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Abstract

We provide an overview on the problem of modeling heat transport at nanoscale
and in far-from-equilibrium processes. A survey of recent results is summarized, and a
conceptual discussion of them in the framework of Extended Irreversible Thermodynamics
is developed.
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1. Introduction

Heat transport is currently experiencing a true revolution, which is en-
larging its domain of applicability and discovering new phenomenologies
where the classical Fourier theory of heat conduction is no longer appli-
cable [1,2]. This new epoch began with the miniaturization, since several
new phenomena arise in connection to the relation between the heat car-
riers’ mean-free path `, and a relevant characteristic size of the system L,
expressed by the Knudsen number Kn = `/L. The Fourier law is valid in
the limit of very small Knudsen number, i.e., when `/L � 1. Indeed, Kn
may increase both because of an increase of ` (as in rarefied gases and in
aerospace engineering), and because of a reduction of L (as in miniaturiza-
tion technologies).
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Heat conduction in nanosystems and nonequilibrium processes

Nowadays, the analysis of heat transport in nanosystems stimulated
new approaches to the foundations of thermodynamics, transport theory,
statistical physics and computer simulations. The most current perspective
on this topic starts from a microscopic basis (kinetic theory, computer sim-
ulations) and modifies it to incorporate the collisions of the heat carriers
with the walls or, in very small systems, to take into account quantum
confinement. Although, apparently, the topic is clearly settled, there are
several fundamental open questions at this level.

One of them is the meaning of temperature and its relation with heat
transport [3–7]. In fact, different degrees of freedom, far from equilibrium,
may be associated with different ”temperatures”. For instance, in harmonic
oscillators, and under a strong heat flux, the average kinetic energy is not
the same as the average potential energy, and thus one may consider a
kinetic temperature and a potential temperature. How do the gradients of
these different temperatures contribute to heat transport?

A second open problem is that most of the microscopic evaluations of the
thermal conductivity, based on the first-order expressions of kinetic theory,
seem to be questionable. In fact, when the mean free path of heat carriers is
comparable to the characteristic spatial range of variation of the distribu-
tion function, the kinetic theory leads to more complicated transport laws
than the Fourier’s one (namely, Burnett expansions in Chapman-Enskog
approach, moment expansions in Grad’s approach), but most of the anal-
yses stick to the first-order approximation [8]. The success of the results
may be due to the fact that most of these analyses are restricted to one-
dimensional heat flow, rather than, for instance, radial heat flow or other
situations.

Further conceptual problems arise from the thermodynamic point of
view. Indeed, if generalized heat transport equations are used, it turns out
that the analysis of their consistency with the second law of thermodynam-
ics requires a generalized framework, where the entropy and the entropy
flux are not known a priori. In fact, entropy and entropy flux are found to
be, already in simple situations, more general than their local-equilibrium
forms [9–11].

Considering more general heat transport equations and more general ex-
pressions of thermodynamic quantities, and comparing these last to more
sophisticated models of microscopic theories, is a big stimulus for the con-
ceptual progress of non-equilibrium thermodynamics.

197



D. Jou and V. A. Cimmelli

2. Heat transport equations beyond the Fourier law and hydro-
dynamic regime

Nowadays, there is a current interest for mesoscopic modelization based
on generalized heat transport equations simpler than the much more com-
plex and detailed microscopic approach. Three such approaches are the
phonon hydrodynamics [5–7], the thermomass theory [12–14], and the dual-
phase-lag model [15,16]. All these models consider the heat carriers as a
fluid, whose hydrodynamic-like equations of motion describe the heat trans-
port. The phonon hydrodynamics lays on the Guyer-Krumhansl transport
equation [16–22] for the heat flux q, i.e.,

(1) τ q̇ + q = −κ0∇T + `2
(
∇2q + 2∇∇ · q

)
where τ is the relaxation time due to the resistive (quasi-momentum not
conserved) scattering of phonons in the bulk, T the temperature, and `
the phonon mean-free path. Moreover, in Eq. (1) κ0 represents the Ziman
limit [23] for the bulk thermal conductivity, namely, κ0 = %cvτc2/3, where
% is the mass density, cv the specific heat per unit mass at constant volume,
and c is the average speed of phonons.

Whenever nonlocal effects are negligible, Eq. (1) turns out the Maxwell-
Cattaneo-Vernotte equation [24]

(2) τ q̇ + q = −κ0∇T

which accounts for heat conduction with finite speed of thermal distur-
bances [25,26].

