSoft in the right box. Our data shows

that in every program, the Constellation visualization enables

developers to locate the fault with fewer lines of code. This

is manifested by a smaller median and standard deviation in

the Constellation visualization in every subject. Further, every

Constellation visualization maximum requires fewer lines of

code than SeeSoft’s first quartile — and in two subjects, even

fewer than SeeSoft’s median.

We noticed that the subjects primarily selected a red location

for their assessed fault location: within SeeSoft they selected

the largest group of continuous red lines, while in Constel-

lation they selected the center of the largest cluster of red

nodes. This behavior is expected and (we believe) typical given

the implications for fault-localization-coloring data and the

structure of each visualization. Thus, when a fault was colored

yellow or green, the subjects unsurprisingly never guessed

that line as the fault. However, the Constellation visualization

typically placed those statements in close proximity to the

subjects’ guess, which was red. SeeSoft often depicted these

lines in distant locations from the red lines.

From this observational data and Figure 8, we draw the

following conclusions:

1) While SeeSoft is successful for many tasks, it often does

not effectively convey relevant context. Suspicious code

(those colored red) are often in disparate locations. This

result implies that the developers did not structure the

code in a way to consolidate relevant context, and thus

methods to extract such context may be useful.



2) The Constellation visualization is able to transmit con-

text quite effectively. Disparate locations are associated

with dependency and run-time data and are clustered

together in Constellation view.

3) When the suspicious lines of code do not include the

fault, the suspicious code is often in close structural

proximity and directly related to the fault in a run-

time execution. We expect a developer to build up an

understanding of the fault context as they examine the

associations around their selected location.

4) The Constellation visualization has a small standard

deviation (as manifested by its quartile locations). The

small standard deviation indicates a consistent proximity

across all faults in all of our object programs.

V. THREATS TO VALIDITY

A difficulty in creating external validity for our study is

generalizability. We only have 30 study participants, all from

the University of California, Irvine, and therefore are unable

to draw conclusions about developers worldwide. However,

because the choices by these subject follow intuition, and due

to the large variety of developer experience, and that developer

results are similar across all four different subjects and across

two different visualizations, we believe it likely that other

developers will behave similarly.

A difficulty in creating construct validity is how we measure

context in each visualization. We assume that developers

will use each visualization in a certain way — essentially

to traverse each visualization based upon the layout of the

visualization — but without a study of developers using

these tools across multiple applications, we cannot verify this

assumption. Notwithstanding this, we believe that measuring

each visualization this way — focusing on its structure and

purpose — is a reasonable way to determine the strengths of

each visualization’s layout and necessity.

VI. CONCLUSIONS AND FUTURE WORK

Our paper presents a novel visualization — the Constellation

visualization — which enables a system-wide view while si-

multaneously enabling statement-level analysis, reveals cross-

cutting functionality, enables clustering through structural de-

pendencies and run-time data, and uses problem-specific meta-

data applicable to a number of software-engineering tasks.

This visualization can empower developers — in a wide

range of applications — to better understand their system’s

context and visualize meta-data patterns. We also describe our

prototype tool which implements our visualization.

We present a user study which evaluates our new framework

and a traditional visualization. Each visualization is evaluated

for how effectively it enables a developer to understand their

system’s meta-data context. This study found that our new

visualization is effective at revealing relevant context. We

believe that existing visualizations such as SeeSoft to be

effective at presenting the code in a familiar way to developers,

while neglecting relationships between code elements. As

such, we think that our new visualization to be a desirable

compliment to such existing visualizations.

In the future, we expect to perform a user study to evaluate

how effectively developers can use this tool in different stages

of software development, along with assessing which aspects

of the visualization are the most beneficial and which are not.

We also intend to perform qualitative studies evaluating user

experience in interacting with the tools that implement our vi-

sualizations for a variety of software-engineering tasks. Lastly,

we will implement more interactive exploration techniques to

better enable developer search.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable and

thorough comments. We also thank Alexander Marshall for

an implementation of an early prototype of the visualization.

This material is based upon work supported by the National

Science Foundation under award CCF-1116943, and by a

Google Research Award.

REFERENCES

[1] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow.
Cluster analysis of Java dependency graphs. In Proceedings of the

Symposium on Software visualization, SoftVis ’08, pages 91–94, New
York, NY, USA, 2008. ACM.

[2] N. DiGiuseppe and J. Jones. On the influence of multiple faults on
coverage-based fault localization. In Proceedings of the 9th ACM/IEEE

International Symposium on Software Testing and Analysis, ISSTA ’11,
page To Appear, New York, NY, USA, 2011. ACM.

[3] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for
controlled experimentation with software testing and regression testing
techniques. In Proceedings of the International Symposium on Empirical

Software Engineering, pages 60–70, Washington, DC, USA, 2004. IEEE
Computer Society.

[4] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft-a tool for
visualizing line oriented software statistics. IEEE Trans. Softw. Eng.,
18:957–968, November 1992.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

[6] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, March
1993.

[7] GrammaTech, www.grammatech.com, Ithica, NY. CodeSurfer.
[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using

dependence graphs. ACM Trans. Program. Lang. Syst., 12:26–60,
January 1990.

[9] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test infor-
mation to assist fault localization. In Proceedings of the International

Conference on Software Engineering, ICSE ’02, pages 467–477, New
York, NY, USA, 2002. ACM.

[10] D. Keim. Information visualization and visual data mining. Visualization

and Computer Graphics, IEEE Transactions on, 8(1):1 –8, jan/mar 2002.
[11] J. Krinke. Visualization of program dependence and slices. In

Proceedings of the International Conference on Software Maintenance,
pages 168–177, Washington, DC, USA, 2004. IEEE Computer Society.

[12] A. Kuhn, D. Erni, and O. Nierstrasz. Embedding spatial software
visualization in the ide: an exploratory study. In Proceedings of the

5th international symposium on Software visualization, SOFTVIS ’10,
pages 113–122, New York, NY, USA, 2010. ACM.

[13] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. ACM Trans.

Softw. Eng. Methodol., 5:99–118, April 1996.
[14] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph

in a software development environment. SIGPLAN Not., 19(5):177–184,
1984.

[15] T. Würthinger, C. Wimmer, and H. Mössenböck. Visualization of
program dependence graphs. In Proceedings of the Joint European

Conferences on Theory and Practice of Software, CC’08/ETAPS’08,
pages 193–196, Berlin, Heidelberg, 2008. Springer-Verlag.


