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Abstract—This paper objects a design of constellations suitable
for Physical-Layer Network Coding (PLNC) in a Multi-Way Re-
lay Channel (M-WRC). We formulate the constellation design as
a general constrained optimization problem maximizing minimal
distance of network coding function decoding. The numerically
obtained constellations are recognized to possess some regular
structure. The optimal constellations for 2-WRC are power-
balanced hexagonal constellations with particular type of index-
ing. As far as the optimization problem is numerically tractable,
we declare optimality of power-scaled pre-rotated amplitude shift
keying constellations for M-WRC with number of terminals > 2.
All optimums decode non-linear modulo-sum network coding
function and offer considerable performance gains in comparison
to canonical schemes. This work also demonstrates that PLNC
strategy tailored to M-WRC overcome PLNC 2-WRC approach.

I. INTRODUCTION

A. Background, Motivation and Goals

Physical-Layer (Wireless) Network Coding (PLNC) attracts
attention of research community for almost a decade. Under
ideal conditions, PLNC provides the highest achievable rates
in a 2-Way Relay Channel (2-WRC) [1]. PLNC concept based
on nested lattice codes with linear network coding frame-
work is denoted as Compute-and-Forward (CF) strategy [2].
CF reaches the highest achievable rates and naturally scales
into general multi-node wireless network providing a useful
network information theoretical tool. In real scenario, PLNC
faces several additional issues (system complexity, signaling
overhead, time and frequency offset, etc.), however its viability
for 2-WRC seem to be proven as demonstrate first practical
implementations [3]. Unlike relatively clear situation in a 2-
WRC, a scaling into more complex network topology is chal-
lenging and needs individual optimization for each particular
topology [4]–[6].
This paper considers PLNC in a Multi-Way Relay Channel

(M-WRC). M-WRC consists of multiple terminals exchanging
information via a relay node, see Fig. 1. M-WRC may repre-
sent a basic scenario e.g. for wireless peer-to-peer network,
social network or ad hock satellite network. Theoretically,
nested lattice codes in M-WRC provides the highest achievable
rates [7] which motivates usage of PLNC. Related work [8]
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Fig. 1. Physical-layer network coding in a multi-way relay channel.

analysis error propagation effect of PLNC in M-WRC and
claims for optimized higher cardinality constellations which
we target here.

Design of constellations for PLNC is non-trivial task since
the performance even in a simple uncoded AWGN model sig-
nificantly depends on a constellation indexing and a network
coding function [9]. Related work [10] fixes indexing and
modulo-sum network coding function and search for optimal
lattice constellations in a 2-WRC. The other way around, the
authors of [11] fix constellation and indexing and search for
optimal network coding function. Clearly, all these parameters
need to be designed jointly in order to provide the optimum,
which is the goal of our paper.

B. Contributions

We formulate a constellation design for PLNC in a M-WRC
as a constrained optimization problem maximizing minimal
distance of suitable network coding function decoding. To the
best of our knowledge, this constellation design problem has
never been presented. Related paper [12] designs precoding
of QAM constellations such that each symbol of superposed
constellation corresponds to a single data vector. This approach
serves as a benchmark to our results and validate the optimality
of proposed constellations optimized for modulo-sum function
decoding. The numerical results for 2-WRC agree with power-
balanced hexagonal constellations as was conjectured in [10].
As far as the problem is numerically tractable, we confirm
optimality of power-scaled per-rotated Amplitude Shift Keying
(ASK) constellations for M-WRC with number of terminals >
2 as were conjectured in limited case of power balanced 3-
WRC [5]. This work also demonstrates that PLNC strategy
tailored to M-WRC overcome PLNC 2-WRC approach.



II. SYSTEM MODEL

A. Signal Space Model and Used Notation

Let terminals T0,T1, . . .TNt−1 use constellations
A0,A1, . . .ANt−1 where Nt denotes total number of
terminals. The notation from perspective of terminal T0
is following. Alphabet A0 is formed by baseband signal space
points A0 = {s(i)0 }M0−1

i=0 , where signal points are complex

scalar numbers s(i)0 ∈ C and M0 denotes the constellation
cardinality M0 = |A0|. We describe all cardinalities by vector
M = [M0,M1, . . .MNt ]. Upper indexes �(i) are used when a
concrete value of the variable is to be stressed. We define
constellation mapper M0 such that the alphabet indexes
directly correspond to data symbols M0(d0) = s(d0)0 , where
data symbols are d0 ∈ ZM0 and ZM0 = {0,1, . . . ,(M0− 1)}.