Equation (2) generalizes the classical Fourier equation

(3) q = −κ0∇T

by including relaxation effects (characterized by the relaxation time τ),
while Eq. (1) generalizes Eq. (2) by including nonlocal effects (characterized
by the mfp `).

Eqs. (1) and (2) have been derived in the linear regime and do not ac-
count for nonlinear effects, which instead are usual at the micro/nanoscale,
since even small differences of temperature, over a reduced length-scale may
produce strong gradients. Extensions of Eq. (1) to the nonlinear regime may
be obtained in the framework of Extended Irreversible Thermodynamics
(EIT) [6,7,21,27,28], a theory which upgrades the dissipative fluxes to the
rank of independent thermodynamic variables [10,22,29–31], while nonlin-
ear generalizations of Eq. (2) have been obtained either in EIT [5], or in
the framework of the thermomass theory [12–14], which also pays a special
attention to nonlinear terms in the heat transport equation.
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At nanoscale the deformations of the heat conductor do not play any
role, so that we may limit ourselves to consider rigid bodies. On the other
hand, the analysis of heat conduction requires to complement Eq. (1) by
the local balance of the energy which, for rigid bodies in the absence of
external heat supply reads

(4) u̇+∇ · q = 0

with u as the internal energy per unit volume. When Eq. (4) is taken into
account, in steady states Eq. (1) turns out the following nonlocal constitu-
tive equation for the heat flux:

(5) q = −κ0∇T + `2∇2q

In nanosystems one may have in several cases that `2∇2q ≈ Kn2 q� q,
since the Knudsen number can take values relatively higher than 1. Then,
the nonlocal term in Eq. (5) may be more important than the heat flux
itself [32–35], and that equation reduces to

(6) ∇2q =
κ0

`2
∇T

Equation (6) is analogous to the Navier-Stokes equation in steady states
when the nonlinear convective term is negligible, i.e.,

(7) ∇2v =
1

η
∇p

η being the shear viscosity of the fluid, v the velocity of the fluid, and p the
pressure. The analytical resemblance between Eqs. (6) and (7) motivates
the definition of ”hydrodynamic regime” for those situations in which the
heat flux obeys Eq. (6), and allows one to identify the ”viscosity” of phonons
in terms of the thermal conductivity and of their mean-free path.

3. Second-order nonlocal effects

When the Knudsen number becomes comparable to (or higher than)
1, the heat transport is no longer diffusive, but ballistic. Moreover, when
the mean-free path between successive collisions becomes large, there is
a direct connection among nonadjacent regions of the system with very
different values of the temperature. Nonlocal effects are especially important
to describe the transition from diffusive to ballistic regime. To this end in
EIT it is possible to introduce a new extra variable, represented by a second-
order tensor Q, and write the balance of the heat flux in the following
general form [36]

(8) τ1q̇ + q = −λ∇T +∇ ·Q
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where τ1 is still a relaxation time. The tensor Q, assumed to be symmetric,
may be split in the usual form Q = QI + Qs, the scalar Q being one-third
of the trace of Q, and Qs being the deviatoric part of Q. In the relaxation
time approximation [37], the evolution equations for Q and Qs may be
written as [37],

τ0Q̇+Q = γ0∇ · q(9a)

τ2Q̇s + Qs = 2γ2

[
(∇q)0

]
s

(9b)

where
[
(∇q)0

]
s

denotes the symmetric and traceless part of ∇q. Assuming

that the relaxation times τ0 and τ2 are negligibly small, and considering only
regular processes, for which the time derivatives appearing at the left hand
side of Eqs. (9a) and (9b) do not diverge, the coupling of these equations
with Eq. (8) yields the following evolution equation for the heat flux

(10) τ1q̇ + q = −λ∇T + γ2∇2q +

(
γ0 +

1

3
γ2

)
∇∇ · q

It is easy to recognize that the general heat-transport equation (10)
reduces to the Eq. (1) under the following identifications

(11) τ1 = τR, γ0 =
5

3
`2p, γ2 = `2p

The thermodynamics underlying the transport equation (10) is easily
derived by introducing extended constitutive equations for the specific en-
tropy and for the entropy flux of the form, respectively, [22,38]

s = seq (u)− τ1

2λT 2
q · q− τ2

4λT 2γ2
Qs : Qs −

τ0

2λT 2γ0
Q2(12a)

Js =
q

T

(
1 +

Q

λT

)
+

Qs · q
λT 2

(12b)

where seq (u) denotes the local-equilibrium entropy, the symbol : denotes
the complete contraction of the corresponding tensors giving a scalar as
result, and the symbol Qs ·q denotes the contraction over the last index of
of Qs, giving a vector as result.

