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Constitutive equation for concrete creep and shrinkage 

based on thermodynamics of multiphase systems 

Z. P. BAZANT (1) 

RESUME 

L'action des variations d'humidite et de temperature sur Ie 
beton, compte tenu des facteurs de dimension et de forme, 
ainsi que de la repartition des contraintes est traduite par I'equa­
tion fondamentale du f1uage, du retrait et de la dilatation ther­
mique. La pate de ciment et Ie beton sont etudies en tant que 
materiaux composites multiphases dans lesquels les conditions 
d'equilibre, tant statique que thermodynamique, doivent etre 
considerees. 

SUMMARY 

The constitutive equation for creep, shrin kage and thermal 
expansion, which reflects correctly the effect of variable humidity 
and temperature, including the effect of size, shape and stress 
distribution, is derived. Cement paste and concrete are treated 
as a multi-phase composite material, in which both the static and 
thermodynamic conditions of equilibrium must be considered. 

NOTATIONS 

aT, a = rate constants for the local microscopic 
diffusion in eq. (16), (40) and (45); 

bT , b = rate constants for the macroscopic diffusion 
in eq. (7)-(8), (45); 

c, C = diffusion constants for adsorbed lavers. 
defined by (7a), (7b); 

d = average effective 

diffusion (volumetric) (eq. 
deviatoric diffusion; 

distance for microscopic 

16), d' = similar value for 

eij = total strain deviator; 

e d •. = deviator of the change of thickness 3d of 
IJ 

hindered layers; 

fa,fd = area factor for Pa or Pd' respectively (eq. 12, 
22); 

h = humidity = relative vapor pressure (in the pores 
inside) ; 

heq = equivalent humidity defined after eq. (49); 

hex = humidity of the external atmosphere (ambient); 

hs = humidity at self-desiccation of a sealed sample 
(eq. 5); 

(1) Ph. D., Doc., Ing .• Associate Professor, The Techno­

logical Institute, Northwestern University, Evanston, illi­

nois, U.S.A. 

hQ = time decrease of humidity at ~Q for which 
the volume change without stress is zero (eq. 20); --';. -

k, k' = slopeS-of the desorption and sorption iso-
therms (eqs. 3, 5, 41); 

n = exponent in eq. (10); 

P = pressure, less the atmospheric pressure 1 atm; 

Pa' Pv, Ps = P in free adsorbed layers (eq. 1), in 
vapor, or in capillary water .(eq. 2a); 

Pd = P in the hindered adsorbed layer, Pd = its 
average value (eqs. 2, 12); 

q = activation energy for hydration (apparent), 
eq. (52); 

r1, r2 = principal curvature radii of capillary 
menisci; 

sij = total stress deViator; 

Sd .. = deviator of the stress III hindered layers; 
IJ 

t = time, or age of concrete; 

te = equivalent curing period, defined after eq. (4); 

u = displacement in the sense of X; 

v = specific volume = (mass density)-l; 

Va' V d, vc ' Vv = v for free, or hindered adsorbed layer, 
capillary water and vapor, respectively; Vc = 1 cm3 /g; 

w = total mass of water (usually per unit volume 
of porous material or per unit surface); 
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We' W n = evaporable and non-evaporable water at y = surface tension, eq. (2a) (or shear strain); 

a given T; ila, ild = average thickness or free, or hindered 

adsorbed layer (ila = walva' ild = wdlvd); W a' W d, we = W corresponding to Va' Vd, Ve; 

X, y, z or Xl' X 2, X3 = cartesian coordinates; lid = average total thickness of all layers intersect-

B = coefficient of water transmission at the surface, 

eq. (9); 

ing a unit length (eq. 15); 

e: = total volume strain = (e:11 + e:22 + e:33) 13; 

e:ij = total strain tensor; G = Gibbs' free energy (eq. A1) or shear modulus 

(eq. 40); e:d = volume component of the change of thickness 

lid of hindered layers, de:d = dad; GI = partial value of G per unit of mass; 

Ga, G b , Ge, Gd, Gf , K a , K b , Ke, K d, K f , Kh = shear 
moduli and volume moduli for models in figures 6a, 
5a (defined by eqs. 23, 24, 27, 40, 18); 

e:~, e:C 
= free shrinkage (eq. 32b) and creeps train 

defined before eq. (22a); 

x. = hygrothermic coefficient, defined by eq. (41); 

[.L = chemical potential (eq. A7); 
K = elastic volume modulus, eq. (27); 

L = volume stress memory function, (;q. (32), (32a), 
(32e); 

C5, C5 a = total volume stress, and volume stress in 
the fluid (defined in § 5.2); 

La = humidity memory function, eq. (32b), (32c), 
(32f); 

C5 d, C5 ad = actual volume stress in hindered layers 
and its theoretical value needed for thermodynamic 
equilibrium at a given Pa (eqs. 12, 17, 20); LT = temperature memory function, eq. (51), (51a); 

M = molecular weight of water; 

P d = disjoining pressure = Pd - pressure in the 
free layer of equal thickness (eq. (A5); 

cp, <Ji (or ~) = rate of creep constants for volume 
and deviatoric deformation, eq. (28), (25), (40), (38) 
(or eq. 29); 

Q, Q' = activation energies (enthalpies) in eq. (45); 

R = universal gas constant; 

S = entropy; 

CPd' <Jid = rate constants for microscopic volume and 
deviatoric diffusion, eq. (17), (19), (37); 

1', t' = time as integration variable, or time at 
load application (also l' = shear stress); 

T, To = absolute temperature and chosen refer­
ence temperature; 

1'1 = retardation time for the i-th unit in figure 5b 
= ;Pi-I; 

V = volume; 

(Xb' (XC' (Xd' (Xo' (Xl = thermal expansion coefficients, 
eq. (47)-(49); 

D. denotes increments during time step D.t; 

Subscript i in fdi' CPi' K ci , K di , K fi' C5 adi denotes 
values of fd etc. for the i-th unit in the chain in 

~'r = relative hydration rate defined by eq. (4); 

~ = ~T at reference temperature, eq. (52); 

figure 5b; 

kp = kilopond force kilogram, 

~a = volume compressibility of adsorbed water, 
eq. (14); 

= 10-7 , mm, it = (u)· = ou lot, 
sign, ~ " approximately equal ", -7 

+- " assign " 

A = angstrom 
proportionality 
" tending to " 
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INTRODUCTION 

At the present time, the stress-strain law of creep and shrinkage of concrete is known sufficiently 
well only for invariable humidity and temperature conditions during the process, although some 
estimates have been established for predicting the effect of various levels of temperature and humidity, 
and the closely related effect of size, shape and stress distribution [1-20]. Under these invariable 
conditions a purely phenomenological theory can be developed even without a proper understanding 
of the physical nature of the phenomenon, by simply using the principle of superposition in time, 
or the viscoelastic rheological models of aging bodies [21-7, 27, 8]. However, certain types of modern 
structures, especially the concrete structures for nuclear reactors, require a much deeper knowledge 
of creep, shrinkage and thermal expansion, including the conditions of variable humidity and tempe­
rature. In this case it seems necessary to base our model on the knowledge of the internal microstruc­
ture of cement paste and understanding of the creep mechanism. 

The effect of humidity upon creep and shrinkage, along with the fact that completely dried spe­
cimens do not exhibit any significant creep [28-31] at low stress levels, suggests that the main source 
of this phenomenon is the evaporable water. This hypothesis is justified by the present knowledge 
about the structure of cement paste [32-34]. The role of evaporable water was already recognized 
by Lynam [35] and Freyssinet [92]. Later many investigators rejected this idea, since a satisfactory 
explanation had not been found for various aspects, such as creep in torsion and bending, separability 
of creep and shrinkage, the difference between the losses of water during shrinkage and creep of equal 
magnitude, irreversible creep and shrinkage, the increase of creep of predried samples with humi­
dity [29-31,12] contradicting the idea of drying creep [16], etc. The load-bearing ability of hinder­
ed adsorbed water layers and their role in creep and shrinkage was first mathematically analyzed 
by Hrennikof [37], although verbal remarks on it may be found in earlier literature [34, p. 589 with 
references to Carlson and Lynam, or 95]. In terms of thermodynamics this effect was first investig­
ated and formulated by Powers [32, 36, 38] who based his theory on an especially thorough knowledge 
of cement paste structure. 
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In this study we shall start from the basic ideas of Powers [32, 36, 381 (and Hrennikof [37]), 
endeavouring to establish a complete model for the macroscopic constitutive equation. We shall 
treat the cement paste and concrete as a multi-phase medium, the theory of which has been developed 
until now only in soil mechanics [39]. Besides the conditions of static equilibrium between phases 
we shall have to introduce the conditions for thermodynamic equilibrium of various phases of water 
and investigate the microscopic local diffusion of water. Although the delayed deformation response 
will be described only in terms of adsorbed water, our constitutive equation will also admit the effect 
of chemically bound evaporable water and capillary water, the effect of dissolution of matter 
under load and recrystallization, as well as viscosity (sliding) in the cement gel (see Appendix C8-10). 
In addition to this, we must study briefly the macroscopic diffusion in concrete, and the humidity 
distribution. At the end we shall present the results of computer analyses of various tests of creep, 
shrinkage and thermal expansion according to our constitutive equation (*). 

Throughout all this study we shall consider simultaneously cement paste and concrete. Their 
behavior is qualitatively different but quantitatively same (see Appendix C1). 

Before starting the analysis let us introduce some basic facts about the structure of Portland 
cement paste [32-34]. It may be described as a multi-phase porous material whose solid part consists 
of hydrated cement and unhydrated cement grains, made up mostly of crystalline components. The 
densest possible form (porosity 0.28) of completely hydrated cement paste is called cement gel which 
is predominantly amorphous but consists mainly of quasi-crystalline (and some crystalline) strongly 
hydrophylic particles of colloidal dimensions and laminar form (probably in shape of rolled tubes [40]). 
The porosity of the paste is usually between 0.40 and 0.55. The average thickness of laminae is about 
30 A, the average width of pores is about 15 A (the minimum may be 2 A). The internal surface 
area is about 500 m2 per cm3 of material. 

I. EQUILIBRIUM OF EVAPORABLE WATER IN CEMENT PASTE 

1.1. Adsorbed water and its conditions of thermodynamic equilibrium 

N ear a solid surface the van der Waals forces affect the movement of the adj acent molecules of 
water vapor and retain them at the solid surface for a certain" lingering time" (ranging from 10 -12 sec 
to perhaps 2 sec [36, 41]). These molecules form thin adsorbed water layers. The specific mass Wa 
of water adsorbed per unit solid surface, and thus the average thickness 8a of the adsorbed layer, 
increase with humidity [32, 42, 43] and for h ->- 1 it is reasonable to assume a maximum thickness of 
about 5 molecules, i.e. about 13 A. At 25 °C a monomolecular layer, Ila = 2.63 A [32], is achieved 
for h = 0.12 (two molecule thickness at h = 0.51, half molecule average thickness at h = 0.03). 
Thermodynamic equilibrium requires that [36] (under certain simplifying assumptions, see Appendix A). 

RT 
Pa = I1va 

Inn 
Pv 

where Ii = -- L 
Psal 

I If) 

where Pv = vapor pressure, P sat = saturated vapor pressure depending on temperature T, P a = pressure 
in the adsorbed water, less the atmospheric pressure, 1 atm (p a is always negative, i.e. tension), R = 
universal gas constant, M = molecular weight of water, va = specific volume of adsorbed water 
which is approximately equal to that of capillary water, Vc (Ila = Wa va)' 

FIG. 1. - Idealized hindered 
adsorbed water layer. (The 
change of its thickness 
along the layer is exagge­
rated. Actually it has to 
be imagined much longer.) 

Eq. (1) is valid only as long as Va may be approximately considered invariable with h. It is invalid 
for h < 0.12. At 25 oC, RT jMva = 1360 atm (a value which equals Pa at h = 0.366). 