B. Multi-Way Relay Channel and Model Assumptions

M-WRC consists of terminals T0,T1, . . .TNt−1 communicat-
ing in a half-duplex manner (each terminal cannot send and
receive at the same time) via a relay R. Every terminal wishes
to send its message to all other terminals. Unlike in [6], we
do not assume a presence of direct links among the terminals.
We assume an idealized time and phase synchronized scenario
with simple AWGN model and per symbol uncoded relaying.

C. Physical-Layer Network Coding Multi-Way Relaying

PLNC in M-WRC consists of two stages: a Multiple Access
(MA) stage and a BroadCast (BC) stage, see Fig. 1. At the first
MA stage, both terminals transmit simultaneously to the relay
which receives a signal superposition

x=
Nt−1
∑
i=0

Mi(di)+w= u(d)+w, (1)

where u(d) denotes a superposed signal u(d) = ∑Nt−1
i=0 Mi(di)

and w is a complex AWGN noise with variance 2N0.
The relay decodes a network coded symbol dN =
[dN 0,dN 1, . . . ,dN (Nt−1)] which is such a symbol that a de-
tection of all symbols d =[d0,d1, . . .dNt−1] at any terminal
is possible providing the knowledge of dN and any sym-
bol di (known by terminal a priori). We choose a network
coded symbol to be dN = N (d0,d1) for 2-WRC, dN =
[N (d0,d1),N (d1,d2)] for 3-WRC and

dN = [N (d0,d1),N (d1,d2), . . .N (dNt−2,dNt−1)] (2)

for M-WRC where network coding function N fulfills an
exclusive law of network coding [11]

N (d,d) �= N (d′,d), d �= d′

N (d,d) �= N (d,d′), d �= d′
(3)

and thus it enables a unique inversion N −1 providing one
of the data inputs. For instance, terminal T0 in 3-WRC
obtains the remaining symbols with knowledge of dN =
[dN 0,dN 1] = [N (d0,d1),N (d1,d2)] and d0 as [d1,d2] =

[N −1(dN 0,d0),N −1(dN 1,N
−1(dN 0,d0))]. Typical mini-

mum cardinality exclusive operations are bit-wise XOR and
modulo-sum function

NXOR(d,d
′) = d⊕ d′, (4)

NMOD(d,d
′) = (d+ d′)modM, (5)

respectively. The relay decodes network coded symbol as

d̂N = argmax
dN

p(x|dN ), (6)

where likelihood function of dN is given by

p(x|dN ) =
1

MN
∑

d:dN

1
2πN0

e
− |x−u(d)|2

2N0 . (7)

Summation (7) runs over all d such that
[N (d0,d1), . . .N (dNt−2,dNt−1)] equals to dN where
MN denotes the cardinality of network coded symbols.
At the second BC stage, the relay broadcasts network coded

symbol dN and every terminal subsequently performs detec-
tion using network coding function invertibility and knowledge
of its own data symbol.

III. CONSTELLATION DESIGN FOR PLNC IN M-WRC

A. Objective Function

Natural goal is to design constellations minimizing the error
performance of (6). We can simplify this complex task by
assumption of medium to high Signal-to-Noise Ratio (SNR)
where one of the exponential functions becomes considerably
higher and we can neglect the impact of others. This leads to
the classical approximation by pairwise symbol error

Pse � NminQ

⎛
⎝
√

Δ2
min

4N0
E

⎞
⎠ , (8)

where E = 1/M∑M−1
i=1 |s(i)|2 denotes a mean symbol energy,

Nmin is an average number of nearest neighbors1 and Q(x) =
1/
√
2π
´ ∞
x exp

(−u2/2
)
du. The minimal distance of network

coded symbol decoding is defined as

Δ2
min = min

dN �=d′
N

|u(d)− u(d′)|2, (9)

where dN is given by (2) and d′
N

=[
N (d′0,d

′
1),N (d′1,d

′
2), . . .N (d′Nt−2,d

′
Nt−1)

]
and data vectors

are d =[d0,d1, . . .dNt−1], d′ =[d′0,d
′
1, . . .d

′
Nt−1].