The absolute temperature is given by the reciprocal of the derivative of
the entropy with respect to the internal energy (at constant values of the
other extensive variables). When the extended entropy (12a) is used instead
of the local-equilibrium entropy, the resulting absolute temperature is [3]
(13)
1

T
=
∂s

∂u
=
∂seq
∂u
− ∂

∂u

( τ1

2λT 2

)
q·q− ∂

∂u

(
τ2

4λT 2γ2

)
Qs : Qs−

∂

∂u

(
τ0

2λT 2γ0

)
Q2
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Note that T differs from the local-equilibrium temperature

Teq =

(
∂seq
∂u

)−1

and depends on the fluxes [3]. This is in accordance with the experimental
evidence that the local-equilibrium temperature loses its validity in situa-
tions where the deviation from equilibrium ensemble is not negligible, as
for example the heat propagation in nanosystems [22,30,36,39–41].

It is worth noticing that the dispersion relation of heat waves along
nanowires (or thin layers) which are not isolated from the environment al-
lows to compare different definitions of nonequilibrium temperature, since
thermal waves are predicted to propagate with different phase speed, de-
pending on the definition of nonequilibrium temperature being used [22,41].

4. Higher-order fluxes and hierarchy of nonlinear transport equa-
tions

We know from kinetic theory that the relaxation times of the higher-
order fluxes are not always shorter than the collision time. Thus, the first-
order flux as sole independent variable is not satisfactory to describe high-
frequency processes, because when the frequency becomes comparable to
the inverse of the relaxation time of the first-order flux, all the higher-order
fluxes will also behave like independent variables [22,36,42]. In EIT it is
possible to introduce higher-order variables, each one being defined as the
flux of the preceding one, and being denoted as J1,J2, . . . ,Jn, where Jk

with k = 1 . . . n, is a tensor of the order k and stands for the flux of the
element of the hierarchy of order Jk−1.

Up to the n-th order, a convenient constitutive equation for the specific
entropy takes the form

(14) s = s (u,J1, . . . ,Jn) = seq (u) +
α1

2
J1 : J1 + . . .+

αn

2
Jn : Jn

while the entropy flux can be written as

(15) Js =
J1

T
+ β1J2 · J1 + . . .+ βn−1Jn · Jn−1

with α1 . . . αn and β1 . . . βn being suitable material functions which are
supposed to depend on u, and the symbol Jk ·Jk−1 denotes the contraction
over the last k − 1 indices of Jk, giving a vector as result. It is worth
observing that, for the sake of formal simplicity, in the previous expressions
of the entropy and of the entropy flux, cubic coupled contributions have
not been taken into account.
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The corresponding evolution equations compatible with a positive en-
tropy production are written in the following hierarchy [43]

(16)

τ1J̇1 + J1 = −λ∇T +
β1τ1

α1
∇ · J2

...

τnJ̇n + Jn =
βnτn
αn
∇ · Jn+1 +

βn−1τn
αn

∇Jn−1

The compatibility of the system of equations (16) with the general bal-
ance law for the fluxes

(17) J̇k +∇ · Jk+1 = Pk

where k = 2 . . . n, and Pk denotes the production of Jk, implies

(18) βk = −αk, Pk = −Jk

τk
+
βk−1

βk
∇Jk−1

In Ref. [44] several mathematical aspects of Eqs. (16) and related ones
have been analyzed.

If one admits that in nonequilibrium situations the specific entropy is
given by Eq. (14) while the evolution of the heat flux is ruled by an equation
of the type (16), then the use of a dynamical nonequilibrium temperature
β [4,20,21,45], allows to obtain a nonlinear generalization of the classical
Maxwell-Cattaneo-vernotte and Guyer-Krumhansl equations [5–7]. For in-
stance, Eq. (1) may be extended to the nonlinear case as [6,7]

(19) τRq̇ + q = −λ∇T +

(
2τ

Tcv

)
∇q · q + `2p

(
∇2q + 2∇∇ · q

)
which can be further generalized in

(20) τRq̇+q+
(
µ∇q + µ′∇tq

)
= −λ (1 + ξq · q)∇T+`2p

(
∇2q + 2∇∇ · q

)
where µ, µ′ and ξ are material parameters and ∇tq denotes the transpose of
∇q. This represents a nonlinear evolution equation for the heat flux which
allows to consider in a simple way some nonlocal, nonlinear and memory
effects, beside to study the propagation of heat waves, which is a well-known
topic in current nonequilibrium thermodynamics [22,30,46–48].