In a narrow gap (Fig. 1) which is thinner than about 26 A, above a certain humidity the full 
thickness of the two adsorbed layers at the opposite solid surfaces cannot be accomodated. In this 

(*) Further development of the present theory is giv~n in the author's report nO SESM 69-11, " Thermodynamic 
theory of concrete deformation at variable temperature and humidity", Department of Civil Engineering, University of 
California, Berkeley, August 1969 (added in proof). 
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case we speak of hindered adsorption, in distinction to the previous case of free or unhindered adsorp­
tion [36]. In state of thermodynamic equilibrium the following must hold (see Appendix A) 

Pd = Pa (2) 

where p d = pressure in the hindered layer (less 1 atm). Since the pressure in the adsorbed layer is 
a function of its thickness which is different in the hindered and adjacent free layers, eq. (2) requires 
that an additional pressure P d' called disjoining pressure, be applied on the solid surfaces in order 
to make the total pressure Pd equal to Pa and keep the gap thickness constant. Thus eq. (2) expresses 
the load-bearing ability of the hindered adsorbed water [37, 36], a fact which is crucial in Hrennikof's 
and Powers' theory of creep. The gap to be entered by hindered layers must have at least one molecular 
thickness (2.63 A). It becomes full of adsorbed water when the adjacent free layers in equilibrium 
are about a half molecule thick, i.e. h ~ 0.03 (at T = 25 oc). Below this humidity we cannot speak 
of hindered adsorption. 

The condition of thermodynamic equilibrium of capillary water (Kelvin) and the differential 
condition of equilibrium at the interface with vapor (Young and Laplace) provide 

Pc = Pa " 
/:.-1 -I) 

Pc = -T ''iT r,2 (20) 

where Pc = pressure in the capillary water (less one atm), rl , r2 = principal curvature radii of the 
interface, y = surface tension [44] (= 72 dynes fcm at 25 OC). The boundary equilibrium condition 
requires that this surface be tangential to the adsorbed film at the solid surface. Capillary water 
cannot exist for about h < 0.45 when Pc would exceed the cohesive forces between water molecules 
(~ -1100 atm). 

1.2. Desorption-sorption isotherms. Aging and equivaleut curiug period 

The total mass of water per unit volume of porous material, w, is composed of the adsorbed water 
W a ' capillary water We' non-evaporable water W n (which is chemically combined) and a negligible mass 
of vapor. The dependence of W on humidity h at a given temperature T is a function of the internal 
geometry of pores which is so complex that empirical relationships must be used. These are called 
desorption or sorption isotherms [34, 89]. From the macroscopic viewpoint they represent a mate­
rial property. An example of their form is given on figure 2. The isotherm for sorption is not 
identical to the isotherm for the preceding desorption. This irreversibility is caused mainly by the 
fact that in a pore of given geometry the surface menisci of capillary water may take on various 
equilibrium forms (" bottle neck" effect and " open-pore " effect [45]). One such possibility is 
illustrated on figure 3a, b, another one on figure 3c showing that at h = 1 and Pa = 0 the pores need 
not be full of liquid water but a surface with opposite curvatures, rl = - r2, can exist in equilibrium 
[46]. Irreversibility below h = 0.45 may be explained by closure of the thinnest gaps on drying (for­
mation of a chemical bond), preventing reentry of adsorbed films [47] or by a similar effect for the 
evaporable interlayer hydrate which is chemically bound (Appendix C8). 
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FIG. 2. - Example of desorption-sorption isotherms of 
cement paste, established by Powers [34]. 

FIG. 3. - Examples of different eqnilibrium shapes of 
capillary menisci (a, b for same humidity, h < 1; c 
for h = 1 [46]). 
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For the desorption or sorption isotherms we can write 

dh = Idh) Vc dw or dh = !/(h) Vc dw where Kif = (an/owJT,t (3) 

where the coefficient k applies for the first desorption and k' for the subsequent sorption. Approx­
imately k and k' can be considered constant between about 0.1 and 0.8. k will be called sorption 

resistance and k' desorption resistance (whereas the inverse 11k may be called sorptivity). Eq. (3) 
is valid only for a fixed age of cement paste. Ve was introduced for convenience as a dimensional 

constant. 

The age, however, is not an objective measure of the maturity or degree of hydration of cement 

paste. Rather it is the mass of hydrated cement, or the amount of water combined in the solid, W II. 

The increase dWn during the time interval dt, characterizing the rate of chemical reaction, is a function 

of the state variables h (and T) and Wn. Thus dW
II 

= rh(h)dw~ where dw~ = f(w lI)dt = change 
of wn at h = 1 (and reference temperature To) during the time interval dt; ~1' = function of h (and T) 
which will be called relative hydration rate. Writing dWn = f(w n) [~T (h)dt], we are led to the following 

definition (see Fig. 4) : 

t 
FIG 4. -- Schemes for interpretation of the effect of 

aging, 
a) definition of the equivalent curing period at 

variable T and h, 
b) change of specific mass of porous material. 

f 
die = (]r(h) dt or te i!.JT dt' (4) 

te will be called equivalent curing period. te represents the period of curing at h = 1 and reference 
temperature To at which the same amount W /I would become combined as for a given time-variable h 
(and T) in time t. Approximately, we can probably consider ~T (not dw II) as independent of W II' or teo 

For h = 1 and T = T 0' ~T = 1. Below a certain humidity, equal to about 0.8 (as determined by 
self-desiccation of sealed samples with unsufficient water-cement ratios [46]), ~T = 0, and even up 

to h = 0.95 probably [48] ~T ~ 1. 

All material parameters, e.g. k (or K b , K c ' Gc ' Gd,fd,fa' d, tpd' '1', C, x, ... defined later), are functions 
of teo 

Effect of hydration on sorption isotherms is seen in figure 2. Since in a time interval dt the 

part dWe of the evaporable water Wa + We is lost, becoming combined in the solid, i.e. dw II = - dWe' 
the humidity is decreased by a certain value dh s • However, dh s is much less than - k dw /I since the 
porosity becomes also decreased (because cement doubles its volume at hydration [49]). Moreover, 
the value of k for h --+ 1 is rather uncertain and possibly very small (Fig. 2). Therefore, it is not suitable 

to use the function W n(te) for calculations of humidity [50]. We shall rather introduce directly the 
function hs(te) representing the so-called self-desiccation of sealed samples [51, 46], a directly measurable 
quantity. Thus at variable age we have 

(5) 

For normal water-cement ratios (greater than 0.5) there is in cement paste [51] hs(oo) ~ 0.95 (for 
suitable expression for hs see eq. 60). 
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2. BASIC ASSUMPTIONS FOR THE STRESS AND STRAIN ANALYSIS 

The facts about the cement paste structure (see Introduction) justify the following assumption. 

Assumption 1. 

The porosity is great and internal surface area is large. This implies that a large part of the 
evaporable water is in the state of hindered adsorption [32-34]. Consequently, the number of hindered 
adsorbed layers intersecting a unit length is great and their total thickness is not small with respect 
to unity. 

Assnmption 2. 

Furthermore, we require that the deformations, their rates and water flow rates are small, so that 
the stress-strain law be linear. It has been proved experimentally [2-4, 8, 19, 20, 50, 12, 52] that 
this linearity is approximately acceptable for concrete for stresses less than about 0.4 of its strength, 
except for unloading and repeated stresses. 

Assumption 3. 

The material is macroscopically isotropic. 

The smallness of water flow rate allows us to assume that the thermodynamic equilibrium at 
the interface of various phases of water, expressed by eqs. (1) and (2a), is maintained at any time 
(especially in each pore of capillary size). Eq. (2) is an equilibrium condition which is to be achieved 
asymptotically at the end of the creep process. Because adsorption has a dynamic character [41], 
water molecules can migrate or flow along the adsorbed layers. This flow may occur even without 
leaving the adsorbed layer [54] so that diffusion along the hindered layers is also possible. Thus, 
with respect to eq. (2), the difference Pd - Pa causes a local diffusion between the hindered and un­
hindered adsorbed layers. 

Our assumptions imply that the average relative change ofthickness (with respect to the thickness) 
of hindered adsorbed layers, accompanying deformation, is always small. The total volume of water 
which may be " squeezed out" of (or •. imbibed into ") all the hindered layers in a unit volume of 
material cannot be greater than the relative volume change of material, and therefore must be negligible 
in comparison with the volume of pores even if the load-bearing water is subtracted. This small 
volume added to (or removed from) the non-bearing evaporable water in pores increases (or decreases) 
the humidity. However, this increase must be negligible since according to the slope of the sorption 
isotherm (Fig. 2) a small change of water content produces a small change of humidity. This fact 
has an important mathematical consequence-the macroscopic water flow problem is uncoupled 
with the stress and strain problem and may be solved independently (unlike in the vibration of the 
saturated sand [39]). 

NOTE. This result is also supported directly by the fact that the load does not 
produce an appreciable change of water content and humidity during creep [32]. This 
does not contradict the fact that the loss of water needed to produce shrinkage equal 
to creep is great (250 times greater [32]). The difference of creep between sealed and 
unsealed samples [36] cannot be explained by a rise in h~midity caused by load in a sealed 
sample. (It is rather explained by the term with h in eq. (25), (37». 

For the mathematical treatment we have to idealize the microstructure. We imagine the material 
to be composed of two constituents, the fluid and the solid framework. The latter includes hydrated 
cement crystals and unhydrated cement grains. The thin hindered adsorbed layers form also a part 
of the solid framework since their immediate response depends only on the deformation of the solid, 
while their delayed response depends on the diffusion along the hindered adsorbed layers into larger 
pores. The fluid component, the state of which is independent of deformation, includes water vapor, 
capillary water and free adsorbed layers, that is, all water contained in voids of capillary size. 

NOTE. A sharp distinction, however, cannot be made. For instance, with the 
decrease of humidity some hindered layers become unhindered. Moreover, e.g. at volume 
compression, the change of pressure Pd in various layers is statistically different, and this 
difference also causes a local flow between various hindered layers. 

In an exact approach we should have to assume the statistical concept of the geometry of micro­
structure. Its complexity, however, compels us to work, more or less intuitively, only with certain 
" average" quantities. Especially, we have to realize the difference between the macroscale and 
microscale and distinguish properly between the macroscopic diffusion, representing the average 
movement of water molecules, and the microscopic local diffusion which is characterized by zero 
average movement (in a region sufficiently large with respect to particle size but sufficiently small 
with respect to body dimensions). The local diffusion (resulting from thermodynamic disequilibrium 
between adjacent free and hindered adsorbed layers) appears in the macroscale as a material property 
and must thus be expressed in the macroscopic constitutive equation. 
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3. MACROSCOPIC DIFFUSION OF WATER AND ANALYSIS OF HUMIDITY 

In a uni-dimensional flow the change dw of the mass w of water in a unit volume element during 
the time interval dt is 

Vcdw = 
QU dt 
aX 

where u is the average displacement of water molecules, it = aulat. Vc = 1 cm3/g). 

Considering that the mean free path of water vapor molecules at 25°C and 1 atm is about 800 A 
while the average pore size in cement paste is about 15 A (and that the capillaries are discontinuous [53]), 
we may conclude that the flow of adsorbed water molecules along the layers, called surface diffusion [54], 
is much more significant than the flow of vapor (evaporation-condensation theory [55]) or capillary 
water, despite much higher (perhaps 105 times) " viscosity". Therefore, the average speed of flow 
of water molecules is governed essentially by the gradient of Pa rather than PV' and we can write 

(70) 

where bTC represents permeability. For simplicity we assume that bT depends only on T, and C 
only on h. According to (1) we can write as well 

U = -Or e(n) ;~ where c(h)-RTC(h);f#lf;h} (76) 

Substitution into (6) yields 

a r. ahj 
= ox f or e(lI) ax (7c) 

Using the sorption isotherm (4) we can eliminate wand we get finally the following nonlinear partial 
differential equation for h, 

= /«IIJ- h c(h)-Q~ ()y 
Q.)( "7 0.)( 

NOTE. For two-dimensional flow we should have to add at the right hand side 
another term of the same form, with y instead of x. 