B. Energy Conditions

We distinguish two cases a) all terminals use the same
alphabets Ai =A j and b) the alphabets are arbitrary Ai �=A j.
Case a) is easier to solve since lower number of variables need
to be find and we can numerically solve more complex tasks.
A fair comparison requires constellations to possess identical

1The number of nearest neighbors of a network coding function decoding
is rather a number of nearest neighboring regions corresponding to distinct
network coded symbols, for details see Sec. 3.4.2 in [9].



energy properties. In case a) all signal points are normalized
to the unit mean symbol energy

E0 = E1 = · · ·= ENt−1 = 1. (10)

In case b), we assume a more general condition where total
energy remain constant

Nt−1
∑
i=0

Ei = Nt . (11)

Case b) means that some terminals consume more energy in
favor of some other terminals. To avoid this energy disbalance,
we propose a periodic switching of the role which terminal
has higher energy. The enforced periodization brings average
energy consumption in balance.
Let us assume an example with 3 terminals using constel-

lations with different symbol energies. Let the terminals use
alphabets [A0,A1,A2] in the first stage , [A1,A2,A0] in the
second stage and [A2,A0,A1] in the last stage. Thus, every
terminal uses each constellation one third of time balancing
the mean energy. Theory of Latin squares solves the problem
for arbitrary number of terminals.

C. Optimization Problem

Our optimization problem is the following, we search for
arbitrary constellations [A0,A1, . . . ,ANt−1] which

maximize Δ2
min, (12)

subject to (10) in case a) Ai =A j or (11) in case b) Ai �= A j;
Δ2
min is given by (9). The problem is naturally parametrized

by number of terminals Nt and constellation cardinalities M.
Next important parameter is network coding function N .

We consider 3 basic types: bit-wise XOR NXOR (4), modulo-
sum NMOD (5) and

NJOINT(d,d
′) = d′+M′d, (13)

where d′ ∈ZM′ . Function (13) means that the decision is a joint
decision about pair [d,d′]. This type of objective function use
strategy [12].

D. Optimization Tools

Optimization problem (12) is a standard constellation design
problem which is a non-convex quadratically constrained
NP hard minimax problem [13]. First of all we reformulate
the minimax problem: instead of maximizing minimum, we
maximize auxiliary variable and include extra conditions that
the auxiliary variable is lower or equal than all the conditions
over which minimum operator was assumed. We solve the
reformulated problem by global meta-heuristic differential
evolution algorithm and its results are further post-processed
by local interior-points method2. Global optimization method
runs for several thousands of initial starting values of its
pseudo-random number generator utilizing the power of par-
allel programing. The fact that the highest minimal distance

2We employ build in procedures in Wolfram’s Mathematica 10.

possess constellations with zero mean enables us to force zero
mean a priori and thus lower the number of variables.
Later, we observed that all results for number of terminals

Nt > 2 resemble linearly precoded ASK constellations so we
consider an optimization where instead of constellations we
look for linear precoding coefficients. This problem has lower
number of variables providing solutions to more complex
tasks. Even though we cannot guarantee that we find the global
optimum (although it is very likely), we can expect that the
results perform close to the optimum.

E. Permuted Latin Squares and Constellation Indexing

Network coding functions satisfying (3) with minimal car-
dinality of the output form an algebraic structure of Latin
squares [9]. Unfortunately, theory of Latin squares is not so
complete as e.g. group theory and many statements are still
unknown (e.g. total number of Latin squares). Nonetheless
(as long as the size of Latin squares are computationally
manageable), we may let computer to list all distinct Latin
squares. By the exhaustive search, we have found:

• All Latin squares are row or column permutations of bit-
wise XOR or modulo-sum Latin square for cardinality 2
and 4.

• All linear Latin squares are row or column permutations
of bit-wise XOR Latin square for cardinality 2, 4 and
8, where every output of linear Latin square can be
described as a⊗d⊕b⊗d′ where a,b ∈ FM and symbols
⊗ and ⊕ denote product and addition in finite-field FM.

Remark 1. The search for arbitrary constellation naturally
includes its all possible indexing. Obviously, an exchange of
two constellation indexes is equivalent to the exchange of
relevant rows (or columns) of the Latin square. It means that if
we select some network coding function for the optimization,
then the result includes all row and column permutations of
that network coding function. As a consequence, we search
over all possible Latin squares by choosing bit-wise XOR
and modulo-sum for cardinality 2 and 4, and bit-wise XOR
constrained search includes all linear network coding functions
for cardinalities 2, 4 and 8.