5. Other generalized heat-transport equations

5.1. The Thermomass Theory

The Thermomass (TM) theory [13,49–51] provides a further example
of nonlinear heat-transport equation with thermal lag. In TM theory the
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heat transport is due to the motion of a gas-like collection of heat carriers,
characterized by an effective mass density and flowing through the medium
due to a thermomass-pressure gradient. This collection is made by quasi-
particles of heat carriers, called thermons, which are representative of the
vibrations of the molecules generated by heating the conductor and whose
mass may be calculated from the Einstein’s mass-energy duality. For crys-
tals, the thermomass gas is just the phonon gas, for pure metals it will be
attached on the electron gas, and for semi-metals it will be constituted by
both these different gases [13,49–51].

In TM theory the evolution equation for the heat flux reads [52]

(21) τtmq̇− cvṪL +∇q · L + λ
(
1−M2

tm

)
∇T + q = 0

wherein

τtm =
λρ

2γc2vT

with γ being the Grüneisen constant, is the relaxation time in the TM
theory [49,53,54], and

L =
qλρ

2γcv (cvT )2

denotes a characteristic-length vector [53,54]. Moreover

(22) Mtm =
|q|√ρ

cvT
√

2γcvT

stands for a dimensionless number which is called thermal Mach number
of the drift velocity relative to the thermal-wave speed in the thermon gas.
By means of it, Eq. (21) introduces a nonlinear thermal conductivity

(23) λnl = λ
(
1−M2

tm

)
In steady states, when the spatial derivatives of the heat flux may be ne-
glected with respect to the flux itself, Eq. (21) reduces to

q = −λnl∇T

Since second law of thermodynamics requires λnl ≥ 0, from Eqs. (22)
and (23) it follows that the modulus of the local heat flux has to fulfill the
following relation

(24) |q| ≤ cvT

√
2γcvT

ρ
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which implies an upper bound for the heat flux for increasing temperature
gradient [55].

The experimental results in silicon nanowires, for a difference of tem-
perature ∆T = 100 K on some 50nm, confirm the existence of this upper
bound [56]. Such a phenomenology, well-known in nonlinear heat conduc-
tion, is referred to as the presence of ”flux limiters” [22,57].

Beside to describe relaxational effects, Eq. (21) incorporates informa-
tion on the characteristic length of the system and accounts for nonlinear
phenomena. In the linear case (i.e., when the terms containing the quan-
tities ṪL and ∇q · L are negligible, as well as when M2

tm � 1), Eq. (21)
takes the same form of the Maxwell-Cattaneo-Vernotte equation, but the
relaxation time of TM theory is two orders of magnitude higher than that
of the Maxwell-Cattaneo-Vernotte equation and, in silicon films, it predicts
a slower response to the thermal perturbations [56].

5.2. The Dual-Phase-Lag model

Evolving from the Fourier law, in the dual-phase-lag model [15,58,59]
the following constitutive equation (which provides a convenient approach
in describing the ultra-fast physical response) is introduced

(25) q (r, t+ τq) = −λ∇T (r, t+ τT )

where τT and τq are two phase lags due to the delayed response during the
ultra-fast transient. In Eq. (25) the phase lag of the heat flux τq captures
the small-scale response in time, while the phase lag of the temperature
gradient τT captures the small-scale response in space.

Up to the second-order approximation in the relaxation times, Eq. (25)
can be written as
(26)

q (r, t) + τqq̇ (r, t) +
τ2
q

2
q̈ (r, t) ≈ −λ∇T (r, t)− τT∇Ṫ (r, t) +

τ2
T

2
∇T̈ (r, t)

By Eq. (26) we infer that the lagging response significantly deviates from
Fourier law, due to involvement of the higher-order derivatives with respect
to time. Moreover, it reduces to Maxwell-Cattaneo-Vernotte equation only
when τT = 0, and the terms proportional to τ2

q can be neglected. The
combination of the divergence of Eq. (26) with the energy-balance equation
(4) leads to

(27) ∇2T + τT∇2Ṫ +
τ2
T

2
∇2T̈ =

(cv
λ

)
Ṫ +

(cvτq
λ

)
T̈ +

(
cvτ

2
q

2λ

)
...
T
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which completely alters the fundamental characteristics of Fourier diffusion.
If the effects related to τ2

T in Eq. (26) are neglected, Eq. (27) is able to
describe the propagation of temperature waves with thermal speed

(28) UT =

√
2cvτT
λτ2

q

5.3. Ballistic-diffusive model

An alternative approach rests on the assumption that two types of
phonon populations, namely, diffusive and ballistic, may coexist. Diffusive
phonons undergo multiple collisions within the core of the system, while
ballistic phonons, originating at the boundaries of the system, experience
mainly collisions with the walls. This model is called ballistic-diffusive (BD)
model [2], and allows for a more flexible description of the heat transfer at
nanoscale than the single-population models considered above.