By analysis of some concrete drying tests [56, 57, 12] we can find that bTch :::::: 0.1 cm2 /day at 
h :::::: 0.7, T = 25°C [56] and 2 cm2 (day at 93°C [57] (for those particular concretes used). 

At the surface of the body the amount of water coming from inside must be equal to the amount 
of water evaporated (from adsorbed state) into the environment. Let x denote the outward normal 
of the surface. Then, assuming that the rate of evaporation is proportional to the difference in partial 
free energies (Appendix A) (at the same temperature), we can write 

t.i = - B (In hex - In h) 

where hex = humidity of the external environment, B = coefficient of water transmISSIOn at the 
surface depending on humidity h and temperature T. By substitution of expression (7b) we get the 
boundary condition 

b c(h) an -I- B In ~ = 0 
.r ax flex 

(9) 

Often the rate of evaporation is much faster than the rate of humidity change inside the specimen. 
Then we can let B -+ 00 and get 

(90) 

If the surface IS perfectly sealed, we have B = 0 or 

ah/d.x-O (96) 

Eqs. (8) and (9) formulate the boundary value problem of water diffusion, from which the humidity 
h as a function of x, y, z, t may be solved. This problem is nonlinear. 

9 
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The diffusion coefficient c(h) must decrease strongly with the thickness of the adsorption layer, 
as the attraction forces decrease sharply with the distance from the surface [41]. This holds true 
even if the average thickness of the layer is less than one molecule [54]. We can thus introduce 

C(h) .">J cr. n + f 
a 

and because approximately aa ~ h we can write C(h) = h n+1 or 

(10) 

If we were to assume that this effect is similar to a linearly viscous fluid flowing in a gap between 

two planes of thickness 2 aa' it vould be distributed parabolically ower the thickness and it would be 
proportional to a~ so that we would have n = 1. Because of the rapid decrease of the surface attract­
ive forces with the distance it is more realistic to assume n > 1. On the other hand, in a hindered 
adsorbed layer the thickness is independent of h, so that C = const. or n = - 1. This latter case 
seems, however, to be of minor importance as the macroscopic diffusion tends to pass mostly through 
the regions of minor resistance, i.e. the thicker unhindered layers, provided that some of them are 
continuous. Another reason for higher c in a hindered layer is that the molecules cannot temporarily 

leave the layer during migration. For the vapor diffusion alone, C ~ const. or c ~ 1/h. Thus, 
unlike for diffusion in adsorbed layers, c does not decrease with h but it increases. Hence vapor 
diffusion may become dominant for h ->- O. An expression allowing for a combined effect is 

C(h) = CI + c2a~+1 or c(h) = cIlh + c2h n where CI , C2, CI ' C2 are constants (and cdO.5 <1f C2 X 0.5 n). 

NOTE. The variability of c(h), eq. (10), explains why the core of massive concrete 

bodies exposed to drying retains a high humidity for a much longer period than linear 
diffusion would predict. Thc rcason is that thc conductivity of the surface region drops 
as it dries up. 

For h ->- 1 there seems to be a continuous transition to the case of flow in saturated cement paste 

under hydrostatic pressure p (in excess of 1 atm). Because in eq. (10) we assume c = 1 for h = 1, 
eq. (7a) must be replaced (at 25 0C) by 

ti = _ HVq Or Jp 
P T ox 

where bT /1360 represents permeability [58, 59]. 

=_ Or Jp 
1360 dX 

(ff) 

NOTE. The significance of eq. (11) may be demonstrated with the case of a retaining 
wall of thickness t, one face of which is immersed in water of hydrostatic overpressure PI 
and the other face exposed to atmosphere of humidity h2• Because in a steady state 
the values of u following from eqs. (11) or (7 b) must be constant over the thickness of wall, 

the condition c(h) 8h 18x = (8p 18x) /1360 must be fulfilled. Consequently, the distance of 
the point at which P = 0 and h = 1 (Pa = 0) from the immersed face is found to be equal 
to 

Thus for PI = 10 atm, h2 = 0.5, n = 2, this distance is found to be only 0.0227 t. This 
enormous influence of the gradient of the adsorbed water pressure has often been disre­

garded. 

However, if concrete has a system of microcracks (mostly bond cracks) the water 
will tend to pass through these passages of minor resistance when they are full of water 
(h = 1). Thus the effective value of bT will increase discontinuously at h = 1, and much 
deeper penetration of water into the wall would be obtained. Especially, after a cycle 

of drying, microcracks may be created, increasing enormously the permeability (about 
70 times [59]), although the deformation properties, depending mainly on the strongest 
parts of the structure, might be changed only slightly. 

4. MICROSCOPIC LOCAL DIFFUSION AND CONTRACTION OF THE HINDERED 
ADSORBED LAYERS 

Let us examine now the typical configuration as shown in figure 1. Let the average pressure 

in the hindered layer be designated by Pd and the volume stress III load-bearing water be defined 
as the resultant of Pd per unit area of the porous material, i.e. 

(12) 
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where fd is the effective area factor for the load-bearing water. fd decreases with a decreasing amount 

of water adsorbed, Wa , and for h -0>- 0 tends to zero; always fd < 1. Most simply we can assume [32] : 

(f.J) 

With regard to the irreversibility of desorption isotherms,fd is smaller for sorption than for desorption. 

The pressure Pd is linked with the specific volume as follows 

(1ft) 

where f'ia = volume compressibility of the adsorbed water = Va -1( 8va J 8pak Its value might be 
rather different from ~w for the liquid water which is ~wl = 25,000 kp Jcm2 while for cement gel [60] 
~~1 = 240,000 kp Jcm2

• 

A change of the pressure Pd in the hindered adsorbed layer, caused by compression of the material 
or by a change of humidity in larger pores, violates the condition (2) of thermodynamic equilibrium 
with the non-bearing water. Hence a flow of water out of (or into) the hindered layer results. Let us 

define Wd as the average total mass per unit area of all load-bearing layers intersecting a unit length. 

Their average total thickness ad is then expressed as Bd = Vd~d. From this is follows that 

or (Is) 

where Va ~ ~d and ad may be considered as constants according to assumptions 1 and 2. The total 
amount of water which has to diffuse along the hindered adsorbed layer out to the adjacent capillary 

pore is fdw d • Introducing the idea of average effective distance d = d(h) between load-bearing water 
and the adjacent non-bearing water and keeping in mind the equilibrium condition (2), we can write 

for this diffusion (to the first order) 

(15) 

where aT is a diffusion constant at a given temperature T. Substituting for d;'-d and Pd from eqs. (15) 
and (12) we get, after rearrangements, 

where the following notation has been introduced 

(1.9) 

We also defined aad = - fdPa. aad represents the theoretical value of the stress ad III load-bearing 
water which is needed for thermodynamic equilibrium at a given humidity h. 

With aad = - faPa' however, for an unloaded specimen, immersed in water since the time of 
casting, no volume change would be obtained. Actually, there will be swelling, though relatively 
small [2, 15], for other reasons, specifically not considered. Phenomenologically and most simply, 
eq. (17), may be adjusted to account for this if we put 

~d = -k [Po (II) - Pa (haJj = RT .Id In ho (20) 
HI{; II 

and define a decrease of humidity ho as such a function of teo for which the volume change is just zero. 
For concretes for dams probably ho(te) ~ h,(te) since the autogenous shrinkage (see Appendix C14) 
is practically zero [15, 61]. . 

NOTE. It is true that water is imbibed [2] into a specimen stored under water, due 
to osmotic pressure, self-desiccation and hydraulic over-pressure, but our expressions 

for Pa and aad at h = 1 are still same. To be exact, Psat in eq. (1) should be made dependent 

11 
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on the concentration of the aqueous solution which varies with the progress of hydration 
(as well as w), and causes osmotic pressure with respect to the relatively pure water outside 
the specimen. Major cause of swelling, however, is probably the growth in volume of 
cement gel (see Appendix C9). 

With the simple assumption fd - h, aad tends to infinity for h -+ O. Actually, this observation 
makes no sense since eq. (1) is not valid for h -+ 0, Va being variable for h -+ O. A suitable expression 
for aad will be given later in eq. (60). 

5. CONSTITUTIVE EQUATION AT VARIABLE HUMIDITY 

5.1. Concrete as a porous material of variable mass of the solid component 

The increase of the elastic modulus of cement paste and concrete with age cannot be caused 
by a change of the modulus Kc of the hydrated cement itself, but rather by the increase of its mass 
per unit volume of porous material which is due to continued hydration [49], i.e., conversion of an­
hydrous cement to hydrated cement. In general, for an elastic material two possibilities exist for 
taking this into account, depending on whether the removed or added matter is in a stressed state 
or an unstressed state. The first case occurs if a body under stress is being dissolved, with the elastic 
energy of the removed matter being transformed into heat. Then (Fig. 4) da = FKcdE + KcEdF or 

el(t) = F(f)~£(t) = K(t) crt) 

where a, E are the average stress and strain in the porous material, F the effective area of solid per unit 
area, K the effective modulus of the porous material. If the matter is being added by a chemical 
process, this is always done in an unstressed state. Thus 

do!f) = F(t}~dc(f) = K!f)de(f) (21) 

Clearly eq. (21), introduced in 1965 [22, 23], is not equivalent to the first relationship, which had been 
used incorrectly in the past in rheological models for concrete. In order to account for various humidity 
conditions, t must be replaced by t e , as an independent variable for K. 

Having formulated the behavior of both the elastic and fluid components of our porous material, 

we are ready to study the composite. 

5.2. Volumetric creep and shrinkage 

For deformations and deformation rates sufficiently small the response of any material to stresses 
and strains may be considered linear. From the general theory of continuous media [62, 63] it is 
known that the deviatoric and volumetric behaviour are separable if, and only if, the stress-strain 
law is linear and the material isotropic. First we shall investigate the volumetric behaviour. (For 
higher stresses this separability is not true [98]). 

Let us denote by a the average total volume stress per unit area of the porous material, 
a = (an + a22 + (33 ) /3. a may be decomposed into the stress in the fluid, aa' representing the resultant 
of the pressure Pa in the capillary water and unhindered adsorbed layers per unit area of the porous 
material, and the stress in the solid framework which equals a - aa according to the static equilibrium 
condition in the two-phase material. a - aa is the resultant of the stresses in the hydrated cement, 
the hindered adsorbed layers between them and the unhydrated cement grains. 

It is expedient to express aa = - faPa where fa = area factor for the fluid. Then we can write 

simply 

~ = 

According to our assumptions, aa is independent of deformation (unlike in a medium with pores saturated 
by liquid, at high flow rates [39]). The provenance and significance of the terms aa and aad is differ.ent. 
aa is needed for the static equilibrium while aad arises from the thermodynamic equilibr~um condition. 

NOTE. The stress in the fluid alone, aa' does not satisfy the differential equilibrium 
conditions. These must be imposed upon the total stress a (plus Sij)' The constitutive 
equation for the fluid is represented by eq. (5). 

The average total volume strain will be designated by E, E = (En + €22 + €33) /3. It is composed 
of (a) shrinkage €s, defined as the deformation for a = 0 and dT = 0, (b) thermal dilatation €T, defined 
by the condition a = 0 after subtr;'lction of shrinkage, and (c) creep €c which represents the rest and 
is caused by the stress a. E

C includes the instantaneous deformation, which is the limit for the delay 

of response tending to zero. 
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In eq. (17) for the hindered layers, the stress (Jd and the thickness ad are not known, as they result 
from the interaction with the elastic parts of the solid framework, modelIed by springs obeying eq. (21). 
The simplest model possible for this interaction within the solid framework is the three-element model 
in figure Sa. It consists of a spring and a unit formed by a spring coupled in paralIel with the" sorption 
element" [36], described by eq. (17). Later we shall refer to this unit as a Powers' unit since it was 
first conceived and verbalIy discussed by Powers [36]. We imagine that the extension of the model 
corresponds to e:. Its load is (J - (Ja. 

