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Abstract. In the presence of cycloheximide (CHX) to 

inhibit protein synthesis, a high concentration of stau- 

rosporine (STS) induces almost all cells in explant cul- 

tures of 8/8 types of newborn mouse organs and 3/3 

types of adult mouse organs to die with the characteris- 

tic features of apoptosis. Eggs and blastomeres also die 

in this way when treated with STS and CHX, although 

they are less sensitive to this treatment than trophecto- 

derm or inner cell mass cells whose sensitivity resem- 

bles that of other developing cells. Human red blood 

cells are exceptional in being completely resistant to 

treatment with STS and CHX. As (STS plus CHX)- 

induced cell deaths have been shown to display the 

characteristic features of programmed cell death 

(PCD), we conclude that all mammalian nucleated cells 

are capable of undergoing PCD and constitutively ex- 

press all the proteins required to do so. It seems that 

the machinery for PCD is in place and ready to run, 

even though its activation often depends on new RNA 

and protein synthesis. 

M 
ANY cells undergo programmed cell death (PCD) 1 

during normal animal development (Glucks- 
mann, 1951), and in most mammalian tissues 

PCD continues throughout life. Although the mechanism 
of PCD is still uncertain, there is increasing evidence that 
it has been conserved in evolution from nematode worms 
to humans and involves one or more members of the Ced- 
3/IL-l~ converting enzyme (ICE) family of cysteine pro- 
teases (Yuan et al., 1993; for reviews see Thornberry et al., 
1995, and Martin and Green, 1995). 

When many types of mammalian cells are cultured in 
the absence of serum or extracellular signaling molecules, 
they undergo PCD (for review see Raft, 1992). Such find- 
ings have led to the proposal that all nucleated mamma- 
lian cells, except for blastomeres (Biggers et al., 1971), 
may require signals from other cells to avoid PCD (Raft, 
1992). This death-by-default mechanism might ensure that 
a cell survives only when and where it is needed, just as the 
dependence on extracellular growth factors for cell prolif- 
eration is thought to ensure that a cell divides only when 
another cell is needed (Baserga, 1985). If extracellular sig- 
nals are required to keep the death program suppressed, 

Please address correspondence to M. Jacobson, MRC Laboratory for Mo- 
lecular Cell Biology & Biology Department, University College London, 
London, WC1E 6BT, United Kingdom. Tel.: 44 171 380 7016. FAX: 44 

171 380 7805. 

1. Abbrevia t ions  used in this paper: CHX, cycloheximide; ICE, IL-113 con- 
verting enzyme; PCD, programmed cell death; PI, propidium iodide; STS, 

staurosporine. 

then anything that blocks the intracellular signaling path- 
ways activated by such survival factors should induce cells 
to undergo PCD. This was the rationale for our originally 
testing staurosporine (STS), a bacterial alkaloid that is a 
broad spectrum inhibitor of protein kinases (Tamaoki and 
Nakano, 1990), many of which are involved in intracellular 
signaling cascades. As expected, we (Jacobson et al., 1993, 
Ishizaki et al., 1993, Raft et al., 1993, Jacobson et al., 1994, 
Ishizaki et al., 1994, 1995) and others (Bertrand et al., 
1994) have found that a high concentration of STS induces 
PCD in various cell lines and various types of dissociated 
primary cells in culture. It remains to be determined, how- 
ever, whether it does so by blocking intracellular signaling 
pathways activated by extracellular survival signals. 

Several lines of evidence indicate that the cell death in- 
duced by STS is bona fide PCD: (1) the morphology of the 
dead cells, analyzed by both light and electron microscopy, 
is typical apoptosis (Jacobson et al., 1993; Bertrand et al., 
1994; Jacobson et al., 1994); (2) the sequence of organelle 
changes is characteristic of PCD, with nuclear changes, for 
example, occurring early and plasma membrane integrity 
maintained until late (Jacobson et al., 1994); (3) DNA deg- 
radation, which is thought to be an invariable feature of 
PCD, occurs (Bertrand et al., 1994); (4) overexpression of 
the bcl-2 gene, which suppresses more physiological exam- 
ples of PCD (for review see Reed, 1994), also suppresses 
STS-induced cell death (Jacobson et al., 1993, 1994); and 
(5) peptide inhibitors of the Ced-3/ICE family of cysteine 
proteases can suppress STS-induced PCD in a wide variety 
of cell types (see accompanying paper). Although the 
mechanism by which STS activates the death program is 
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unknown, this is also the case for almost all other inducers of 
PCD, so STS-induced PCD is not exceptional in this respect. 

