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Abstract

We demonstrate that replacing an LSTM

encoder with a self-attentive architecture

can lead to improvements to a state-of-

the-art discriminative constituency parser.

The use of attention makes explicit the

manner in which information is propa-

gated between different locations in the

sentence, which we use to both analyze

our model and propose potential improve-

ments. For example, we find that sepa-

rating positional and content information

in the encoder can lead to improved pars-

ing accuracy. Additionally, we evaluate

different approaches for lexical represen-

tation. Our parser achieves new state-of-

the-art results for single models trained on

the Penn Treebank: 93.55 F1 without the

use of any external data, and 95.13 F1

when using pre-trained word representa-

tions. Our parser also outperforms the pre-

vious best-published accuracy figures on 8

of the 9 languages in the SPMRL dataset.

1 Introduction

In recent years, neural network approaches have

led to improvements in constituency parsing (Dyer

et al., 2016; Cross and Huang, 2016; Choe and

Charniak, 2016; Stern et al., 2017a; Fried et al.,

2017). Many of these parsers can broadly be char-

acterized as following an encoder-decoder design:

an encoder reads the input sentence and summa-

rizes it into a vector or set of vectors (e.g. one

for each word or span in the sentence), and then

a decoder uses these vector summaries to incre-

mentally build up a labeled parse tree. In con-

trast to the large variety of decoder architectures

investigated in recent work, the encoders in re-

cent parsers have predominantly been built using

recurrent neural networks (RNNs), and in particu-

lar Long Short-Term Memory networks (LSTMs).
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Figure 1: Our parser combines a chart decoder

with a sentence encoder based on self-attention.

RNNs have largely replaced approaches such as

the fixed-window-size feed-forward networks of

Durrett and Klein (2015) in part due to their ability

to capture global context. However, RNNs are not

the only architecture capable of summarizing large

global contexts: recent work by Vaswani et al.

(2017) presented a new state-of-the-art approach

to machine translation with an architecture that en-

tirely eliminates recurrent connections and relies

instead on a repeated neural attention mechanism.

In this paper, we introduce a parser that combines

an encoder built using this kind of self-attentive

architecture with a decoder customized for pars-

ing (Figure 1). In Section 2 of this paper, we de-

scribe the architecture and present our finding that

self-attention can outperform an LSTM-based ap-

proach.

A neural attention mechanism makes explicit

the manner in which information is transferred be-

tween different locations in the sentence, which

we can use to study the relative importance of dif-

ferent kinds of context to the parsing task. Dif-

ferent locations in the sentence can attend to each

other based on their positions, but also based on

their contents (i.e. based on the words at or around

those positions). In Section 3 we present our find-
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ing that when our parser learns to make an implicit

trade-off between these two types of attention, it

predominantly makes use of position-based atten-

tion, and show that explicitly factoring the two

types of attention can noticeably improve parsing

accuracy. In Section 4, we study our model’s use

of attention and reaffirm the conventional wisdom

that sentence-wide global context is important for

parsing decisions.

Like in most neural parsers, we find morpholog-

ical (or at least sub-word) features to be important

to achieving good results, particularly on unseen

words or inflections. In Section 5.1, we demon-

strate that a simple scheme based on concatenating

character embeddings of word prefixes/suffixes

can outperform using part-of-speech tags from an

external system. We also present a version of our

model that uses a character LSTM, which per-

forms better than other lexical representations –

even if word embeddings are removed from the

model. In Section 5.2, we explore an alternative

approach for lexical representations that makes

use of pre-training on a large unsupervised corpus.

We find that using the deep contextualized rep-

resentations proposed by Peters et al. (2018) can

boost parsing accuracy.