The stress (Je carried by the spring Ke in figure Sa equals (J - (Ja - (Jdisj where (Jdisj is the resultant 
of the disjoining stresses Pdisj that are developed by the hindered layer on its solid surface. By defini­

tion (see also eq. AS), pdisj = Pd -[Pa]od. Hence 

= a2a) 

where (J~isj = - Sfd[Pa]od dId = function of hand T (and te). Consequently, (Je = (J - (J~ - (Ja 

where (J~ = (Ja - (J~isi. 

c 

FIG. 5. - Rheological models for interaction of the elastic 
particles of cement paste or concrete and the hindered 
layers. a, b, c, e models with sorption elements, d model 
equivalent to a, with two pistons interconnected by a thin 
tube of high viscous resistance (for (JDd = 0 the pistons 
may be replaced by a dashpot), e model with a" ratchet" 
for irreversible deformation. 

Eq. (20) for the two springs III figure Sa may now be written in the folIowing form (using the 
notation e: = oe:jot, etc.): 

t - id = (& - ct)/Kp (te) (2.3) 

Cd = (& - &; - 6d J/Kc (ie) (24) 

where de: d = dad. K b , Ke are the elastic constants of the springs; they are increasing functions of teo 

Kb = Kb(te), Kc = Ke(te)· 

13 
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By substitution of eq. (17) for de:d = dad and further algebraic rearrangment we obtain: 

6' - 6.:'- 6." hO . 
~ a + £ (o;.;-6.d ) - - 6'd c = 

K Kc a. Kn 
&d 6' - ct.' 6:.." t:1 . a 

= C 
Kc Ka K 

where 

= 

In addition, the notation cr~ = a~isj K IKb has been also introduced. 

In the rest of this paper, we shall assume for simplicity that: 

<5.:" =- 0 d' ~ • a ./ Cla g;, 

(25") 

(2G) 

(28) 

Eqs. (2S) and (26) represent the volumetric constitutive equation or stress-strain law. 

NOTE. We write partial derivatives cr = 818t ... because a, ad' e:, ... etc. are also 
functions of the spatial coordinates x, y, z. Since the deformations are small the so-called 
objective material derivatives [62] are not needed. 

Let us now discuss the coefficients (27) and (28). K represents the instantaneous volume modulus. 
Kd accounts for that part of K which depends on the moisture content. Since K is known to decrease 
only slightly with drying [28, 12], Kd must be rather high with respect to Kc (see eq. 60). Approx­
imately, we may let Kd -+ CXJ, and then K ~ K b • Therefore the instantaneous elastic response is 
essentially reflected by K b • Kd corresponds to the volume compressibility of the adsorbed water 
in hindered layers. The direct action of van der Waals forces between the solid surfaces across the 
hindered layer is represented by Kb and K c ' along with the elastic deformation of hydrated cement 
particles and unhydrated grains. In the case of no aging, Ka represents the effective modulus for 
the" final" deformation as t -+ CXJ. 

The form of dependence of <jl upon h may be guessed with the help of some geometric hypotheses 
about the form of the thin gaps between particles. This is done in Appendix B. The results suggest 
that probably <jl - h or h 1(1 + h). This expression agrees with the fact that the creep of dried spe­
cimens is negligible [28, 31], and that creep is the greater, the higher is h if h is kept time-constant 
during creep [30], [31], [1], [2], [29]. 

The term depending on h, in eq. (2S), is positive if h < 0 as in the case of drying environment. 
It thus probably accounts for the increased creep at drying, i.e. " drying creep" [16]. In our deriv­
ation the origin of this term was obscured. It arose because in eq. (1S) we had to substitute, with 

respect to (12), dPd = (- dad + Pddid) lid' and not dPd = - dad lid' The second term Pddid accounts 
for the fact that Pd is increased if id is decreased and ad kept constant. Decreasing h, we not only 
diminish Pa in the difference Pd - Pa' but we also decrease id and thus increase Pd even if ad remains 
unchanged. Therefore, drying conditions cause the driving force of microscopic diffusion, Pd - Pa 
to be amplified in comparison with stabilized humidity conditions. We have thus an explanation of 

the seemingly confusing effect of humidity, i.e. smaller creep for lower h at it = 0 on one hand, and 

increase of creep at h ~ 0 on the other hand. 

For the wetting process, h < 0, the water in the extended part of the hindered layer (correspond­

ing to did) is not under pressure p';-but rather Pa') 

Therefore the above-mentioned term Pddid is replaced by Padid and the effect described above 

does not occur. For this reason kh is probably much higher for h > 0 than for h' < O. (A more rele­
vant analysis of kh could be made as in Appendix B, considering variable Xa and compressible fluid). 

It can be verified that eqs. (2S), (26) might also be formally interpreted by the model in figure Sd, 
containing two pistons connected by an orifice of variable size instead of a sorption element. Further­
more it should be mentioned that another possibility for a three-element model exists, as seen on figure 
Sc. It is not completely equivalent to figure Sa [22]. • 

For a prescribed a(t) [or e:(t)] eqs. (2S) and (26) represent a system of two ordinary linear differential 
equations in e:(t) [or in a(t)], with variable coefficients. They can be reduced to one second order 
equation, eliminating ad' For this purpose eq. (2S) is multiplied by Kc I~ where 
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Then it IS differentiated and eq. (26) substituted for ad. This yields 

where i = fj2E /ot2,( ). = %t etc. Because eq. (25) was differentiated it must be used as the initial 
condition for this equation. 

In old concrete or in the case of sufficiently low humidity the hydration process stops, so that 

K b , Ke and Ka become approximately constant. Then eq. (26) yields crd /Ke = (cr - cra) /Ka - E. 
By substitution into (25), instead of eq. (30) we get 

For a prescribed cr(t) [or E(t)], the solution E(t) [or E(t)] of the system (25), (26) or eq. (30) can be 
expressed explicitly by quadratures, using the method of variation of constants. For the sake of 
simplicity we shall demonstrate this only for the special case of eq. (31). It may be verified by back 

substitution in (43) that its integral is (for Kd :::; 0) 

(32) 

(j2a) 

(326) 

(J2c) 

L represents the volume stress memory function and La may be called the humidity memory function. 

Eq. (32) is a formulation of the stress-strain law which is equivalent to eqs. (25), (26) or eq. (30) 
since these equations may be deduced from it. It has the advantage that its form is the same for 
any more complex linear model (eqs. 32e, f). It resembles the creep law of classical viscoelasticity, 
but in concrete the memory function L(t, -r) as well as La(t, -r) is not a material property but depends 
on the solution of humidity (and temperature). E~ (t) represents the deformation for cr = 0, i.e., 
the shrinkage of an infinitesimal element unrestrained by the surrounding material. That is why E~ 

is called free shrinkage [11, 17]. It has two components, one immediately following the humidity 
change and one delayed. The driving force of shrinkage comprises both the tension in free adsorbed 
layers and capillary water (cr a) and the decrease of the pressure in the hindered layers (cr ad). Practically, 
in bodies thicker than about 15 em, the condition cr = 0 can hardly ever be met because water diffusion 
is so slow [56, 57] that a uniform distribution of humidity cannot be achieved. Thus the calculation 
of the actual shrinkage always represents a stress problem with creep. 

For a more accurate representation of the material we may consider the model in figure 5b, with 
a series of Powers' units of different parameters K e ., K d ., K f ., cp., crad.,fd., i = 1, 2, ... In such a case, 

l , " t , 

a larger system of first order differential equations would be obtained instead of (25), (26). For two 
Powers' units (two sorption elements) it has the form: 

l ~ (k6 -I+K;.I'+~~~(&- B:z) - 6d'/~f - %'/~2 .-

(6'- ct-6'dfJ/A;.f = 6d,IKa, + Jl'd, (~- Ehd,) - ~, hio/I -' (32d) 

(& - <t - 6;,2 )/A;.2 ... ~ /Ka2 +.?lel.? (~- L10') - ~h/% 

15 
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The response e:(t) to a prescribed O"(t) can be easily obtained by the addition of responses of individual 
Powers' units whose forms are the same as that given by eqs. (32a, b). Eq. (32) remains valid, but 
instead of (32a, b) we have (for O"d/O) = O"a(O) = 0): 

rf , 
J<r Pidt 

e (.J2e) 

The inverse values ql(l have the dimension of time and may be called retardation times -ri' as 
in viscoelasticity [64, 65]. If the values K.:;l are plotted as a function of -ri' we may speak about 

" retardation spectrum". The reason why not only one retardation time (as for model in Fig. Sa) 
but a whole spectrum must be considered, is that cement paste has a random microstructure, and 
the shapes and locations of the hindered adsorbed layers are not the same, but are random variables 
with a certain statistical distribution. With respect to this statistical character, the distribution 
of Kr-.l as a function of -ri is continuous and the number of Powers' units in the chain in figure 5b, 

I 

as well as the number of equations in (32d), is infinite. 

Therefore the simple model in figure Sa, with just one retardation time, can be considered for 
only a rather limited range of the delay of response of the material. Say, we determined the numerical 
values of parameters in (25), (26) by fitting the creep data in the range from 1 to 10 months after 
load application. Then we cannot expect to get a reasonable answer for the response delay of 1 hour, 
or 1 week, or 5 years, unless we determine new parameters for this particular range of delay. The 
wider the range of response delay to be represented, the longer the chain in the model in figure 5b 
must be considered. 

5.3. Deviatoric creep 

We must realize beforehand the fact that adsorbed water layers are characterized by orientation 
in space. Thus, even a dis torsion at constant volume will change the volume of most individual 
layers, i.e. contract layers of some directions and expand layers of other direction, although the total 
volume of adsorbed water must remain unchanged. Therefore, the old argument that water cannot 
explain deviatoric creep since its volume is unchanged is not true. 

It is obvious that in an unsaturated porous medium the shear stresses in the fluid (i.e. in free adsorbed 
layers and capillary water) are so small that the total deviatoric stresses are equal to the stresses in 
the solid. (In a saturated medium, our assumption of small flow rate is necessary for that conclusion.) 

By suitable orientation of axes, any stress deviator Sij in Cartesian cordinates can be expressed 
in terms of normal stresses only, with zero shears. Consider the deviator 

Sfl - -7', sn = -z-; sJ'j = sf2 = S2.J = S fJ' = 0 

which represents the shear stress -r = -r(t) in the planes forming the angle It /4 with the x1- and X 2-

axes. For easier conception let us consider only those hindered adsorbed layers which are parallel 
to one of the coordinate planes. The stresses resulting from the hindered layers of these directions 
again have the form 

where -rd = -rAt). Let us denote by e:
d11

, e:
d22

, e:d
33

' the normal strains due to contractions of each of 

these systems of layers, and by eUd' e22d, e33d, their deviatoric components. According to (17) we can 
write 

2io,l- SUfI/Gd f- fI/d(s"t/Pa/j} -Sd"h'jGf } (34) 

2t~2'" $<I.?2/Gd + Yd(Sr/2/ PajJ) - Sdp2 li/ry 

where Gd, GJ , <Jid' f~ are material constants analogous to K d, K J , Cfld' fd' depending on humidity. In 
linear isotropic bodies, the strain deviator is similar to the stress deviator 

where Y d represents the angle of shear. 

we obtain 

Subtracting eqs. (34) and noting that e:d - e:d = ed - e d 22 11 22 11 
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The condition of isotropy (and Onsager reciprocity relationships (63» requires that the same relation­
ship be valid between all corresponding deviatoric components ed •. and Sd .. ' Then, subtracting their 

I) I) 

sum from each of eqs. (34), we obtain 

Sa.. h" 
,2 ~J .• - ~ + 1U.s S' 

~alj Cd rd ~i - "l aij 
(J7) 

To make clear the significance of edj . [or Sd
j

.]' we must emphazise that e
dl2 

[Sd
I2

] does not represent 

the shear strain [shear stress] in the hindeied ads~rbed layers perpendicular to Xl and X 2, but the contract­
ion or extension [pressure] in the layers which form the angle 1t /4 with Xl and X 2 (Fig. 6a). What 
happens to a layer forming an arbitrary angle with the axes of principle strains can be determined 
by a coordinate transformation of ed .. and Sd .• (rotation) such that this layer becomes perpendicular 

I) I) 

to ,some principal strain or parallel to some maximum shear plane. 