In principle, extracellular survival signals could be re- 
quired to prevent either the production or the activation 
of proteins involved in executing the death program. The 
findings that inhibitors of RNA or protein synthesis can 
often suppress or delay PCD originally suggested that cells 
have to make new RNA and protein to undergo PCD and 
provided some of the most compelling original evidence that 
these deaths are suicides, in which the cells participate in 
their own demise (Tata, 1966; Duke and Cohen, 1986; Martin 
et al., 1988; Oppenheim et al., 1990). More recently, how- 
ever, it has been shown that such inhibitors do not always 
suppress PCD and can even induce it (for review see Martin, 
1993). STS-induced PCD in the cell lines and primary cells 
that have been tested, for example, is enhanced rather than 
suppressed by the protein synthesis inhibitor cycloheximide 
(CHX) and can even occur in the absence of a nucleus (Ja- 
cobson et al., 1994). Moreover, survival signals can inhibit 
PCD in the absence of a nucleus (Jacobson et al., 1994) or 
protein synthesis (Harrington et al., 1994). Such findings sug- 
gest that, in many cell types at least, the proteins required 
to execute the death program are constitutively expressed 
and extracellular survival signals act to prevent the activation 
rather than the production of these proteins. 

Unlike most types of mammalian cells, blastomeres do not 
require extracellular signals to survive in culture: when cul- 
tured from 1-cell up to 16-cell mouse embryos, they can sur- 
vive and divide in the absence of exogenous proteins or sig- 
naling molecules, even when cultured as isolated single cells 
(Biggers et al., 1971). It is unknown whether blastomeres are 
autonomous for survival because they can keep the death 
program suppressed in the absence of extracellular survi- 
val signals or because they lack a functional death program. 

Here we show that, in the presence of CHX, a high con- 
centration of STS induces PCD in almost all cells in explant 
cultures of all of the rodent organs we have tested, includ- 
ing newborn kidney, lung, muscle, pancreas, liver and skin, 
and adult kidney, lung, and pinna (the extracranial part of 
the ear). We also show that although mouse blastomeres 
and eggs are relatively resistant to STS-induced PCD com- 
pared to other developing cells, they too undergo PCD when 
treated with a very high concentration of STS, in the pres- 
ence or absence of CHX; when blastomeres develop into 
inner cell mass (ICM) and trophectoderm cells, however, 
they acquire the sensitivity to STS-induced PCD that is char- 
acteristic of other developing cells. Human red blood cells, 
by contrast, which lack a nucleus and other organelles, are 
impervious to STS and CHX treatment. These findings sug- 
gest that, with the exception of red blood cells, all mammal- 
ian cells, including blastomeres, are capable of undergoing 
PCD and constitutively express all the proteins required to 
run the death program. 

Materials and Methods 

Animals and Materials 

Sprague-Dawley rats and (Balb/c × C57B1/6) F1 mice were purchased from 
Harlan UK Ltd. (Bicester, UK) and maintained in the University College 
London Animal Facility. Outbred PO (Pathology, Oxford) mice were ob- 
tained from the Animal Facility in the ICRF Developmental Biology 
Unit. STS was a gift from Dr. H. Nakano, Tokyo Research Laboratories 

(Kyowa Hakko Kogyo Co. Ltd.). Ethidium homodimer and calcein-AM 

were purchased from Molecular Probes, Inc. (Eugene, OR). Cell culture 

media, antibiotics, FCS, terminal deoxynucleotidyl transferase (TdT), and 
TdT buffer were from GIBCO-BRL (Gaithersburg, MD). Biotin-16- 

dUTP was from Boehringer Mannheim GmbH (Germany), and streptavi- 

din-fluorescein was from Amersham (UK). All other reagents were from 
Sigma Chem. Co. (St. Louis, MO), unless indicated. 