Our parser achieves 93.55 F1 on the Penn Tree-

bank WSJ test set when not using external word

representations, outperforming all previous single-

system constituency parsers trained only on the

WSJ training set. The addition of pre-trained word

representations following Peters et al. (2018) in-

creases parsing accuracy to 95.13 F1, a new state-

of-the-art for this dataset. Our model also out-

performs previous best published results on 8 of

the 9 languages in the SPMRL 2013/2014 shared

tasks. Code and trained English models are pub-

licly available.1

2 Base Model

Our parser follows an encoder-decoder architec-

ture, as shown in Figure 1. The decoder, described

in Section 2.1, is borrowed from the chart parser

of Stern et al. (2017a) with additional modifica-

tions from Gaddy et al. (2018). Their parser is ar-

chitecturally streamlined yet achieves the highest

performance among discriminative single-system

parsers trained on WSJ data only, which is why we

selected it as the starting point for our experiments

with encoder variations. Sections 2.2 and 2.3 de-

1https://github.com/nikitakit/self-attentive-parser

scribe the base version of our encoder, where the

self-attentive architecture described in Section 2.2

is adapted from Vaswani et al. (2017).

2.1 Tree Scores and Chart Decoder

Our parser assigns a real-valued score s(T ) to

each tree T , which decomposes as

s(T ) =
X

(i,j,l)2T
s(i, j, l) (1)

Here s(i, j, l) is a real-valued score for a con-

stituent that is located between fencepost positions

i and j in a sentence and has label l. To han-

dle unary chains, the set of labels includes a col-

lapsed entry for each unary chain in the training

set. The model handles n-ary trees by binarizing

them and introducing a dummy label ∅ to nodes

created during binarization, with the property that

8i, j : s(i, j,∅) = 0. Enforcing that scores as-

sociated with the dummy labels are always zero

ensures that (1) continues to hold for all possible

binarizations of an n-ary tree.

At test time, the model-optimal tree

T̂ = argmax
T

s(T )

can be found efficiently using a CKY-style infer-

ence algorithm. Given the correct tree T ?, the

model is trained to satisfy the margin constraints

s(T ?) � s(T ) +∆(T, T ?)

for all trees T by minimizing the hinge loss

max
⇣

0, max
T 6=T ?

[s(T ) +∆(T, T ?)]� s(T ?)
⌘

Here ∆ is the Hamming loss on labeled spans, and

the tree corresponding to the most-violated con-

straint can be found using a slight modification of

the inference algorithm used at test time.

For further details, see Gaddy et al. (2018). The

remainder of this paper concerns itself with the

functional form of s(i, j, l), which is calculated

using a neural network for all l 6= ∅.

2.2 Context-Aware Word Representations

The encoder portion of our model is split into two

parts: a word-based portion that assigns a context-

aware vector representation yt to each position t

in the sentence (described in this section), and a

chart portion that combines the vectors yt to gen-

erate span scores s(i, j, l) (Section 2.3). The ar-

chitecture for generating the vectors yt is adapted

from Vaswani et al. (2017).

https://github.com/nikitakit/self-attentive-parser
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Figure 2: An overview of our encoder, which pro-

duces a context-aware summary vector for each

word in the sentence. The multi-headed attention

mechanism is the only means by which informa-

tion may propagate between different positions in

the sentence.

The encoder takes as input a sequence of word

embeddings [w1, w2, . . . , wT ], where the first and

last embeddings are of special start and stop to-

kens. All word embeddings are learned jointly

with other parts of the model. To better general-

ize to words that are not seen during training, the

encoder also receives a sequence of part-of-speech

tag embeddings [m1,m2, . . . ,mT ] based on the

output of an external tagger (alternative lexical

representations are discussed in Section 5). Addi-

tionally, the encoder stores a learned table of posi-

tion embeddings, where every number i 2 1, 2, . . .
(up to some maximum sentence length) is associ-

ated with a vector pi. All embeddings have the

same dimensionality, which we call dmodel, and

are added together at the input of the encoder:

zt = wt +mt + pt.

The vectors [z1, z2, . . . , zT ] are transformed by

a stack of 8 identical layers, as shown in Figure 2.

Each layer consists of two stacked sublayers: a

multi-headed attention mechanism and a position-

wise feed-forward sublayer. The output of each

sublayer given an input x is LayerNorm(x +
SubLayer(x)), i.e. each sublayer is followed by

a residual connection and a Layer Normalization

(Ba et al., 2016) step. As a result, all sublayer out-

puts, including final outputs yt, are of size dmodel.