We can proceed further in an analogous manner as for volumetric deformation. Assuming the 
three-element model for deviatoric creep, which can be instructively represented as in figure 6, we 
may write, in analogy with eqs. (25), (26), 

lej 
+ SV Ii (.18 ) 2et j = G 6; Sclt/ -

G'h 
Sdij .-

. J. .. Sd," 
(c:j=f,2,J) (,]9) -.:::JL = ...!L. - 2Stj 

Gc Go 

FIG. 6. - Models helping to visualize the mechanism of shear creep (corres­
ponding to fig. Sa). a with coupled sorption elements, b model equi­
valent to a, with two interconnected pistons (which are equivalent to a 
dashpot). 

It is worth noting that a formally equivalent model may be formed of pistons connected by 
tubes of variable size, as shown in figure 6b (or of dashpots). There is no reason for the rate coefficient 
IjJ to be equal to cpo 

We need not to introduce here the further procedure in which equations analogous to (30)-(32) 
may be obtained (and the deviatoric stress memory function defined), the only difference being that 
the terms (ja' (jad or (jad. would be missing. 

I 
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6. VARIABLE TEMPERATUh~ 

6.1. Desorption-sorption isotherms 

To make eq. (4) for the desorption isotherm valid at different temperatures, we must write the 
evaporable water content We instead of the total water content W since the nonevaporable water 
content W n decreases with temperature. For variable temperature the full expression is 

which can be rearranged as follows 

dh = K(/z) If: a'w + aefh)dT + dh.sffe) (4/) 

where A 
sefh) = (oh ) _ Ic(/z} v.. ,awn) = /311_} (42) 

aT/w. tea TIt ( 8T1w t 
l" l' e' e 

x will be called the hygrothermic coefficient. It represents the change of humidity for 1 °C at a fixed 
total water content, a quantity which is directly measurable. Experimental evidence shows that 
it is always positive, which agrees with the fact that equilibrium water content W decreases with T 
at constant h [66]. From the results of measurements on a certain mortar [67] it has been determined 
that x i::i 0.0056 JOC at T = 36°C and h = 0.54. Eq. (42) describes the family of desorption isotherms 
at different temperatures. 

The form of the function x = x(h) for about h < 0.4 may be estimated according to the B.E.T. 
equation [43] for free adsorption in multi molecular layers (if we neglect the deviations due to hindered 
adsorption and capillary water). This equation is 

/. ( -/ /. -I 
~/lin = 1- 17) - ('I +C,h) 

where C1 = cleAQac/(RT) - 1, c1 i::i 1, Wm = mass of the adsorbed layer one molecule thick, and 
I1Qae = differential latent heat of adsorption [42]. Differentiating eq. (43) with respect to T at constant 
We' we obtain, after rearrangement 

where Xo = I1Qaej(RT2). We see that expression (44) is indeed always posItIve. It even satisfies 
the obvious limit condition for h -'>- O,that is, x -'>- O. For h = 1 and dT > 0, x = O. (An expression 
better satisfying the fact [68-70,2] that thermal swelling attains maximum for h = 0.7 is in eq. (60).) 
x may be irreversible for similar reasons as k. 

NOTE. The effect of capillary water alone. At constant We we may assume 
r1' r2 = const. in eq. (2a). With respect to eq. (1) we obtain In h ~ - y jT or 
dh ~ - d(y jT) jh. Because dy jdT < 0 ([44], p. 46), dh> O. 

6.2. Diffusion of water in concrete 

The rate of diffusion in the adsorbed layers grows with temperature, that is the coefficients bT 

and aT increase. They have to obey the Arrhenius equation for thermally activated processes [71, 72] 

t t -al(,t?T) -fl/(I?T) 
CIT = (J e I aT = a I!! (45) 

where T = absolute temperature, a, b, R are constants and Q, Q' are activation energies [71, 72] (enth­
alpies). For h = 1, expression (45) for bT has been verified experimentally [58]; from these results 
we can calculate Q' (R = 3600 OK. (For hydrated C3S, Q' (R = 3650 OK, Q (R = 9720 OK [73].) 

However, recent measurements, showing that Q' depends on the average pore size [94], rather 
suggest that Q' jR = 5700 oK at h = 1, 23.5 °C and porosity 0.28. 

Furthermore, the substitution for W from eq. (41) into eq. (7c) results in the following equation, 
instead of eq. (8), 

where 

an 
ot 

anI 
of 

(4-6) 
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6.3. Deformations 

If the solution h = h(x, t) of the diffusion equation (4S) at a variable temperature T is known, 
the stress in the fluid, cra, and the equilibrium stress, crad' in the load-bearing water may be determined 
from eqs. (1), (20), (22). The deformation caused by this change of cra and crad with T is already included 
in eqs. (2S), (26). This deformation will be called hygrothermic dilatation. Its immediate component 
is introduced by cru ; its component which is delayed with respect to a change in T (inside specimen) is 
due to craa' Upon return to the same humidity this dilatation is partly irreversible, probably for the 
same reasons as is shrinkage. (See Appendix C7). 

There is also another factor influencing crad' At variable T, the diffusion rate in eq. (16) does not 
depend on Pd- Pa' but rather upon the difference Gd-Gain partial Gibb's free energies, asis explained 
in Appendix A (eq. A2). Let us assume that the material has been initially in equilibrium at T =To, 

h = 1, cr = O. According to (A1) (for T close to To) : where Sa - Sa = (Qa - Qa) ITo is the differ­
ence in partial entropies; Qd - Qa is the difference in latent heat of adsorption between the hindered 
and unhindered adsorbed layers, due to a difference in their average thickness ~d and ~a (Qa > Qa)' 
By the same procedure as used for the derivation of eq. (17), we could find that the following term must 
be added to the expression (20) for crad : .... 

f I 
Cd - /;a = (Sa-Sd)(T - 1(;) + "d(/Y'-Pa) 

(/ - T/To )(fld - tla ) Va/I'd 

(46J;» 

(4Gc) 

The dilatation due to this term will be called thermal swelling (or thermal shrinkage). It causes a 
delayed partial recovery of deformation after a change in T and has no immediate component. 

The third effect to be included is the change of specific volumes of microscopic constituents at 
constant pressure, i.e. pure thermal dilatation. Thus to the right-hand sides of eqs. (23), (24), (17) 
the following terms must be added 

("7) 

where OCd is the thermal expansion coefficient for the thickness ad of the adsorbed water layers at a cons­
tant mass per unit surface and constant Pa' OC h ' OCc are the coefficients for the two springs in figure Sa. 
It may be shown, in the same way as eqs. (2S), (26) were deduced, that 

t - 0(, t 6- 6a 1J r ) h'-aeT 
(48) = --+ - 6d-6'<t. - -- ~ 

K ~ t2i Kn 

I5d &,-6; . 
+ a'ot ~g) = a 

C-
*,. 

~ C 

where OC o = OC b + OCc' oc! = OC o + (ocd - occ) 1(1 + Kc IK d ). The last term in eq. (48) needs explanation. 

In eq. (2S) for constant T, Ii appeared because we put id = h(dfa Idh). In case of variable T, however, 
h varies even if w is kept constant which means that fd is constant too. With respect to (42), we must 

thus replace it by heq - x t. heq r'~presents the equivalent humidity (at reference temperature To) 
which gives the same water content w (at the same te)' 

NOTE. At variable T the parameters tp, t, tpi' K h , K fi , C, C, fd' fal must be considered 

as functions of w, rather than h. At variable te and T, they should be considered as func­
tions of heq (while ~ and Pa remain functions of h). 

NOTE. Approximating, we can put OCc = adoccem' OC b = (1 - 3a)occem and OCd = adOC
W

' 

where OCcem = OC o is the coefficient of linear expansion of dried cement paste (which is 
probably less than 11 X 10-6 per 0c) and O(w is that for the adsorbed water (for liquid water 
between 10 °C and 30 °C about 66 X 10-6 per oc). Since oc w > OCcem' oc! must increase with 
the area factor, i.e., with humidity. Perhaps oc! ~ OC o + (oc! - oco)h. 

In eq. (31) the following term has to be added to the right-hand side (assuming T = To for t = 0): 

In eq. (32) we would have to add at the right hand side the term 

. rt 
OCt A Tft) +.10 L1 T(T') LT (t" 'l') dT' 

(50) 

(Sf) 
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. where 

LT may be called the temperature memory function; q:; = <p - (h - xT)Kc jKh• 

Another effect, and the only one which affects creep directly, is the variation of the rate constants <p 

and IjI with T [1S, 74, 12, 91, 92, 103]. In eqs. (19) and (40), this effect is given by aT according to 

eq. (45). At constant w the changes of fd' d, fa, d' will probably be negligible, so that <p ~ aT "" 1jI. 
According to some tests [1S, 74], it may be estimated that Q jR ~ 2S00 OK. 

NOTE. The decrease of elastic moduli with temperature [75, 12] IS probably only 
apparent and is caused by accelerated creep (as in polymers [64]). 

6.4. Aging 

Acceleration of hydration, caused by increase of temperature [76-7S], is introduced by the coeffi­
cient ~T in eq. (4) for the equivalent curing period. Since the rate of hydration as a chemical reaction 
is governed by the Arrhenius equation [71, 72, 79], we have 

(.lr =/J(h)e- 9/(.QT) (.5'2) 

where ~ is a function of h only. If only one process is involved, the activation energy q is constant; 
when more processes are effective, the apparent q might be variable with T. Nevertheless, constancy 
of q was found by experiments [7S] (between 4°C and 110°C); it might be calculated from these exper­
iments that q jR == 2500 OK. 

7. IRREVERSIBLE CREEP AND SHRINKAGE 

To some extent the irreversibility of creep and shrinkage is caused by the increase of Kc and Gc 
with te as the concrete is aging. This irreversibility is included in the linear creep law (25), (26), etc. 
It disappears, however, after the hydration stops whereas a large part of creep is still known to be 
irreversible. Assuming that the limiting value of creep for t --+ 00 under constant load is bounded, 
we must conclude that there must also exist some other source of irreversibility which must be non­
linear, i.e. violating the principle of superposition in time. 

Comparing the structure of cement gel with that of metals, there seems to be little reason for 
any plasticity. This observation is reinforced by the fact that irreversible creep appears even for 
very small stresses at which the creep depends linearly on stress. Even the curvature and irreversibility 
at low stress of the stress-strain diagram for short-time tests may be attributed to a short-time linear 
creep [12, 100] (the same as in polymers [64]), rather than to plasticity. 

For the above reasons, it has been suggested [SO, 23, 22] to allow for the irreversibility by a rheologic­
al model shown in figure 5e. This model contains a new rheological element-the ratchet (with a 
pawl)-instead of the Saint Venant element for plasticity. During an increase in deformation, the 
additional spring is out of action. Upon reversal of deformation (recovery), the ratchet snaps down, 
rigidly connecting the additional spring. The ratchet may represent the formation of new chemical 
bonds between the solid surfaces (the possibility of which was proved by compacting isolated hydrated 
cement particles into a solid body [S1]), the partly irreversible dissolution of solid matter under load 
(Appendix C10), or the irreversible decomposition of the interlayer hydrate [S1] under load (Appendix 
CS). 