Organ Explant Cultures 

Neonatal rats were killed by decapitation and various organs were re- 

moved and placed in cold L-15 medium; the organs were cut into small 

pieces (~500 p.m on each side) with a hemostat-held blade. Adult and new- 

born (Balb/c x C57B1/6) F1 mice were killed and their organs removed as 
above; small cylindrical pieces of the organs were obtained using a 2-mm 

punch biopsy needle, except for newborn heart and kidney, which were 

cut in half with a sharp blade. Rat tissues were cultured at 37°C in a 10% 
CO2 incubator on polycarbonate filters (Nucleopore, Pleasanton, CA, 0.81xm 

pore size) floating in the wells of 24-well Falcon culture plates in 700 p~l of 

Dulbecco's Modified Eagle's Medium containing 10% FCS and gentamY- 
cin (DMEM/FCS). After 48 h, STS (1 ~M) and CHX (10 p.g/ml) were 

added to the appropriate wells and the cultures continued for an addi- 
tional 18 h. Mouse tissues were cultured on 1% agarose disks (5 mm in di- 

ameter) in 35-mm Falcon bacteriological dishes. The agarose disks (two 

per dish) were preincubated in 500 I~1 of DMEM/FCS for 30 min at 37°C 
in 10% CO2 before the tissue was added. After 30-60 min, CHX was 

added to the appropriate dishes to a final concentration of 10 p.g/ml, and 

30 min later, STS was added to the same dishes to a final concentration of 

1 or 10 I~M, and the cultures were continued for 1 or 2 d. We showed pre- 

viously that this concentration of CHX inhibited the incorporation of 
35S-labeled methionine and cysteine into proteins in GM701 cells by more 

than 95% (Jacobson et al., 1994). 

Frozen Sections and Propidium Iodide and TUNEL 
Labeling of Explants 

Both rat and mouse explants were fixed in 4% paraformaldehyde in 0.1 M 

phosphate buffer, pH 7.4, at 4°C for 18-48 h and then cryoprotected in 1 M 
sucrose in the same buffer for 1 d. The tissues were then imbedded in 

OCT compound (Miles, Inc., West Haven, CT), frozen in liquid nitrogen, 

and 6-10 Ixm sections were cut with a Bright cryostat and collected onto 
APES- or gelatin-coated glass slides. The sections were labeled with pro- 

pidium iodide (PI) to visualize all of the nuclei, as previously described 
(Barres et al., 1992). In some cases they were also labeled by the TdT- 

mediated dUTP-biotin nick end labeling (TUNEL) technique, as de- 
scribed by Gavrieli et al. (1992), with some modifications, using streptavi- 
din-fluorescein as previously described (Ishizaki et al., 1994). The sections 

stained with PI alone were examined in a Zeiss Universal fluorescence mi- 

croscope, and the proportion of pyknotic nuclei was counted in represen- 
tative fields. The doubly stained sections were examined in an MRC-1000 

laser-scanning, fluorescence, confocal microscope (Bio-Rad Labs, Her- 
cules, CA). About 6-12 consecutive 1-1~m optical sections were summed, 

and both the TUNEL and PI images of representative fields were printed 
on a Sony VP860CE printer. The proportion of apoptotic cells was deter- 

mined by counting the TUNEL-positive ceils on the micrographs and di- 
viding by the PI-labeled nuclei in the corresponding micrographs. 

Eggs and Blastomeres 

For experiments on outbred PO blastomeres, oestrous females were se- 

lected by external inspection (Champlin et al., 1973), paired overnight 
with males of proven fertility, and checked for the presence of a vaginal 
plug the next morning. Stages between the 2-4-cell and morula were 
flushed from the isolated reproductive tract on the second or third day af- 

ter mating (Hogan et al., 1986). The zona pellucida was dissolved with Ty- 
rode's saline that had been acidified to pH 2.5 with HCl (Nichols and 
Gardner, 1984). Mornlae were decompacted by incubation in CaE+-free 

OC medium containing 0.2% (wt/vol) ethylene glycol bis-(13-amino ethyl 
ether) N,N,N',N'-tetraacetic acid (Gardner and Nichols, 1991) for 10 min 
at 37°C before being dissociated by gentle pipetting in a siliconized mi- 
cropipette. The isolated blastomeres were cultured in 300-p,1 drops of 
MTF medium (Lane and Gardner, 1992) at 37°C for 18 h; in some cases 

STS was present at 1 ixM, in the presence or absence of CHX (10 I~g/ml), 
which was added 30 rain before the STS. 