2.2.1 Self-Attention

The first sublayer in each of our 8 layers is a

multi-headed self-attention mechanism, which is

the only means by which information may propa-

gate between positions in the sentence. The input

k1

kt

kT

v1

vt

vT

kt vtqt

vt
_

p(t→1)

query            key            value

p(t→T)

xt

Figure 3: A single attention head. An input xt is

split into three vectors that participate in the atten-

tion mechanism: a query qt, a key kt, and a value

vt. The query qt is compared with all keys to form

a probability distribution p(t ! ·), which is then

used to retrieve an average value v̄t.

to the attention mechanism is a T ⇥ dmodel matrix

X , where each row vector xt corresponds to word

t in the sentence.

We first consider a single attention head, as il-

lustrated in Figure 3. Learned parameter matri-

ces WQ, WK , and WV are used to map an input

xt to three vectors: a query qt = W>Q xt, a key

kt = W>Kxt, and a value vt = W>V xt. Query and

key vectors have the same number of dimensions,

which we call dk. The probability that word i at-

tends to word j is then calculated as p(i ! j) /
exp(

qi·kjp
dk

). The values vj for all words that have

been attended to are aggregated to form an aver-

age value v̄i =
P

j p(i ! j)vj , which is projected

back to size dmodel using a learned matrix WO.

In matrix form, the behavior of a single attention

head is:

SingleHead(X) =



Softmax

✓

QK>p
dk

◆

V

�

WO

where Q = XWQ; K = XWK ; V = XWV

Rather than using a single head, our model sums

together the outputs from multiple heads:

MultiHead(X) =
8

X

n=1

SingleHead(n)(X)

Each of the 8 heads has its own trainable parame-

ters W
(n)
Q , W

(n)
K , W

(n)
V , and W

(n)
O . This allows a

word to gather information from up to 8 remote lo-

cations in the sentence at each attention sublayer.
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2.2.2 Position-Wise Feed-Forward Sublayer

We use the same form as Vaswani et al. (2017):

FeedForward(x) = W2relu(W1x+ b1) + b2

Here relu denotes the Rectified Linear Unit non-

linearity, and distinct sets of learned parameters

are used at each of the 8 instances of the feed-

forward sublayer in our model.

The input and output dimensions are the

same because of the use of residual connections

throughout the model, but we can vary the number

of parameters by adjusting the size of the interme-

diate vector that the nonlinearity is applied to.

2.3 Span Scores

The outputs yt from the word-based encoder por-

tion described in the previous section are com-

bined to form span scores s(i, j, ·) following the

method of Stern et al. (2017a). Concretely,

s(i, j, ·) = M2relu(LayerNorm(M1v + c1)) + c2

where LayerNorm denotes Layer Normalization,

relu is the Rectified Linear Unit nonlinearity, and

v = [
!
y j �

!
y i;
 
y j+1 �

 
y i+1] combines summary

vectors for relevant positions in the sentence. A

span endpoint to the right of the word potentially

requires different information from the endpoint to

the left, so a word at a position k is associated with

two annotation vectors (
!
y k and

 
y k).

Stern et al. (2017a) define
!
y k and

 
y k in terms

of the output of the forward and backward por-

tions, respectively, of their BiLSTM encoder; we

instead construct each of
!
y k and

 
y k by splitting

in half2 the outputs yk from Section 2.2. We also

introduce a Layer Normalization step to match the

use of Layer Normalization throughout our model.

2.4 Results

The model presented above achieves a score of

92.67 F1 on the Penn Treebank WSJ development

set. Details regarding hyperparameter choice and

optimizer settings are presented in the supplemen-

tary material. For comparison, a model that uses

the same decode procedure with an LSTM-based

encoder achieves a development set score of 92.24

(Gaddy et al., 2018). These results demonstrate

that an RNN-based encoder is not required for

2To avoid an adverse interaction with material described
in Section 3, when a vector yk is split in half the even coordi-

nates contribute to
→

y k and the odd coordinates contribute to
←

y k.

building a good parser; in fact, self-attention can

achieve better results.