The mathematical formulation is simpler than in the case of plasticity. Eqs. (25), (26) remain 
valid as long as the condition for the increase of creep deformation is not violated. For volumetric 
creep this condition is 

where ~ = fj' - tid - ~ (5.10) 

For deviatoric creep this condition must comply with the requirements of isotropy, i.e. it may involve 
only the second (or third) invariant of Sj)' - Sd •. ' Then the condition is 

I) 

(5.16) 

When some of the inequalities (53) become violated, which is caused by unloading (or non-proportional 
loading) or by change of humidity (or temperature), cqs. (25), (26) etc. will still have the same 
form, but greater values of K' c' G' c' and eventually also different <p', 1jI', have to be substituted. It is 
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an advantage that this system of equations is still linear, although the time responses to various loadings 
may not be superposed if the intervals of validity or invalidity of the conditions (53a), (53b) do not 
coincide. It is unclear whether the condition (53a), could be used if 0" changes sign. 

The third cause of irreversibility, occurring with variable humidity only, is the irreversibility of 
the area factors fd' fa (and inherent irreversibility of O"a' O"ad in case of shrinkage). This is due to the 
irreversibility of desorption isotherms. 

An apparent irreversibility in tests of creep recovery is also obtained if the internal humidity of 
the samples has changed. 

NOTE. The cyclic creep [1, 2, 82, 14], i.e. creep under stresses repeated many times, 
is not adequately interpreted by the ratchet and should rather be regarded as an accele.r­
ated creep, also caused by some type of nonlinearity, e.g. accumulation of second-order 
deformation in sorption element. For first reloading and few further cycles more complex 
models with ratchet may be set up. 

8. ANALYSIS OF STRESS AND STRAIN PROBLEMS 

8.1. General method of numerical analysis 

In most practical problems the only feasible method of solution is the numerical one. The step­
by-step integration in time can be formulated as a succession of initial strain problems [83]. Here 
we outline its principle. For each time interval At, eqs. (48), (49) and (38), (39) may be replaced by 
the difference equations 

where 

LlE 
Ll6' 

K 

Lls.. 0 

Lle·- _-:!L+ e·· 
9 2G t.J 

(
..:::Is.' . 

Lls~j = Gc T- . - 2 Ll e'i) 
a 

(57) 

(.f'9) 

Assume that the solution of humidity is determined and that 0", E, O"d' su, eij' Sdjj at the start t(lI) of 

interval At(lI) are known. Then we can compute E(OIl) and ePi(II) at each point of the body. Thus 
eqs. (54), (56) have the form of an elastic stress-strain law with prescribed fictitious initial strains Ern)' 

e?i II' The solution of AE( II)' AO"( II)' Aeij( II)' ASjj( II) satisfying the differential equilibrium conditions 

foi )AO"( II) and Asj)( II)' the geometric equations and the boundary conditions, is a known problem of 
elasticity. After its solution we can calculate AO"d( n)' Asdj . II)' from eqs. (56) and (59) and determine 

0"( lltI) = 0"( II) + AO"( II) etc. The algorithm of solution is ~fucidated in more detail in Appendix D. 
In geometrically complex bodies the finite element technique must be used. 

8.2. Creep and shrinkage tests and computer results for a hypothetical material 

With the theory outlined even the analysis of prisms and cylinders under simple loading is not 
easy. This is largely due to the unfortunate fact that the aggregate size does not allow samples 
sufficiently thin (less than 1 mm) as to avoid variable h throughout the unsealed samples. Never­
theless, if test results are to be interpreted correctly, we eannot avoid dealing with the complexity of 

our analysis. . 

A standard computer programm (Appendix D) was set up, based on our theory. It was 
assumed that the specimens are so long that plane cross sections remain plane and free of lateral 
restraint. When square prisms are considered, the ends and two opposite sides are assnmed to be 
sealed in order to obtain unidimensional diffusion, as in an infinite slab. 

21 
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Tentatively, a hypothetical material has been found for which is achieved at least qualitative 
agreement with what is known today from tests of concrete. This hypothetical material is defined 

by the (ollowing expressions 

Ali -. 00 / Gil - DO / 

aT = -3.7 + 635/(160 ~T),. 

de /1.:160 x 0. 06 11 dh . .. for dh.$ 0, (60) 

d~ ... '%d'" \ f.J6(J x O.OL;hdh ., ./or dh >0/ 

h _ 0,9.Jle +{5" I 

o te+ tS 

/I =/ir(7.S-7.Sh):;-'ar / 

H _ O.02Jdl.02 -11) "Or = aT,. B .... 00, 

I.PS-n 

-Ii . -6 
(;(0" 8 x It) I c¥f = Of.'"o + ~ x 10 h, 

c = 0.1 +n.". K= 1.5, k' ... Pk 

K b , K c ' G b, (ja' ... are given in kp jcm2 , t, te in days, Tin oc, cp, <¥ in day-I. The results of the computer 
analyses are shown in figures 8-26. 

NOTE. These results were obtained prior to the proper assessment of the influence of 

the term containing h in eq. (25), and that is why we put in (60) Kh -+ 00, Gh -+ 00. With 
this assumption the opposite behavior between the drying and steady humidity conditions 
could not be reflected, and the creep increase at drying in figure 9 was obtained only 
because cp in eq. (60) was assumed to be decreasing with h at high h, according to eq. B3 

or B4. 

It is necessary to emphasize that, in general, the agreement with a particular experiment is not 
quantitative. But the large number of parameters permits a wide possibility of adjustment. It can 
be expected that if sufficient data are available from precisely controlled tests on one type of concrete, 
the parameters in eq. (60) could be selected so as to achieve a quantitative agreement with these test 

results. 

NOTE. In this connection it is worthwhile to point out how useful it would be if 

a general agreement could be achieved about one specific type of concrete which is to be 
used in the experimental studies of rheological properties in all laboratories. Plotting 
the results of different investigators against our computed curves would bring in a tremend­
ous scattering which is not a material property but is due to different types of concrete 
used, different test procedures and environmental conditions, the eontrol of which had 
been inadequate in older experiments. 

9. CONCLUSION 

The results of the numerical analysis of various tests of shrinkage, creep and thermal expansion 
show that our theory is able to reflect correctly the known features of shrinkage, creep and thermal 

expansion of concrete under sustained load. 
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APPENDIX A 

Thermodynamic equilibrium of adsorbed water 

Let us choose as independent variahles the intensive quantities, i.e. pressure P and temperature T. 
Then the thermodynamic potential is the Gihhs' free energy G. For a single suhstance at a fixed 
mass content, G is expressed as follows [44, 7i, 84] 

G = U +pV-TS 

where V = volume, S = entropy, U = total energy. This assertion may he verified if the expression 
for G is differentiated and the relationships dU = aQ - pdV, aQ = TdS, expressing the first and 
second laws of thermodynamics, suhstituted. This, indeed, yields a total differential in p and T, i.e. 

dG = Vdp-SdT (Ai) 

From the condition aQ > Tds for an irreversihle process it follows that dG :> 0, i.e. G IS minimized 
at equilihrium. Hence dG = 0 for a small deviation from equilihrium. 

NOTE. It is seen that for dT = 0, G coincides with the definition of complementary 
strain energy. The strain energy for dT = 0 is represented hy the Helmotz free energy 
F = U - TS. For aQ = dS = 0 the place of G (or F) is taken hy the enthalpy H = U + 
pV (or hy U). 

Consider now a single suhstance-water in two phases as adsorhed water and vapor which are 
in equilihrium. Since G is independent of extensive properties such as V, we may write G = 
wvG~ + waG! where G! and G~ denote partial free energies (per unit of quantity of each phase which 
may he taken as a unit mass) and Wa, Wv represent the masses of the adsorhed water and vapor, res­
pectively. Let us consider a very small deviation from equilibrium, at which the small amount 
dWd = - dw v is transferred from the vapor to the adsorhed state. Since dG = G~dwv + G!dwa = 0, 
we have the following equilihrium condition : 

G! = G~ (A2) 

This equation may he used to determine the pressure Pa in the adsorhed film, which is in equilihrium 
with the amhient vapor. For this purpose we assume for water vapor the ideal gas equation 

(A3) 

where Vv = specific volume of vapor. For an equilihrium change at a constant temperature T it 

follows from eq. (Ai) (with dG~ = vvdpv) and eq. (A2) that 

dG! = vadpa = ~T d(lnpv) (A4) 

Making the assumption Va ~ const. (which is certainly inadmissihle for h < 0 .i2), the integration of 

eq. (A4) with the initial condition Pa = 0 at Pv = psat yields eq. (i). 

NOTE. A completely analogous procedure yields for Pc an expression of form (i) in 
which Vc replaces Va. This expression is exact hecause vc' unlike Va' may he taken as 
exactly constant. The equality Pa = Pcis exact only at the contact with the adsorhed water. 

Now let us consider a hindered adsorhed layer and imagine an equilihrium process at constant T 
in which the amhient humidity h is gradually increased while the gap thickness is kept constant. 
The differential equation (A4) is still valid for Pd (in place of Pa) hut for the initial condition we may 
consider the state 'in which the gap availahle hecomes just full of water, i.e. Wa = W d• In this state 
ohviously Pd = Pa. Noting that the changes of partial Gihhs'free energies are equal, we have the 

differential equation vadpa = vddpd where Va and Vd are same functions of Pa and Pd' that is Va = !(Pa), 
Vd =!(Pd). By integration, eq. (2) is found to he valid even for Wa :> Wd. Because Pd = Pa and 
P d = 0 at Wa = Wd, and noting that dP d = dPd' the disjoining pressure is 

P _ _ [ ] _ RT fwa o(lnh) d ' 
d - Pd Pa Wd - Mr ow' Wa 

'a Wd a 

(A5) 

where Wa is the value for the adjacent unhindered layer in equilihrium. 

Instead of considering the change of vapor pressure Pv at a constant water content Wa = Wd' 

we could have imagined a gradual decrease of Wa at constant Pv and T. For this purpose eq. (Ai) first 
has to he generalized. In the case of variahle mass content we can write 

where fLa is called chemical potential. The total differential of eq. (A6) IS 

dG a = wadfLa + fLadwa 

(A6) 
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Because fLa is independent of Wa' it represents the partial Gibbs' free energy per unit mass, i.e. 

Then wadfLa must be equal to the expression (A1), 

wadfLa = Vadpa - SadT 

Consequently, we get 

According to eq. (A4) where G~ = oGalowa, we have per unit of mass: 

RT o(lnpv) 
fLa = M aw::-

(A7) 

(A8) 

(A9) 

(A10) 

Now eq. (A9) has to be rewritten for the mass (per unit solid surface) of the hindered adsorbed layer, 
replacing Pa by Pd etc. Then we consider the gradual decrease of the water amount Wa and integrate 
over Pd with the conditions dG~ = 0, dT = O. As a result eq. (AS) is obtained. 

NOTE. Eqs. (1), (2), (AS) give only a simplified, though easily understandable 
picture. The constancy of Va (for h ~ 0) is merely an assumption. The actual dependence 
of Va upon h is not known. Nevertheless, it would have been possible to arrive at the 
same constitutive equation with any form of the monotonic function Pa = Pa(h), or even 
without introducing Pa and Pd at all, using directly the partial free energies G! and GJ 
in eqs. (25), (26), (20). (G~ - G! is the primary driving force of diffusion in eq. 16, rather 
than Pd - Pa.) Such an approach would also eliminate another deficiency: the stress 
tensor in adsorbed layers has been tacitly assumed as isotropic which is certainly contrary 
to fact; Pd should also be understood as the average pressure for a great number oflayers 
(Pd = (Jd If d) because the method of thermodynamic potentials predicts only the average 
behavior of sufficiently large ensembles of molecules. The application of statistical 
quantum mechanics would be more fundamental, especially for calculations of cp = cp(h) 
in Appendix B. 