IV. NUMERICAL RESULTS

Table I summarizes minimal distances of numerically opti-
mized constellations for PLNC in a 2-WRC in case a) Ai=A j

for cardinalities M. Labels ’mod’, ’xor’, ’joint’, ’lattice +
mod’ stand for network coding function NMOD (4), NXOR (5),
NJOINT (13) and power-balanced hexagonal constellations [10]
with NMOD, respectively. In case a), joint detection of data
pairs cannot be made without error implying a zero minimal
distance. We confirm that constellations having the highest
minimal distance are hexagonal constellations [10]. Namely
binary antipodal, 4HEX and 8HEX constellation depicted
in Fig. 2. Interestingly, maximal possible minimal distance
for cardinality 8 of bit-wise XOR decoding (according to
Remark 1 also any linear network coding decoding) is much
lower than for NMOD.



TABLE I
MINIMAL DISTANCES OF NUMERICALLY OBTAINED CONSTELLATIONS FOR

CASE A) Ai = A j IN 2-WRC

M mod xor joint lattice + mod

[2,2] 4.0 4.0 0.0 4.0

[4,4] 2.0 2.0 0.0 2.0

[8,8] 0.93Fig.2 0.64Fig.2 0.0 0.93

TABLE II
MINIMAL DISTANCES OF NUMERICALLY OBTAINED CONSTELLATIONS FOR

CASE B) Ai �= A j IN 2-WRC

M mod xor joint lattice + mod

[2,2] 4.0 4.0 4.0 4.0

[2,4] 2.67 2.67 1.68 2.67

[4,4] 2.0 2.0 0.89 2.0

[2,8] 1.51 1.33 0.91 1.51

Results for general case b) Ai �=A j are listed in Table II. Ar-
bitrary alphabets now enable joint decoding to have non-zero
minimal distance. Power balanced hexagonal constellations
with modulo-sum decoding [10] leads again to the highest
minimal distance. Let us explain power balancing at the fol-
lowing example with binary antipodal and 8HEX constellation.
The binary antipodal constellation is more robust to the noise
and its minimal distance equals to 4. 8HEX constellation has
minimal distance only 0.93. So, we scale binary constellation
down and 8HEX up keeping (11) in order to have the same
minimal distance 1.51. Both scaled constellations are then
taken from identical lattice and using indexes which form an
arithmetic progression in each lattice dimension [10] yields the
final minimal distance to be 1.51. Assumption of asymmetric
cardinalities is benefitial in channels with asymmetric strength
of wireless links.
Table III summarizes minimal distances of numerically

optimized constellations for M-WRC with number of terminals
Nt > 2. Label ’ask + mod’ stands for optimally, linearly
precoded (i.e. power and phase precoded) ASK constellations
with NMOD decoding. We do not present results for case
a) Ai = A j because then the minimal distances are always
zero. We confirm that constellations having the highest min-
imal distance are decoding NMOD and can be described as
linearly precoded ASK constellations. Since the results of
general design and linearly precoded ASK perfectly match,

TABLE III
MINIMAL DISTANCES OF NUMERICALLY OBTAINED CONSTELLATIONS FOR

CASE B) Ai �= A j IN M-WRC WITH NUMBER OF TERMINALS> 2

M mod xor joint ask + mod

[2,2,2] 4.0 4.0 2.4 4.0

[2,2,4] 1.71 1.33 1.33 1.71

[2,4,4] 1.09 0.86 0.60 1.09

[2,2,2,2] 2.0Fig.4 2.0 1.78 2.0

[2,2,2,4] 1.0 0.94 0.84 1.0

[2,2,2,2,2] 1.05 1.05 1.05 1.05

[2,2,2,2,2,2] 0.65 0.65 0.65 0.65

TABLE IV
OPTIMAL LINEAR PRECODING OF ASK FOR NMOD DECODING IN

M-WRC.

M [Δ2
min,Nmin] [ρ0,ρ1, . . . ,ρNt−1] [ϕ0,ϕ1, . . . ,ϕNt−1]

[2,2,2] [4.0,3.75] [1.0,1.0,1.0] [0,π/3,2/3π]
[2,2,4] [1.71,4.0] [0.65,0.65,1.5] [0,π/3,2/3π]
[2,4,4] [1.09,4.9] [0.52,1.2,1.2] [0,π/3,2/3π]

[4,4,4]Fig. 3 [0.80,5.3] [1.0,1.0,1.0] [0,π/3,2/3π]
[4,4,8] [0.39,6.0] [0.70,0.70,1.4] [0,π/3,2/3π]
[4,8,8] [0.26,5.7] [0.56,1.2,1.2] [0,π/3,2/3π]
[8,8,8] [0.19,5.8] [1.0,1.0,1.0] [0,π/3,2/3π]