3 Content vs. Position Attention

The primary mechanism for information transfer

throughout our encoder is self-attention, where

words can attend to each other using both con-

tent features and position information. In Sec-

tion 2, we described an encoder that takes as in-

put a component-wise addition between a word,

tag, and position embedding for each word in the

sentence. Content and position information are in-

termingled throughout the network. While ideally

the network would learn to balance the different

types of information, in practice it does not. In

this section we show that factoring the model to

explicitly separate content and position informa-

tion results in increased parsing accuracy.

To help gauge the relative importance of the

two types of attention, we trained a modified ver-

sion of our model that was only allowed to use

position attention. This constraint was enforced

by making the query and key vectors used for

the attention mechanism be linear transformations

of the corresponding word’s position embedding:

Q(n) = PW
(n)
Q and K(n) = PW

(n)
K . The per-

head weight matrices now multiply a matrix P

containing the same position embeddings that are

used at the input to the encoder, rather than the

layer input X (as in Section 2.2.1). However,

value vectors V (n) = XW
(n)
V remain unchanged

and continue to carry content-related information.

We expected our parser to still achieve rea-

sonable performance when restricted to only use

positional attention because the resulting archi-

tecture can be viewed as a generalization of a

multi-layer convolutional neural network. The 8

attention heads at each layer of our model can

mimic the behavior of a size-8 convolutional fil-

ter, but can also determine their attention targets

dynamically and need not respect any translation-

invariance properties. Disabling content-based at-

tention throughout all 8 layers of the network re-

sults in a development-set accuracy decrease of

only 0.27 F1. While we expected reasonable pars-

ing performance in this setting, it seems strange

that content-based attention benefits our model to

such a small degree.

We next investigate the possibility that inter-

mingling content and position information in a sin-

gle vector can cause one type of attention to domi-
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nate over the other and compromise the network’s

ability to find the optimal balance of the two. To

do this we propose a factored version of our model

that explicitly separates content and position infor-

mation.

A first step is to replace the component-wise ad-

dition zt = wt+mt+pt (where wt, mt, and pt rep-

resent word, tag, and position embeddings, respec-

tively) with a concatenation zt = [wt + mt; pt].
We preserve the size of the vector zt by cutting

the dimensionality of embeddings in half for the

concatenative scheme. However, simply isolating

the position-related components of the input vec-

tors in this manner does not improve the perfor-

mance of our network: the concatenative network

achieves a development-set F1 of 92.60 (not much

different from 92.67 F1 using the model in Sec-

tion 2).

The issue with intermingling information is not

the component-wise addition per se. In fact, con-

catenation and addition often perform similarly

in high dimensions (especially when the resulting

vector is immediately multiplied by a matrix that

intermingles the two sources of information). On

that note, we can examine how the mixed vectors

are used later in the network, and in particular in

the query-key dot products for the attention mech-

anism. If we have a query-key dot product q · k
(see Section 2.2.1) where we imagine q decom-

posing into content and positional information as

q = q(c) + q(p) (and likewise for k), we have

q · k = (q(c) + q(p)) · (k(c) + k(p)). This for-

mulation includes cross-terms such as q(c) · k(p);
for example it is possible to learn a network where

the word the always attends to the 5th position in

the sentence. Such cross-attention seems of lim-

ited use compared to the potential for overfitting

that it introduces.

To complete our factored model, we find all

cases where a vector x = [x(c);x(p)] is multi-

plied by a parameter matrix, and replace the ma-

trix multiplication c = Wx with a split form

c = [c(c); c(p)] = [W (c)x(c);W (p)x(p)]. This

causes a number of intermediate quantities in our

model to be factored, including all query and key

vectors. Query-key dot products now decompose

as q ·k = q(c) ·k(c)+q(p) ·k(p). The result of factor-

ing a single attention head, shown in Figure 4, can

also be viewed as separately applying attention to

x(c) and x(p), except that the log-probabilities in

the two halves are added together prior to value

k1(p)

kt(p)

kT(p)

v1(p)

vt(p)

vT(p)

qt(p) kt(p) vt(p)
query            key            value

k1(c)

kt(c)

kT(c)

v1(c)

vt(c)

vT(c)

vt(c) kt(c) qt(c)
value            key            query

vt(p)
_

vt(c)
_

positionword tag

Figure 4: A single attention head, after factoring

content and position information. Attention prob-

abilities are calculated separately for the two types

of information, and a combined probability distri-

bution is then applied to both types of input infor-

mation.