On a purely macroscopic approach, in the BD model both the specific
internal energy per unit volume u, and the local heat flux q are split into
a ballistic part and a diffusive one, in such a way that

(29) u = ubal + udif, q = qbal + qdif

Owing to that decomposition, in EIT [22] the state variables are selected
as follows:

• the couple (ubal,qbal), accounting for the ballistic behavior of the
heat carriers;
• the couple (udif,qdif), accounting for the diffusive behavior of the

heat carriers.

The evolutions of ubal and udif are provided by the following classical
balance laws [2]

u̇bal = −∇ · qbal + rbal(30a)

u̇dif = −∇ · qdif + rdif(30b)

wherein rbal and rdif denote, respectively, the heat supply due to the ballistic
population and to the diffusive one. These quantities describe the energy
exchange (per unit volume and time) between both phonon populations. It
is easy to see that the summation of Eqs. (30a) and (30b) turns out the
well-known energy-balance law for u, with heat supply r = rbal + rdif. It
reduces to Eq. (4) whenever rbal = −rdif.

205



D. Jou and V. A. Cimmelli

The evolution of qbal and qdif, instead, is governed by the balance
laws [2]

τbalq̇bal + qbal = −λbal∇T + `2bal

(
∇2qbal + 2∇∇ · qbal

)
(31a)

τdifq̇dif + qdif = −λdif∇T(31b)

wherein τbal and τdif are the relaxation times of two phonon populations,
λbal and λdif are their thermal conductivities, respectively, and `bal is the
mean-free path of ballistic phonons. The relaxation times, the thermal con-
ductivities and the phonon mean-free paths of two populations are not
independent, but they are such that

(32) λbal =
1

3
cvv2

balτbal, λdif =
1

3
cvv2

difτdif

wherein vbal = `bal/τbal and vdif = `dif/τdif are the mean velocities of the
ballistic and diffusive phonons, respectively, with `dif being the mean-free
path of diffusive phonons [2]. The coupling of Eqs. (31) leads to the Guyer-
Krumhansl equation (1) under the following identifications

λ = λbal + λdif, τ = τdif, ` = `bal

6. Heat conduction in thermoelectric systems

Thermoelectric effects involve a fundamental interplay between electric
and thermal properties of some materials. The two primary thermoelectric
effects are the Seebeck effect and the Peltier one, which can be used to
derive all other thermoelectric effects when combined with the laws of ther-
modynamics. The Seebeck effect describes how a temperature difference
creates a charge flow, while the Peltier effect describes how an electrical
current can create a heat flow.

Thermoelectric devices offer an attractive source of energy since they do
not have moving parts, do not create pollution, do not make noise [60,61].

In practical applications, the thermodynamic efficiency of a thermoelec-
tric device is determined by the dimensionless parameter ZT , with T being
the operating temperature, and Z the figure-of-merit, defined as

(34) Z =
ε2σe
λ

wherein ε is the Seebeck coefficient, σe the electrical conductivity. Although
the thermal conductivity λ of thermoelectric materials is usually dominated
by that of the electrons, in several cases the lattice heat conductivity, due
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to the phonons, has to be added [62]. Therefore, in the denominator of
Eq. (34) the total thermal conductivity is such that

(35) λ = λp + λe

with λp being the phonon contribution to the thermal conductivity, and λe
the electron contribution to it [63–65].

Since the higher ZT , the higher the efficiency of a thermoelectric de-
vice [60,61], one of the primary challenges in developing advanced ther-
moelectric materials is increasing the power factor ε2σe and reducing the
thermal conductivity λ. To achieve that task, it is needed to decouple ε,
σe and λ, which are typically strongly interdependent, in such a way that
an increase in ε usually results in a decrease in σe, and a decrease in σe
produces a decrease in the electronic contribution to λ, following from the
Wiedemann-Franz law.

Nanomaterials provide an interesting avenue to obtain more perform-
ing thermoelectric devices, for example, making nanocomposites, adding
nanoparticles to a bulk material, or using one-dimensional nanostruc-
tures [66,67].