[2,2,2,2]Fig. 4 [2.0,4.2] [0.71,0.71,1.22,1.22] [4.71,0.52,5.24,0]

[2,2,2,4] [1.0,4.7] [0.87,1.32,0.5,1.12] [1.57,1.76,1.05,0]

[2,2,4,4] [0.53,4.7] [0.63,0.97,0.82,1.41] [5.24,4.38,4.71,0]

[2,4,4,4] [0.28,4.7] [0.45,1.02,0.59,1.55] [0.86,1.9,0.33,0]

[4,4,4,4]Fig. 4 [0.17,4.7] [1.21,0.92,0.46,1.21] [1.05,1.76,5.95,0]

[2,2,2,8] [0.50,5.1] [0.35,0.94,0.61,1.62] [1.05,1.76,1.57,0]

[2,2,4,8] [0.28,5.3] [1.15,0.92,0.59,1.21] [4.83,4.71,1.05,0]

[2,2,2,2,2] [1.05,4.5]
[0.89,0.51,0.51,

1.36,1.36]

[0.86,2.43,4.52,

1.71,0]

[2,2,2,2,4] [0.59,5.0]
[0.77,1.38,0.38,

0.38,1.49]

[1.57,1.33,2.62,

4.71,0]

[2,2,2,2,2,2] [0.65,5.0]
[1.39,0.81,0.7,

1.61,0.4,0.4]

[0.4,4.71,6.28,

1.57,1.57,0]

TABLE V
NOMINAL CODING GAIN 10log10

(
Δ2min,ASK+mod/Δ2min

)
[DB] OF THE PROPOSED

LINEARLY PRECODED ASK + NMOD OVER SOME TYPICAL SCHEMES WITH

OPTIMIZED LINEAR PRECODING

M QAM + mod QAM + xor PSK + mod PSK + xor

[4,4,4]Fig. 3 2.5 2.5 4.2 2.5

[8,8,8] 9.7 9.7 12.4 12.4

[4,4,4,4]Fig. 4 2.2 2.2 2.2 2.2

we present optimally linear precoding of ASK in Tab IV.
Proposed schemes provide considerable nominal gains over
some canonical constellations (PSK, QAM) with optimized
linear precoding as present Table V.

All numerical results share some common features: the
optimal constellations are points in hexagonal lattice and
modulo-sum decoding leads to the highest minimal distances.

Fig. 2. Primary constellations and its indexing maximizing minimal distance
of NMOD decoding and NXOR decoding, respectively, for PLNC in a 2-WRC
with cardinalities M = [8,8]. The minimal distance for NXOR decoding is
lower because the constellation shape is not so compact.



Fig. 3. Superposed constellation and its indexing maximizing minimal
distance for PLNC in 3-WRC with M = [4,4,4] and NMOD decoding. Note
that some signal space points correspond to multiple data symbols (e.g. point
0 corresponds to data vector d of [3,0,3], [2,1,2], [0,3,0], [1,2,1] but all of
them have the same dN = [NMOD(d0,d1),NMOD(d1,d2)] = [3,3]).

Fig. 4. Superposed constellations and its indexing maximizing minimal
distance of NMOD decoding for PLNC in 4-WRC with cardinalities M =
[2,2,2,2] and M = [4,4,4,4], respectively.

A. Optimal Linear Precoding of ASK for 3-WRC

For several particular cardinalities, we have observed that
numerically optimized linear precoding of ASK for 3-WRC
possesses a regular structure. Here, we explain validity for
arbitrary cardinalities.

Proposition 2. All superposed constellation points of the
optimally precoded ASK constellations which fall to the same
signal space point correspond to identical network coded
symbol [NMOD(d0,d1),NMOD(d1,d2)]. The optimal precoding
coefficients are such that each precoded constellation lies in
one dimensional subspaces of hexagonal lattice. It means that
power scaling ρi is such that all minimal distances of primary
ASK constellations are equal

ρiδ 2
min,i = ρ jδ 2

min, j, ∀i, j ∈ Z3 (14)

subject to energy constrain ∑2
i=0ρ2

i = 3 and phase pre-rotation
is ϕi =

π
3 i.