NOTE. The existence of load-bearing water and disjoining pressure has been denied 
by some researchers. This would hold true if water completely filling thin pores behaved 
like a solid body with a permanent lattice. Then the equilibrium condition dG = 0 
could not be reduced to G! = G~ (or equivalent eq. 2). This relationship results by 
considering (as for (A2)) a small de¥iation from equilibrium at which the amount dWd = 

- dWa is transferred from w d to Wa' Thus the above denial means denying the ability 
of molecules to diffuse along the hindered layers. No doubt this ability exists since water 
in hindered layers can evaporate (and also because molecules can migrate along the ad­
sorbed layers even without leaving them [41]). Moreover, it is inconceivable that the differ­
ence G} - G! due to a change in G!, as in the case of drying, would not be equivalent 
to that due to a change in GJ, as in the case of a change in Pd' Therefore, the above 
objection is unfounded. 

APPENDIX B 

Flow in hindered adsorbed layers of various shapes 

Let us now assume for simplicity that the hindered adsorbed water fl~ws like an incompressible 
fluid and that hand fd are constant. 

Bl. - The layer between two solid spheres almost in contact. The variation of the layer thick­
ness is 8d ~ x2 where x = distance from the contact point and the sign ~ denotes proportionality. 

Let the solid spheres approach one another at the speed (Fig. 1) ilo = d8d Idt. Then v8d ~ x where V 

is the radial velocity of the flow of the adsorbed molecules. The pressure gradient in the layer is 
0Pdlox ~ (v8 d ) 18;;+1 ~ X-2n- 1 where n is the constant in eq. (to). By integration from x = 0 to 
x = Xa' where Xa is the coordinate of the boundary between the hindered and unhindered layer, we get 
Pd - Pa ~ x;;-2n. Substituting fddwd ~ x~ into eq. (16), we obtain d = x;;-2n-2. Now fd ~ x~, 

Xa ~ V 8a, 8a ~ h; so finally, according to eq. (29), we have 

(B1) 

B2. - The layer between two flat plane wedges almost in contact. The thickness of layer 
is 8d ~ x where x = distance from the contact line. Now for the unidirectional flow of speed V we 

have v8d ~ x, 0Pdlox ~ x-no By integration Pd-Pa ~ x;;-n+1 and since fddwd ~ xa, fd ~ xa' 
8a ~ xa' 8a ~ h we obtain d ~ x;;-n and 

(B2) 
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B3. - The layer between two spheres without contact with a negligible variation of thickness. 
The thickness is ad = ao + a2X

2 where a2X
2 ~ ao, x denoting the distance from the point of minimum 

thickness; the radial velocity is v ~ x, so that OPd / ox ~ x and by integration Pd - Pa ~ x~. Since 
fddw d ~ x~ we get d = const. and 

(B3) 

B4. - The layer between two flat plane wedges without contact, with negligible thickness variat­
ion. The velocity v of the unidirectional flow is v ~ x, x is the distance from the centre line and the 

t~ickness is ad = ao + aIx (where aIx ~ ao). Then OPd/OX ~ x and by integration Pd - Pa ~ x~. 
SInce fddwd ~ Xa we get d ~ Xa ~ fd and 

(B4) 

Recalling that approximately fd ~ h, we see that the cases B3, B4 yield a decrease of tp with h, 
which is the opposite of the cases B1, B2. We believe that variable thickness of the gaps is the statis­
tically dominant case, rather than constant thickness, especially in the vicinity of the thinnest gaps, 
i.e. for h --+ o. Nevertheless, for h --+ 1 the cases B3, B4 may have a greater role, weakening the increase 
of tp with h. 

APPENDIX C 

Additional comments on concrete deformation 

Cl. Cement paste and concrete 

The aggregate in concrete represents a component whose creep and hygrometric deformations 
are relatively negligible. The fact that besides the elastic particles of hydrated cement and unhydrous 
cement we have an additional elastic component, the aggregate, requires us to add further springs 
(or Powers' units) to our model which thus acquires a wider spectrum of retardation times. However, 
in an even more restricted range of response delay, the three-element model may still be used as a first 
approximation for concrete. 

In water diffusion an additional effect is the exchange of water between aggregate and cement 
paste. Well saturated aggregate supplies water needed for hydration, while unsaturated aggregate 
will imbibe water and intensify self-desiccation. Strictly speaking, this is another delayed effect 
in microscopic local flow. Approximately, we may account for it simply by using proper values of 
self-desiccation h s , depending on the initial saturation of the aggregate. 

C2. Separability of creep and shrinkage 

The reason why this question has been an object of discussion for a long time, can ~e explained 
by misunderstandings about its meaning. 

In one sense it is clear that creep practically always accompanies shrinkage and may not be separ­
ated from the calculation of shrinkage since at nonuniform humidity distribution the free shrinkage 
strains would be generally incompatible. 

Physically, the creep of concrete is essentially of the same nature as shrinkage-one is caused 
by external load, the other by the loading produced by tension in adsorbed films. Mathematically, 
the separability is to be understood as the principle of superposition. Shrinkage is defined as the 
deformation for zero surface loads whilst creep (incl. instantaneous deformation) is the remainder. 
Then, as long as all the equations for the stress and strain problem, i.e. stress-strain law, as well as 
differential equilibrium and geometric equations with boundary conditions, are linear, the principle 
of superposition is valid and the responses to various load terms (or absolute terms) are additive. The 
loading term for shrinkage is aa in eq. (25); the loading terms for" creep" appear in the boundary 
conditions or equilibrium equations. If the solution of the complete above-mentioned system of 
equations, in the case of shrinkage (no load) is denoted by as, E

S and in the case of creep (aa = 0) by 
aC, EC, it would be trivial to demonstrate that the solution in the case of both the aa-term and the 
loading terms is as + aC and E

S + E
C

• With respect to some objections in the past, it is worthwhile 
to stress that for the shrinkage problem and the creep problem the humidity conditions must be the 
same and the body identical in size and shape. The shrinkage and creep on specimens of different 
size or shape, or with different humidity distributions in time, may not be added. (Thus, it is no 
puzzle that the total deformation under load in a certain drying environment is greater than the sum 
of the deformation whitout load in the same environment plus the deformation under load at h = 1). 

C3. Poisson ratio and shear creep 

Since there is no reason why the ratios tp / 'f. Gb jK b , G C jKc' G d jKd for volumetric and deviatoric 
creep should be equal, the Poisson ratio is not a material constant, but is time variable, depending 
on the type of loading, etc. The same has been known about polymers for a long time [64,65]. This 
agrees with some recent observations [85], indicating that in a standard creep test the Poisson ratio 
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decreases with time. This fact suggests that the Poisson ratio corresponding to Ge IKe is less than 
that corresponding to Gb IKb (eq. 60). The initial rise of the curves on figure 16 pertains to the assump­
tion that the rate of the deviatoric creep (eq. 60) should be higher than that for volume creep. This 
could be explained by the assumption that the average distance of flow between the compressed and 
dilated layers in shear creep is shorter than the effective average distance between hindered layers 
and capillary pores in volume creep. 

C4_ Tensile creep 

For the elastic as well as dissipative mechanisms describe.d, there cannot be any physical difference 
between the stresses of opposite sign. The elastic potential and the dissipative potential [63] 
must vary continuously with stress in the vicinity of an :unstressed state. By virtue of this, the tensile 
and compressive creep (and elastic strain) for sufficiently small stress must be the same and the only 
justified question is, " above what stress limit does the tensile creep start to be nonlinear (which 
is due mainly to microcracking)? " 

cs. Rate and final value of creep. Bending creep 

The humidity or temperature effect on creep is essentially caused by a change of the creep rate 
given by cp (or retardation times of sorption element", reflecting the rate of diffusion in the adsorbed 
layers). It is incorrect to seek it in a change of the" final value" of creep. This is merely an apparent 
feature. For instance, the creep e:el at h = 1 and T = 25°C for a period of 10 years would be regarded 
as the final value. Drying environment, or higher h or T has the same effect as a reduction (contract­
ion) of the time scale (or a proportional reduction of all retardation times in the retardation spectrum). 
As an example, if h = 0.3 (or T = 50°C) the above value e:el would then be obtained in 1 month, 
say, instead of 10 years, as formerly; and the" final value" for 10 years, say, would now be equal 
to the value at 1200 years in the former case (if it were measurable). These analogies are, of course, 
disturbed by the increase of elastic constants Ke and Ge with age, affecting also the apparent" final 
value " of creep. 

Saying that creep is stress-induced shrinkage is physically admissible but taking it literally has 
led to misunderstanding about the humidity effect on bending creep. Its explanation was unclear 
since it was erroneously asserted that drying effect should be added at the compression side of beam 
and subtracted at the tensile side. This is true, but explains merely that shrinkage is not affecte<.J. 
by bending which is clear from linear theory. The drying term for creep, i.e. the term containing h 
in (25) and (37), changes its sign with the stress. This effect, as well as the rate effect mentioned 
above, is obviously the same for compression and tension, and thus is also the same for bending and 
torsion. Explaining the effect of drying on bending creep (" Pickett effect" [11]) by some nonlinearity 
at high stresses induced by shrinkage is at variance with the linearity of creep, and also with the fact 
that creep increases with h if h inside the sample is constant during creep [30, 31]. 

C6. Temperature dependence of the rate of creep 

If the activation energies for the temperature dependence of aT, bT, ~T could be assumed equal 
it would be possible to transform our constitutive equation to a temperature independent form, introd­
ucing a new variable t' defined by the relationship t ' = dt IbT • This method is widely utilized for 
creep of polymers [64, 65, 80], t' is called reduced time and bT the shift function. In a logarithmic 
time scale a change of T would then be interpreted by a displacement of the response curve (e.g. creep 
curve) in the direction of the axis t [64, 65]. 

Above 90°C the effect of temperature on the creep rate becomes reversed, [18, 74] and the rate 
decreases with T. This might be due to physico-chemical changes in cement paste above that temper­
ature [57, 77, 78]. When concrete is allowed to dry with increasing T, the creep rate will also change 
with h and when h approaches zero the creep rate will diminish. 

C7_ Hygrothermic dilatation and thermal swelling 

Part of delayed thermal dilatation may be explained by the higher coefficient of thermal expansion 
of water. Then with a rise in temperature, the load-bearing water becomes immediately compressed 
and then gradually" squeezed out". According to this effect alone, however, the delayed effect 
and immediate dilatation would have to diminish with decreasing h. This is not observed. In effect, 
down to about h = 0.7 an increase takes place [68-70, 2]. This increase can be accounted for only 
by hygrothermic dilatation which is a consequence of the hygrothermic coefficient x whose value tends 
to 0 as h --+ 1. 

29 
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It is of interest to integrate eq. (31), including the term (50), for a constant rate T, assuming 

the material initially (t = 0) at rest. For a nearly uniform distribution of T (small silmple or slow 
heating) and uniform h (sealed sample) the result is (cr = 0) : 

E = Ct.oTt + (Ct. o - Ct.
l

) ! (1 - e-'P') 
'P 

+ cr a [~c (1 + ~c/Ka +j:) -~] t + cr a 'P~~ (1 + ~clKa + }:) (1-e-'P') + E' (C1) 

where E' = an additional term, accounting for the variation of cra , 'P, Ct.l ' Ct. o with T, which tends to zero 
(as t2) for small temperature change .. The third and fourth terms express the instantaneous and delayed 

thermal swelling. Calculating cra from (20) we see that depends on cra x (and T, T). 

cu. Effect of capillary water and chemically hound water 

Imagine that in figure 1 the adsorbed layers do not come into contact. Then the pressure on solid 

surfaces is developed only by capillary water filling the long gap. In equilibrium this pressure, Pc' 
is expressed by eqs. (2a) and (1). Sudden application of load will destroy this condition of thermo­
dynamic equilibrium, and the difference Pc - Pa will cause the capillary water to flow slowly out 
towards the surface meniscus. Similarity with the behavior of hindered adsorbed water is thus clear. 

NOTE. With respect to our assumption of small deformation it is impossible to 
explain creep by a change of the curvature radius of surface meniscus, corresponding to 
the change of distance between the contact points of the meniscus at the solid surfaces. 