However, the research in this field is still in progress, since the physics
of thermoelectric nanomaterials presents several points which are not well-
understood, as for instance the exact role played by nonlocal and nonlinear
effects [15,22,30,68,69]. In the classical form, thermoelectric effects are de-
scribed by the following constitutive equations

q = −λ∇T +

(
Π +

µe
ze

)
I(36a)

I = −σeε∇T + σe

[
E−∇

(
µe
ze

)]
(36b)

wherein Π is the Peltier coefficient, I the electric-current density, E the
electric field, µe the chemical potential due to the electrons, and ze the
electric charge per unit mass of the electrons (which should be not confused
with the electric charge per unit volume %e = ceze, with ce being the mass
fraction of electrons).

From Eq. (36a) it is possible to see that, even in absence of a temper-
ature gradient, a heat flux may be generated due to an electrical current:
this is the so-called the Peltier effect. The coefficient Π = ± (|q| / |I|)∆T=0

measures the amount of heat absorbed (or rejected) at the junction of two
conductors of different materials kept at uniform temperature and crossed
by an electric current of unitary density [30]. Equation (36b), instead, shows
that, even in absence of an electric current, an electrical field E can be
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created by a temperature difference: this is known as Seebeck effect. The
Seebeck coefficient ε (also known as thermoelectric power coefficient) mea-
sures the electrical potential produced by a unit temperature difference, in
absence of electric current [30].

7. Two-temperature thermoelectric systems

Eqs. (36) may be extended to the case in which phonons and electrons
have no longer the same temperature. Accounting for two different temper-
atures may be important, for instance, in the following physical situations

i. Hot electrons. When the electron mean-free path corresponding
to electron-phonon collisions is long, one may have a population of
”hot electrons”, whose kinetic temperature is higher than that of
the phonons [70].

ii. Nonequilibrium temperatures. As the electron mean-free path
is usually shorter than the phonon mean-free path, when the lon-
gitudinal distance is bigger than the electron mean-free path but
smaller than the phonon mean-free path, there will be a very high
number of electron collisions, and only scant phonon collisions.
As a consequence, the electron temperature may reach its local-
equilibrium value, whereas the phonon temperature may be still far
from it.

iii. Fast laser pulses. When a laser pulse hits a system, initially the
electrons capture the main amount of the incoming energy and sub-
sequently, through electron-phonon collisions, they give a part of
such energy to the phonons.

We assume that the heat carriers behave as a mixture of gases flowing
through the crystal lattice [71], so that the internal energy of phonons per
unit volume up, the internal energy of electrons per unit volume ue and the
electrical charge per unit volume of electrons %e belong to the state space.
These variables are ruled by the following evolution equations:

u̇p = −∇ · q(p)(37a)

u̇e = −∇ · q(e) + E · I(37b)

%̇e = −∇ · I(37c)

A further basic assumption is that in thermoelectric materials the local
heat flux q has two different contributions: the phononic partial heat flux
q(p) and the electronic partial heat flux q(e). In the simplest situation, those
contributions are such that

(38) q = q(p) + q(e)
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Thus, if the total internal energy per unit volume of the system u is
supposed to be given by the constitutive relation

(39) u = up + ue

and Eq. (38) is taken into account, then the summation of Eqs. (37a)
and (37b) turns out the well-known energy-balance equation

u̇+∇ · q = E · I

obtained in Ref. [72] in the absence of a magnetic field.
From the theoretical point of view, we may postulate the following fur-

ther constitutive equations which relate the partial internal energies ap-
pearing in Eqs. (37) to the phononic and electronic temperatures Tp and
Te

up = c(p)
v Tp(40a)

ue = c(e)
v Te(40b)

wherein c
(p)
v and c

(e)
v are the volumetric phonon and the electron heat capac-

ities at constant volume [73], respectively. In other words, since we regard
phonons and electrons as a mixture of gases flowing through the crystal
lattice [32,71], each of which is endowed with its own temperature, accord-
ing with the theory of fluid mixtures with different temperatures [74–76],
we assume that each constituent obeys the same balance laws as a single
fluid. The average temperature of the mixture may introduced by the con-
sideration that the internal energy of the mixture is the same as in the case
of a single-temperature mixture [75]. Thus, when the total internal energy
u can be expressed through the average temperature T as u = cvT , being

cv = c
(p)
v +c

(e)
v the volumetric heat capacity at constant volume of the whole

system [77], the coupling of Eqs. (39) and (40) yields

(41) T =
c

(p)
v Tp + c

(e)
v Te

cv

This equation gives a link between Tp, Te and T , the latter being a mea-

surable quantity in practical applications. Although in the general case c
(p)
v

and c
(e)
v should be temperature-dependent functions, here we deal only with

the simplest situation in which those material functions are constant.