Proof: Let signal space point of ith terminal constellation
be described by hexagonal lattice generator matrix G and
vector of lattice coordinates a as si = Gai, ai ∈ Z2 and
G = [1,1/2+ j

√
3/2]. The fact that each constellation forms one

dimensional subspace means that we can describe any lattice
coordinates as

ai = ννν iki (15)

where vi ∈ Z2 and ki ∈ Z is the subspace base vector and
integer coefficient of ith constellation. Base vector v1 is
linearly dependent due to the π/3 symmetry of hexagonal
lattice v1 = v0+v2. When two superposed constellation points
equal u= u′ where u= ∑2

i=0 si and u′ = ∑2
i=0 s′i then

a0+ a1+ a2 = a′0+ a′1+ a′2 (16)

which yields a0+a1+a2 = ννν0 (k0+ k1)+ννν1 (k1+ k2) . If u=
u′ then k0+ k1 = k′0+ k′1 and k1+ k2 = k′1+ k′2 leading to

a0+ a1 = a′0+ a′1,
a1+ a2 = a′1+ a′2. (17)

Now, we use the same concept of proof as in [10]. Let all
constellations be indexed by arithmetical progression with
increment 1. The inverse indexing function is I −1 (a0) =
d0 =

(
1Ta0

)
modM0

where 1 = [1,1, . . .1]T . The network coded
symbol dN = [dN 0,dN 1] is

dN 0 = NMOD(d0,d1) = (d0+ d1)modM = (18)

=
(
I

−1 (a0)+I
−1 (a1)

)
modM =

(
1T (a0+ a1)

)
modM0

and similarly for

dN 1 = NMOD(d1,d2) =
(
1T (a1+ a2)

)
modM0

. (19)

When we apply (17) to (18) and (19) for u and u′, we conclude
that if u= u′ then [dN 0,dN 1] = [d′

N 0,d
′
N 1] which proves the

proposition.



Fig. 5. Symbol error rate at the MA stage of the optimized constellations for
several cardinalities M. The markers correspond to pairwise error approxima-
tion (8) and solid lines are Monte Carlo error evaluations.

V. PERFORMANCE EVALUATION

Figure 5 presents symbol error rate performance at the MA
stage of the optimized constellations for several cardinalities
M. The performance curves fit to pairwise error approximation
(8) using parameters from Table IV. Bit throughput from Fig.6
is simulated on packets of 512 symbols.
In order to avoid impact of bit indexing whose optimal

selection is unknown, we show an approximate bit throughput
as a symbol throughput multiplied by log2M. PLNC using four
terminal constellations like case M= [2,2,2,2] or [4,4,4,4] in
a 4-WRC requires a single MA stage for delivering required
network coded symbol at the relay

dN = [NMOD(d0,d1),NMOD(d1,d2),NMOD(d2,d3)]. (20)

When only a pair of terminals are transmitting at each MA
stage e.g in case of [2,2] or [4,4], 3 orthogonal MA stages
are required to deliver (20). Thus its throughput needs to be
reduced by 1/3. Multiplication factor of 3 terminal constel-
lations is not simply 2/3 because, at the first MA stage we
deliver [NMOD(d0,d1),NMOD(d1,d2)] but at the second MA
stage we cannot deliver [NMOD(d2,d3),NMOD(d′0,d

′
1)] as we

wish. The reason is simply that 3 terminal constellations can
deliver [NMOD(d0,d1),NMOD(d1,d2)] where for both func-
tions must be symbol d1 the same. Even though the 3 terminal
constellations are slightly more reduced than by 2/3, they still
perform very well. We conclude that PLNC optimized for
M-WRC with Nt > 2 is attractive and it overcomes PLNC
approach optimized for 2-WRC. Especially novel schemes
with cardinalities M = [2,2,2,2] and [4,4,4,4] perform well.

VI. CONCLUSION

We have numerically designed constellations for PLNC in
a M-WRC maximizing minimal distance of network coding
function decoding. In certain cases, we simply confirm that
constellations previously found ad hoc or under suboptimal
approach are in fact optimal (e.g. hexagonal constellations
in 2-WRC and linearly precoded ASK in 3-WRC). In other
cases, we have found more general solutions like constella-
tions asymmetric cardinalities and we have also found novel
schemes e.g. promising linearly precoded ASK in 4-WRC.
All optimal constellations are from hexagonal lattice. This is

Fig. 6. Bit throughput at the MA stage of the optimized constellations for
several cardinalities M in 4-WRC and 512 symbols long packets.

evidently due to restriction to one complex dimension. We
conjecture that the optimal multi-dimensional constellations
would occupy different type of lattice, e.g. D4 lattice for two
dimensions. Notable consequence is that all optimums require
non-linear modulo-sum network coding function and assump-
tion of linearity may considerable decrease performance as
observed also by mutual information analysis [14].
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