lookup. The feed-forward sublayers in our model

(Section 2.2.2) are likewise split into two indepen-

dent portions that operate on position and content

information.

Alternatively, factoring can be seen as enforcing

the block-sparsity constraint

W =



W (c) 0

0 W (p)

�

on parameter matrices throughout our model. We

maintain the same vector sizes as in Section 2,

which means that factoring strictly reduces the

number of trainable parameters. For simplicity, we

split each vector into equal halves that contain po-

sition and content information, cutting the number

of model parameters roughly in half. This factored

scheme is able to achieve 93.15 development-set

F1, an improvement of almost 0.5 F1 over the un-

factored model.

These results suggest that factoring different

types of information leads to a better parser, but

there is in principle a confound: perhaps by

making all matrices block-sparse we’ve stumbled

across a better hyperparameter configuration. For

example, these gains could be due to a differ-

ence in the number of trainable parameters alone.

To control for this confound we also evaluated a

version of our model that enforces block-sparsity

throughout, but retains the use of component-

wise addition at the inputs. This model achieves

92.63 F1 (not much different from the unfactored

model), which supports our hypothesis that true

factoring of information is important.
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Attention

Content Position F1

All 8 layers All 8 layers 93.15

All 8 layers Disabled 72.45

Disabled All 8 layers 90.84

First 4 layers only All 8 layers 91.77

Last 4 layers only All 8 layers 92.82

First 6 layers only All 8 layers 92.42

Last 6 layers only All 8 layers 92.90

Table 1: Development-set F1 scores when content

and/or position attention is selectively disabled at

test-time only for a subset of the layers in our

model. Position attention is the most important

contributor to our model, but content attention is

also helpful (especially at the final layers of the

encoder).

4 Analysis of our Model

The defining feature of our encoder is the use of

self-attention, which is the only mechanism for

transfer of information between different locations

throughout a sentence. The attention is further

factored into types: content-based attention and

position-based attention. In this section, we an-

alyze the manner in which our model uses this at-

tention mechanism to make its predictions.

4.1 Content vs. Position Attention

To examine the relative utilization of content-

based vs. position-based attention in our architec-

ture, we perturb a trained model at test-time by

selectively zeroing out the contribution of either

the content or the position component to any atten-

tion mechanism. This can be done independently

at different layers; the results of this experiment

are shown in Table 1.

We can see that our model learns to use a com-

bination of the two attention types, with position-

based attention being the most important. We also

see that content-based attention is more useful at

later layers in the network, which is consistent

with the idea that the initial layers of our model act

similarly to a dilated convolutional network while

the upper layers have a greater balance between

the two attention types.

4.2 Windowed Attention

We can also examine our model’s use of long-

distance context information by applying window-

Distance F1 (strict) F1 (relaxed)

5 81.65 89.82

10 89.83 92.20

15 91.72 92.78

20 92.48 92.91

30 93.01 93.09

40 93.04 93.12

1 93.15

Table 2: Development-set F1 scores when atten-

tion is constrained to not exceed a particular dis-

tance in the sentence at test time only. In the re-

laxed setting, the first and last two tokens of the

sentence can attend to any word and be attended

to by any word, to allow for sentence-wide pool-

ing of information.