7.1. Efficiency of thermoelectric energy generators

Let us now investigate the consequences of accounting for two different
temperatures for phonon and electrons on the efficiency of thermoelectric
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systems. Here we consider a cylindrical thermoelectric nanodevice whose
longitudinal length L is much larger than the characteristic size of the
transversal section. In this case we may represent it as a one-dimensional
system and determine the position of its points by only one Cartesian com-
ponent, namely, the longitudinal one y. We assume that the hot side of this
system (i.e., that at y = L) is kept at the temperature T h, and its cold side
(i.e., that at y = 0) at the temperature T c. Moreover, we suppose that an
electric current I and a quantity of heat per unit time Q̇tot enter uniformly
into the hot side of the device and flow through it. In such situation, the
thermoelectric efficiency of this device reads

(42) η =
Pel

Q̇tot

wherein Pel is the electric-power output, and Q̇tot is the total heat supplied
per unit time to the system.

For the sake of simplicity, let us suppose that q(p), q(e) and I are parallel
to the nanowire, and that E takes a constant value on each of the planes
orthogonal to the nanowire.

In these conditions, for vanishing values of µe/ze, Eqs. (36) read

q = q(p) + q(e) = −Λp∇yTp − Λe∇yTe + ΠI(43a)

I = −σeε∇yTe + σeE(43b)

wherein Λp = λp+λep, and Λe = λe+λpe. Moreover, by lengthy but straight-
forward calculations, it can be proven that the thermoelectric efficiency is
given by

(44) η =

(
1− T c

T h

) εx− λx2

σeβ1

γ + 1

T h
+ εx

 = ηcηr

wherein λ = Λp + Λe, β1 = Te/T, β2 = Tp/T , γ = (Λp/λ) (β2/β1 − 1), and

(45) x =
IL

λ (T h − T c)

In Eq. (44) ηc = 1 − T c/T h is the usual Carnot efficiency, and ηr is a
reduced efficiency. Therefore, in practical applications one should enhance
ηr in order to improve the thermoelectric efficiency. It is easy to see that
whenever the ratio x defined above gets the value

(46) xopt =

(
γ + 1

εT

)(√
1 +

ZeffTβ1

γ + 1
− 1

)
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with Zeff = ε2σe/λ as an effective figure-of-merit, then the reduced efficiency
gets its maximum value, and the thermoelectric efficiency becomes

(47) ηmax = ηc


ZeffTβ1 + 2 (γ + 1)

(
1−

√
1 +

ZeffTβ1

γ + 1

)
ZeffTβ1


Finally, it reduces to the classical form for the maximum thermoelectric
efficiency [30,78]

(48) ηmax,cl = ηc

ZT + 2
(

1−
√

1 + ZT
)

ZT


whenever Tp and Te coincide, i.e., when β1 = β2 = 1 and γ = 0. From
Eq. (47) it follows the usual result that the larger the figure-of-merit, the
higher the efficiency of a thermoelectric device.

8. Thin tubes filled with superfluid helium

As well as thermal waves, phonon hydrodynamics was first discovered
in superfluid liquid helium [79–82]. Here we give a brief introduction to the
problem of heat transport along thin tubes, which is in fact one of the most
challenging topics in heat transfer [81,83,84].

In EIT, superfluid helium is considered as a single fluid with the heat
flux as an internal variable [85]. In the more usual two-fluid model by Lan-
dau and Tisza [86–89], instead, it is considered to be composed of a normal
viscous component and a superfluid one. Their densities, respectively, are
ρn and ρs in such a way that ρ = ρn + ρs. The velocities of two compo-
nents, instead, are vn and vs, and are related to the barycentric velocity v
as v = ρnvn + ρsvs.

In steady states, the heat transfer in turbulent liquid helium [85,89–92]
may be described by an equation analogous to Eq. (6), taking the form

(49) αLkq = −A∇T +B∇2q

where A = ρnρTs
2 with ρn as the mass density of the normal component

of the fluid and ρ the total mass density, and B = ηn as the viscosity of the
normal component. Moreover, in the coefficient A in Eq. (49) s means the
specific entropy carried out by the normal component, and the heat flux is
identified as q = ρnTsvn.
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The term at the left-hand side of Eq. (49) accounts for the internal
friction between normal fluid and the quantized vortices arising in the tur-
bulent regime. Therein, L is the vortex length density, k is the quantum
of vorticity (given by k = h/mHe with h being the Planck constant, and
mHe the atomic mass of helium), and α is a friction coefficient. The value
of L is zero for small velocities, namely, when vnd/k < Req1 with d as the
diameter of the channel and Req1 a critical value of the quantum Reynolds
number.