The distinction between various forms of fixed water is defined only by the value of the binding 
energy and is not clear cut. Some water molecules chemically bound in cement crystals, such as the 

interlayer hydrate, may have a lower binding energy than some adsorbed molecules [81, 48]. Therefore 
they form part of evaporable water, We. Their equilibrium with other forms of water is again expressed 
by equality of partial free energies (chemical potentials) GI. Because GI depends on pressure (as in 

eq. A1, A9), an application of load, causing pressure increase in the interlayer hydrate, will destroy 
this equality and the created difference in GI will cause a gradual diffusion [71] of the interlayer hydrate 
out of (or into) the hydrated cement and allow a gradual contraction (dilation) of the space left (entered), 
until pressure is readjusted and new equilibrium reached. 

Obviously, the described mechanisms for both the chemically bound and capillary water are 

phenomenologically similar to our mechanism for adsorbed water, so that formally same equations 
as (17), (25), (26), (32d), (38), (39) would be obtained. We can thus conclude that the resulting macro­
scopic constitutive equation is the same as ·for microscopic diffusion of any form of load-bearing water, 
whether it is adsorbed, or chemically bound, or capillary. (Of course, from the physical viewpoint 
the distinction between them is an important object of discussion.) Simultaneous effect of all these 

states of water means that we should add more units in the chain on figure 5b, getting a wider relaxation 
spectrum. What is finally important in our model is not which state of water has the dominant role 
but only that there exist a sufficiently large quantity of oriented layers (or tiny tubes) of water which 
can withstand static stress and respond by diffusion to the disruptions of its thermodynamic equilibrium. 

C9. Effect of volume changes at hydration 

Cement hydration is caused by a difference in partial free energies GI (chemical potentials) between 
unhydrous cement, and hydrated cement. Since GI depends on P (eq. A1), application of a pressure 
on some part of hydrated cement may create equilibrium and stop further hydration (and the inherent 
growth in volume) in that part. Conversely, if growth in volume is opposed by the existing structure, 

a pressure needed for equilibrium will be developed. This pressure is certainly one cause why some 
(not all) cement pastes swell if immersed in water from the time of casting. 

CIO. Dissolution under load and recrystallization 

If a pressure is applied on a part of hydrated cement already iu equilibrium, the inherent change 
iu Gl will cause an opposite process than in C9, i.e. a dehydratation, or dissolution of the imperfect 
crystalline particles of cement gel in that part. This will be accompanied by diffusion of matter into 
other pores where pressure is not active, and recrystallization [86] of imperfect crystallites of cement 
gel in them. This recrystallized matter will somewhat increase the resistance of the solid framework 
at a subsequent change of load, and thus cause nonlinearity with respect to stress, and irreversibility. 
This nonlinearity, however, will be small and normally undetectabte since the volume of the dissolved 
and recrystallized matter must be smaller than the volume change of porous material (or smaller 

than the volume ell X 1 X 1 at the strain deviator of form (35)) which itself is negligibly small 
(assumption 2) with respect to the total volume of the solid per unit volume of porous material. 
If a tension is applied instead of a pressure, the reverse mechanism occurs-matter will be dissolv­
ed in the pores where this tension is not active, then diffuse into the thin gaps under tension 



Z. P. BAZANT 

and recrystallize in them. This mechanism will lead again to the same form of constitutive equation 
as eqs. (25), (26), (37), and will be represented by still another unit in the chain on figure 5b, eq. 
(32d). If the compressive volume creep after rewetting of a predried sample is found to be greater 
than the expansion obtained at rewetting [31] plus the elastic deformation of a dried sample, then 
a plausible explanation would be provided by this mechanism. It is still questionable at present 
whether this mechanism can really be important but the enormous internal surface and the small­
ness of the volume to be dissolved speak for it even if the solubility is very low. 

NOTE. Nevertheless, even a small amount of recrystallized matter may cause 
some nonlinearity with respect to stress if it recrystallizes just at the boundary of hin­
dered layers where the gaps are so thin that a large area may be covered by it. Perhaps 
this is the reason why, after a longer period of creep under sustained load, the instant­
aneous modulus for a subsequent load increment seems to be greater than for unloading 
[96] or for the unloaded sample [97] (by about 10 %). 

Cll. Slide movements and cement gel viscosity in creep 

It may be admitted that besides contraction of hindered layers, slip movements between opposite 
solid surfaces could exist [87]. This applies for deviatoric, and in some extent even for volumetric 
strains, as it is visualized for the two configurations on figure 7. At a change of thickness of a hindered 
layer, the water molecules are forced to travel a distance which is great with respect to its thickness, 
whereas at slide movement the molecules travel a distance which is small with respect to the thickness 
of layer. Realizing this, we are tempted to conclude that the resistance to sliding should be negligible 
if compared with the resistance to the change of thickness of these layers. 

FIG. 7. - Examples of slip movements between particles. (In 
the gaps where slip is indicated there is assumed to be no 
solid connection, i.e. sufficient thickness of the gap.) 

This mechanism alone would be able to account for the fact that creep is lower for a smaller w 
or h, as the "water lubrication" effect gradually disappears with w, but probably not for the increase 
of creep due to drying (during creep). Nevertheless, at present it could hardly be excluded that this 
mechanism might be operative simultaneously with microscopic diffusion (see also [52]) which might 
be expressed by some additional units in the chain model in figure 5b, containing dashpots rather 
than sorption elements. The corresponding equations in the system (32d) would be characterized 

by (jad, = 0 (or fdi = 0) and Kh, --+ 00, Ghi --+ 00. 

Cl2. Microcracking 

Formation of a microcrack is accompanied by reduction of the macroscopic average elastic moduli. 
Therefore, micro cracking is necessarily linked with nonlinearity with respect to stress and strain. 
Thus it has no place in a theory which is linear but it is certainly the main cause of nonlinear creep 
(and irreversibility at high stresses). In effect, micro cracking has been proved really significant 
only above 0.5 or 0.4 of the ultimate stress. Anyhow, it is dubious whether micro cracking alone 
could account for the various effects of humidity. 

A special property of cement paste is the ability to heal closed cracks, i.e. restore continuity (by 
recrystallization or formation of bond) [93], [95]. A sequence of shear cracking and subsequent 
healing may be a part of the creep mechanism which will not disturb linearity with respect to stress. 
It would be formally equivalent to the sliding mechanism mentioned in C11 (or identical if the cracks 
are slides between particles). 

C13. Strain gradient effect 

The difference between bending and axial creep has been sometimes attributed to the presence 
of strain or stress gradient. In the example of figure 14, however, this effect arises only because of 
a different correspondence between the stress and humidity distributions. Stress gradient as such 
cannot appear in our form of equations. Strain gradient is linked with the couple stresses [62] and 
these may carry some part of the bending moment, provided that the beam depth is sufficiently small 
with respect to the aggregate size. 
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CU. Autogenous shrinkage 

The shrinkage of a sealed sample certainly depends on the amount of self-desiccation, just as 
drying shrinkage depends on decrease of internal humidity. An indirect effect of self-desiccation 
as a humidity change- on the rate of hydration and growth of cement gel is also involved. 

C15. Shrinkage due to solid surface tension 

Solid particles become compressed because of their surface tension, depending on humidity [32, 

38, 88]. This compression results form the static equilibrium condition and follows the humidity 
change immediately. Therefore, this effect is formally identical with our imlJlediate component 
of shrinkage introduced by the term cra in eqs. (25), (26). 

C16. Intrinsic influences 

The effect of water-cement ratio, kind and percentage of aggregate and cement, etc. [15, 14], 
are all conditions fixed once forever when the material is cast. They do not affect the form of our 
equations but only the values of their coefficients. We need to know them for an efficient design of 
mix and prediction of creep but we should be able to analyze the stresses and strains without any 
knowledge about them if we had data about a sufficient series of tests on the one specific concrete 
of our structure. These influences represent an important separate problem which is beyond the 
scope of this paper. 

C17. Heat conduction and temperature distribution 

Prior to the stress and strain analysis, T must be determined as a function of t, x, y, z. Similarly 
as for water diffusion, according to our assumptions this temperature problem and the stress and strain 
problem are uncoupled, i.e. deformation does not affect T. However, the temperature problem is 
coupled with the water diffusion problem because the speed of water flow depends on T, the heat 
conductivity depends on water content [14], and the heat of hydration, heat of evaporation at the 
surface and heat of adsorption (which could reach 20 cal/g of cement) depend on humidities and their 
change. This coupling becomes especially important when considering fire exposure. 

APPENDIX D 

Scheme of program for stress and strain analysis 

For each time step ~t the procedure is as follows. 

1 Save the initial values in the step of cr, Sij, crd' Sdii' t e , h, T (cr* +- cr etc.) for all nodes (elements). 

2 Using te and h, calculate K b , Kc, K d , Gb , Gc, G d (or K~, G~ if (53) valid). Then compute K, 
G. Repeat for all nodes. 

3 Using h, ~h, T, ~T, calculate ~cra' crad, lXI' ~T, aT, cp, <jJ and e:o, e?j (eqs. 56, 57) for all nodes. 

4 Solving the elasticity problem with e:o, ePi as prescribed initial strains, and given changes 
of loads or prescribed displacements, determine ~e:, ~eij, ~cr, ~Sij for all nodes. 

5 Using h, ~h, T, ~T, calculate again ~cra (saves storage), lXo~T. Then calculate ~crd' ~Sd .. 
'J 

from eqs. (58), (59). Repeat for all nodes. 

6 Calculate ~T' ~te' k, c, bT , ~hd' X, ~hl (or k', x' if ~h > 0) for all nodes. 

7 Calculate ~h and ~T for all nodes (finite difference form of eq. 8). 

8 Assign cr +- cr* + ~cr /2, ... , h +- h* + ~h /2 to all variables (but e:, eij), for all nodes. 

9 Return to 2 and proceed again until 8, with several repetitions (iterating thus the mean 
values of cr, h, ... in the step ~t). 

10 Compute initial values for the next step of cr, Sij' e:, eij' crd' Sd
i

.' te , h, T, assigning cr +- cr* 

+ ~cr, ••• , crd +- cr: + ~crd' ••. te +- t; + ~te' ... e: +- e:* + ~e:, •• J. Print these values. Assign 
t +- t + ~t and go to 1 (next step) if t < final time. 

We see that in comparison with the elasticity problems we have to store for all nodes the additional 
values crd' Sdi.' te, h, T, ~h, ~T, ~cr, ~sij. (Storage space for ~cr, ~Sij could be equivalenced with cr, Sij; 

instead of sioring K, G, these values could be recalculated whenever needed.) If we use the model 

on figure 5b, eq. (32d), we must compute and store crd , crd' Sdi. , Sdi. for all nodes. 
1 2 Jl J2 

In our example of prisms, because of the uniaxial state of stress only the values cr, S23 need to be 
considered in all nodes throughout the thickness of the cross section since the axial normal stress 

is cr11 = 3cr and Sl1 = 2cr, S22 = - cr, s33 = S12 = S13 = 0, Xl = X being the longitudinal axis of prism, 
x 2 = Y the axis across the thickness (in the direction of flow). The step 4 of the above scheme is here 
as simple as follows. 
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4.1. Calculate crO +- Keo, S~I +- 2Ge~1 for all nodes. 

4.2. Calculate Young modulus E for all nodes. 

4.3. Compute axial, bending and torsional rigidities R I , R 2, R3 of the cross section. 

4.4. Calculate the resultants of the axial normal stresses cr~l = crO + S~I over the cross section, 
j.e. axial force po, bending moment MO, torque TO. 

4.5. Add to po, MO, TO the given changes of ~pplied loads. 

4.6. Calculate ~cr +- E (PO IRI + MOy IR2) 13, ~s23 +- G TOy IR3, ~e +- ~cr!K, ~e23 +- ~s23/2G 
for all nodes. 

4.7. Assign ~cr +- ~cr + cro, ~S23 +- ~S23 + S~3 in all nodes. 

In case of a cylinder we have to consider also the non-zero circumferential normal stress S33 + cr, 
as well as the radial stress S22 + cr. 
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