ing to the attention mechanism. We begin by tak-

ing our trained model and windowing the atten-

tion mechanism at test-time only. As shown in Ta-

ble 2, strict windowing yields poor results: even

a window of size 40 causes a loss in parsing ac-

curacy compared to the original model. When

we began to investigate how the model makes use

of long-distance attention, we immediately found

that there are particular attention heads at some

layers in our model that almost always attend to

the start token. This suggests that the start token is

being used as the location for some sentence-wide

pooling/processing, or perhaps as a dummy target

location when a head fails to find the particular

phenomenon that it’s learned to search for. In light

of this observation, we introduce a relaxed varia-

tion on the windowing scheme, where the start to-

ken, first word, last word, and stop token can par-

ticipate in all possible uses of attention, but pairs

of other words in the sentence can only attend to

each other if they are within a given window. We

include three other positions in addition to the start

token to do our best to cover possible locations

for global pooling by our model. Results for re-

laxed windowing at test-time only are also shown

in Table 2. Even when we allow global process-

ing to take place at designated locations such as

the start token, our model is able to make use of

long-distance dependencies at up to length 40.

Next, we examine whether the parser’s use of

long-distance dependencies is actually essential to

performing the task by retraining our model sub-

ject to windowing. To evaluate the role of global
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Distance F1 (strict) F1 (relaxed)

5 92.74 92.94

10 92.92 93.00

20 93.06 93.17

1 93.15

Table 3: Development-set F1 scores when atten-

tion is constrained to not exceed a particular dis-

tance in the sentence during training and at test

time. In the relaxed setting, the first and last two

tokens of the sentence can attend to any word and

be attended to by any word, to allow for sentence-

wide pooling of information.

computation, we consider both strict and relaxed

windowing. In principle we could have replaced

relaxed windowing at training time with explicit

provisions for global computation, but for analysis

purposes we choose to minimize departures from

our original architecture.

The results, shown in Table 3, demonstrate that

long-distance dependencies continue to be essen-

tial for achieving maximum parsing accuracy us-

ing our model. Note that when a window of size 10

was imposed at training time, this was per-layer

and the series of 8 layers actually had an effective

context size of around 80 – which was still insuffi-

cient to recover the performance of our full parser

(with either approach to windowing). The side-

by-side comparison of strict and relaxed window-

ing shows that the ability to pool global informa-

tion, using the designated locations that are always

available in the relaxed scheme, consistently trans-

lates to accuracy gains but is insufficient to com-

pensate for small window sizes. This suggests that

not only must the information signal from long-

distance tokens be available in principle, but that

it also helps to have this information be directly

accessible without an intermediate bottleneck.

5 Lexical Models

The models described in previous sections all

rely on pretagged input sentences, where the tags

are predicted using the Stanford tagger. We use

the same pretagged dataset as Cross and Huang

(2016). In this section we explore two alterna-

tive classes of lexical models: those that use no

external systems or data of any kind, as well as

word vectors that are pretrained in an unsuper-

vised manner.

Word embeddings

3 7

None 92.20 –

Tags 93.15 –

CharLSTM 93.40 93.61

CharConcat 93.32 93.35

Table 4: Development-set F1 scores for differ-

ent approaches to handling morphology, with and

without the addition of learned word embeddings.

5.1 Models with Subword Features

If tag embeddings are removed from our model

and only word embeddings remain (where word

embeddings are learned jointly with other model

parameters), performance suffers by around 1 F1.

To restore performance without introducing any

dependencies on an external system, we explore

incorporating lexical features directly into our

model. The results for different approaches we de-

scribe in this section are shown in Table 4.

We first evaluate an approach (CHARLSTM)

that independently runs a bidirectional LSTM over

the characters in each word and uses the LSTM

outputs in place of part-of-speech tag embeddings.

We find that this approach performs better than us-

ing predicted part-of-speech tags. We can further

remove the word embeddings (leaving the charac-

ter LSTMs only), which does not seem to hurt and

can actually help increase parsing accuracy.

Next we examine the importance of recurrent

connections by constructing and evaluating a sim-

pler alternative. Our approach (CHARCONCAT)

is inspired by Hall et al. (2014), who found it ef-

fective to replace words with frequently-occurring

suffixes, and the observation that our original tag

embeddings are rather high-dimensional. To rep-

resent a word, we extract its first 8 letters and last

8 letters, embed each letter, and concatenate the

results. If we use 32-dimensional embeddings, the

16 letters can be packed into a 512-dimensional

vector – the same size as the inputs to our model.