When L = 0, i.e. in the laminar regime, Eq. (49) has the same
form as Eq. (6), but with different parameters, and one has the phonon-
hydrodynamic regime, leading to an effective thermal conductivity propor-
tional to the square of the radius of the channel. At temperatures lower than
1K, the phonon mean-free path in liquid helium is of the order of 0.5mm; in
this case, and in absence of vortex lines (L = 0), the flux becomes increas-
ingly ballistic and a slip heat flow along the wall must be incorporated [90],
in such a way that the effective thermal conductivity becomes proportional
to the radius, instead than to the square of the radius.

9. Outlook

The formulation of mesoscopic heat-transport equations, well charac-
terized for technologically useful materials, and well connected with micro-
scopic understanding of transport in such materials and with generalized
constitutive equations of entropy and entropy flux, seems to be truly one
of the current most exciting frontiers in nonequilibrium thermodynamics.
Then, let’s close this brief review with some perspectives on open prob-
lems to be further analyzed. The first of them is, of course, a more detailed
microscopic understanding of the generalized transport equations, starting
from phonon kinetic theory.

A second open problem is the detailed comparison with experiments
for a variety of relevant materials. Besides nanoporous materials, other
two kinds of systems of much interest are nanocomposites and nanofluids,
namely, systems which are composed of a heat-conducting matrix (solid in
the former case, and liquid in the latter case) and a dispersion of heat-
conducting nanoparticles. Depending on the radius, size, number density
and spatial distribution of the nanoparticles (in the case of nanocompos-
ites), one may achieve a considerable degree of control on the transport
properties of the system, either of heat, electric or thermoelectric transport
coefficients.

Some of the most well-known nanocomposites are superlattices [93],
in which the particles are distributed in a spatially ordered pattern, and
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the nanoparticles may be so small as to behave as quantum dots [94–98].
In metals and semiconductors, where electrons and holes also contribute
to thermal conductivity, superlattices may be designed in such a way to
strongly reduce phonon transport without reducing electron transport, be-
cause of the widely different values of phonon and electron wavelengths.
This is especially relevant in enhancing the efficiency of thermoelectric en-
ergy conversion, which requires to reduce as much as possible the ther-
mal conductivity. Hence, more attention to thermoelectricity should also
be paid. To this end, not only the heat conductivity, but also the electrical
conductivity, the Seebeck and Peltier coefficients, as well as their possible
nonlinear contributions, should be explored in depth.

Another tipe of nanocomposites is represented by graded systems [99], in
which the composition of the system is not homogeneous, but changes along
some directions. These systems are increasingly used in technology [100–
104]. In thermoelectricity, for instance, the alloys Bi2−2x Te3−2x Pbx, or
(Bi1−x Sbx)2 Te3, with the stoichiometric index x changing from 0 to 1,
are of interest in thermoelectric energy generators [103]. For Bi2 Te3 and
Pb Te (two of the best thermoelectric materials), ZT is maximum around
370 K and 670 K, respectively. Thus, to maximize that product along a sys-
tem between 670 K and 370 K is better to use Pb Te at the hot side, Bi2 Te3

at the cold side, and Bi2−2x Te3−2x Pbx in the middle (with x changing from
1 in the hot side to 0 in the cold side).

The heat transport in two-dimensional systems (graphene, silicon thin
layers, microporous thin layers) should also be explored with more detail,
because of the increased relevance of these systems as compared to the
three-dimensional ones [105,106]. Radial heat transport from hot spots,
and its application to temperature measurements (or to nanodevice refrig-
eration) is also an interesting topic, since it offers important hints on some
basic problems of nonequilibrium thermodynamics. It would be interesting
to deal with time-dependent phenomena, for a wide range of frequencies.
The use of thermal waves (not necessarily the very high-frequency ones)
could be useful for characterizing some properties of the materials, as for
instance the porosity, or the distribution of the radii of particles embedded
in a heat conducting matrix.

An interesting modern topic is the phononics whose aim is to control
phonon flow in a way similar to the control of electron flow in electronics.
The essential devices of electronics are diodes and transistors. Diodes rec-
tify electric current and transistors may amplify electric signals, or act as
commuters. The nanoscopic engineering of materials is allowing the con-
trol of phonon heat flow. Heat rectification is already well-known (although
with small rectification effects, as compared to those of electrical rectifi-
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cation); heat transistors require negative differential thermal conductivity,
and some of them have been achieved. By combining these devices one may
speculate about logic gates and with memories. Related to that there are
also interesting projects on the heat cloaking and thermal metamaterials,
which imply new and imaginative situations for heat transport.
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