This size for the inputs in our model was cho-

sen to simplify the use of residual connections

(by matching vector dimensions), even though the

inputs themselves could have been encoded in a

smaller vector. This allows us to directly replace

tag embeddings with the 16-letter prefix/suffix

concatenation. For short words, embeddings of
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a padding token are inserted as needed. Words

longer than 16 letters are represented in a lossy

manner by this concatenative approach, but we hy-

pothesize that prefix/suffix information is enough

for our task. We find this simple scheme remark-

ably effective: it is able to outperform pretagging

and can operate even in the absence of word em-

beddings. However, its performance is ultimately

not quite as good as using a character LSTM.

Given the effectiveness of the self-attentive en-

coder at the sentence level, it is aesthetically ap-

pealing to consider it as a sub-word architecture

as well. However, it was empirically much slower,

did not parallelize better than a character-level

LSTM (because words tend to be short), and ini-

tial results underperformed the LSTM. One expla-

nation is that in a lexical model, one only wants

to compute a single vector per word, whereas the

self-attentive architecture is better adapted for pro-

ducing context-aware summaries at multiple posi-

tions in a sequence.

5.2 External Embeddings

Next, we consider a version of our model that uses

external embeddings. Recent work by Peters et al.

(2018) has achieved state-of-the-art performance

across a range of NLP tasks by augmenting ex-

isting models with a new technique for word rep-

resentation called ELMo (Embeddings from Lan-

guage Models). Their approach is able to capture

both subword information and contextual clues:

the embeddings are produced by a network that

takes characters as input and then uses an LSTM to

capture contextual information when producing a

vector representation for each word in a sentence.

We evaluate a version of our model that

uses ELMo as the sole lexical representa-

tion, using publicly available ELMo weights.

These pre-trained word representations are 1024-

dimensional, whereas all of our factored models

thus far have 512-dimensional content represen-

tations; we found that the most effective way to

address this mismatch is to project the ELMo vec-

tors to the required dimensionality using a learned

weight matrix. With the addition of contextual-

ized word representations, we hypothesized that a

full 8 layers of self-attention would no longer be

necessary. This proved true in practice: our best

development set result of 95.21 F1 was obtained

with a 4-layer encoder.

Encoder Architecture F1 (dev) ∆

LSTM (Gaddy et al., 2018) 92.24 -0.43

Self-attentive (Section 2) 92.67 0.00

+ Factored (Section 3) 93.15 0.48

+ CharLSTM (Section 5.1) 93.61 0.94

+ ELMo (Section 5.2) 95.21 2.54

Table 5: A comparison of different encoder ar-

chitectures and their development-set performance

relative to our base self-attentive model.

LR LP F1

Single model, WSJ only

Vinyals et al. (2015) – – 88.3

Cross and Huang (2016) 90.5 92.1 91.3

Gaddy et al. (2018) 91.76 92.41 92.08

Stern et al. (2017b) 92.57 92.56 92.56

Ours (CharLSTM) 93.20 93.90 93.55

Multi-model/External

Durrett and Klein (2015) – – 91.1

Vinyals et al. (2015) – – 92.8

Dyer et al. (2016) – – 93.3

Choe and Charniak (2016) – – 93.8

Liu and Zhang (2017) – – 94.2

Fried et al. (2017) – – 94.66

Ours (ELMo) 94.85 95.40 95.13

Table 6: Comparison of F1 scores on the WSJ test

set.

6 Results

6.1 English (WSJ)

The development set scores of the parser varia-

tions presented in previous sections are summa-

rized in Table 5. Our best-performing parser used

a factored self-attentive encoder over ELMo word

representations.

The results of evaluating our model on the test

set are shown in Table 6. The test score of 93.55

F1 for our CharLSTM parser exceeds the previous

best numbers for single-system parsers trained on

the Penn Treebank (without the use of any exter-

nal data, such as pre-trained word embeddings).

When our parser is augmented with ELMo word

representations, it achieves a new state-of-the-art

score of 95.13 F1 on the WSJ test set.

Our WSJ-only parser took 18 hours to train us-

ing a single Tesla K80 GPU and can parse the
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Dev (all lengths)

Coavoux and Crabbé (2017) 83.07 88.35 82.35 88.75 90.34 91.22 86.78b 94.0 79.64 87.16

Ours (CharLSTM only) 85.94 90.05 84.27 91.26 90.50 92.23 87.90 93.94 79.34 88.38

Ours (CharLSTM + word embeddings) 85.59 89.31 84.42 91.39 90.78 92.32 87.62 93.76 79.71 88.32

Test (all lengths)

Björkelund et al. (2014), ensemble 81.32a 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Cross and Huang (2016) – – 83.31 – – – – – – –

Coavoux and Crabbé (2017) 82.92b 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.27

Ours (model selected on dev) 85.61 89.71 84.06 87.69 90.35 92.69 86.59 93.69 84.45 88.32

∆: Ours - Best Previous +2.69 +0.90 +0.75 +2.35 +0.48 +0.35 +0.55 +0.05 -1.05

Table 7: Results on the SPMRL dataset. All values are F1 scores calculated using the version of evalb

distributed with the shared task. aBjörkelund et al. (2013) bUses character LSTM, whereas other results

from Coavoux and Crabbé (2017) use predicted part-of-speech tags.

1,700-sentence WSJ development set in 8 seconds.

When using ELMo embeddings, training time was

13 hours (not including the time needed to pre-

train the word embeddings) and parsing the devel-

opment set takes 24 seconds. Training and infer-

ence times are dominated by neural network com-

putations; our single-threaded Cython implemen-

tation of the chart decoder (Section 2.1) consumes

a negligible fraction of total running time.

6.2 Multilingual (SPMRL)

We tested our model’s ability to generalize across

languages by training it on the nine languages rep-

resented in the SPMRL 2013/2014 shared tasks

(Seddah et al., 2013). To verify that our lexical

representations can function for morphologically-

rich languages and smaller treebanks, we re-

stricted ourselves to running a subset of the exact

models that we evaluated on English. In particular,

we evaluated the model that uses a character-level

LSTM, with and without the addition of learned

word embeddings. We did not evaluate ELMo in

the multilingual setting because pre-trained ELMo

weights were only available for English. Hyper-

parameters were unchanged compared to the En-

glish model with the exception of the learning rate,

which we adjusted for some of the smaller datasets

in the SPMRL task (see Table 9 in the supplemen-

tary material). Results are shown in Table 7.

Development set results show that the addition

of word embeddings to a model that uses a char-

acter LSTM has a mixed effect: it improves per-

formance for some languages, but hurts for oth-

ers. For each language, we selected the trained

model that performed better on the development

set and evaluated it on the test set. On 8 of

the 9 languages, our test set result exceeds the

previous best-published numbers from any sys-

tem we are aware of. The exception is Swedish,

where the model of Björkelund et al. (2014) con-

tinues to be state-of-the-art despite a number of

approaches proposed in the intervening years that

have achieved better performance on other lan-

guages. We note that their model uses ensem-

bling (via product grammars) and a reranking step,

whereas our model was only evaluated in the

single-system condition.

7 Conclusion

In this paper, we show that the choice of encoder

can have a substantial effect on parser perfor-

mance. In particular, we demonstrate state-of-the-

art parsing results with a novel encoder based on

factored self-attention. The gains we see come not

only from incorporating more information (such as

subword features or externally-trained word rep-

resentations), but also from structuring the archi-

tecture to separate different kinds of information

from each other. Our results suggest that fur-

ther research into different ways of encoding ut-

terances can lead to additional improvements in

both parsing and other natural language process-

ing tasks.
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Wrocław-Szeged-CIS entry at the SPMRL 2014
shared task: Reranking and morphosyntax meet un-
labeled data. In Proceedings of the First Joint
Workshop on Statistical Parsing of Morphologically
Rich Languages and Syntactic Analysis of Non-
Canonical Languages, pages 97–102.

Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas,
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