In experiments on (Balb/c x C57B1/6) F1 mouse blastomeres, 6-8-wk-old 
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female mice were kept in the dark from 8 pm to 8 am and in light from 8 am 

to 8 pm. At noon they were injected intraperitoneaUy with five interna- 

tional units (IU) of pregnant mare's serum gonadotropin (PMSG; G-4877, 

Sigma). 48 h later, five IU of human chorionic gonadotropin (hCG; CG-5, 

Sigma) was injected. For mating, 1-2 injected female mice were caged over- 

night with one adult male of the same strain. Females that had mated were 

used for the recovery of zygotes or 2-4-cell embryos, and unmated fe- 

males were used for the recovery of unfertilized eggs (Hogan et al., 1986). 

Groups of eggs or 1-4-cell embryos, with the zona intact, were cultured in 

300-lxl drops of M6 medium (Hogan et al., 1986) at 37°C for 22-60 h in 5% 

CO2, in the presence or absence of STS (10 IxM) or STS plus CHX (10 p,g/ml). 

Cell viability was assessed by staining with the vital dye bisbenzimide 

(HOECHST 33342) (4 p,g/ml), which labels the nucleus, calcein-AM 

(2.5 tJ.M), which labels the cytoplasm of live cells, and ethidium ho- 

modimer (4 wM), which labels the nucleus in cells in which plasma mem- 

brane integrity has been lost, as previously described (Jacobson et al., 

1994). The cells were examined in an Olympus OMT2 inverted fluores- 

cence microscope at a final magnification of 400. 

In the cases where TUNEL labeling was used, the embryos were trans- 

ferred to PBS containing 1 mg/ml polyvinyl pyrollidone (PBS/PVP) on sil- 

iconized watch glasses. An equal volume of 4% paraformaldehyde in 0.1 M 

phosphate buffer (PB), containing 1 mg/ml PVP was added, and the em- 

bryos were incubated for 10 min at room temperature followed by two 

washes in PBS/PVP. The embryos were then incubated for 15 min at room 

temperature in 0.5% pronase (nuclease-free, Calbiochem, San Diego, CA) 

in PBS/PVP to remove the zona and washed twice in PBS/PVP, at which 

point most of the embryos broke apart into single blastomeres. The blas- 

tomeres were transferred to poly-L-lysine (PLL)--coated 13-mm glass cov- 

erslips and fixed with 4% paraformaldehyde in 0.1 M PB for 30 min at 

room temperature. They were then washed once in distilled water, al- 

lowed to dry, and then stored dry at -20°C until TUNEL staining, as de- 

scribed above. 

Blastocysts and Inner Cell Mass 

Blastocysts were recovered from timed pregnant outbred mice and the 

zona pellucida was removed with acidified Tyrode's saline. ICMs were ob- 

tained from blastocysts by immunosurgery (Solter and Knowles, 1975; 

Nichols and Gardner, 1984). In brief, after removal of the zona, the blasto- 

cysts were allowed to recover for I h at 37°C in a-medium containing 10% 

FCS. They were rinsed in PBS and then PB plus FCS, and were then incu- 

bated in heat-inactivated rabbit anti-mouse antiserum (diluted 1:9 in PB) 

for 45 min at 37°C. They were rinsed three times for I min each in PB plus 

FCS and then incubated in rat complement (diluted 1:9 in PB) for 8 min at 

37°C. The blastocysts were then transferred to a-medium containing 10% 

FCS for at least 45 min at 37°C to recover, before being gently pipetted to 

remove the lysed trophectoderm from the intact ICM. The zonaless blas- 

tocysts or isolated inner cell masses were cultured in a-medium in the 

presence or absence of 1 IxM STS, or 1 p,M STS plus 10 v.g/ml CHX, at 

37°C in 5% COz in Sterilin bacteriological plastic dishes for 18 h. Cell via- 

bility was assessed as for blastomeres. 

Human Red Blood Cells 

About 20 Ixl of human blood was obtained by finger prick and washed once 

in PBS containing 0.5 mM EDTA and once in DMEM. The red blood cells 

were counted in a haemocytometer and 2 × 106 cells were cultured in 2 ml 

DMEM/FCS, either alone or with 10 p~M STS or 10 p,M STS plus 10 I~g/ml 

CHX, in 35-mm Falcon tissue culture dishes at 37°C in 10% CO2 for up to 

2 wk. The cells were examined with phase contrast optics in an inverted 

Nikon TMA microscope. 

Results 

Neonatal Organs 

In initial experiments, small pieces of neonatal rat kidney, 
liver, lung, heart, muscle, small intestine, or skin were cul- 
tured on floating polycarbonate filters for 48 h in DMEM/ 
FCS, before STS was added to a final concentration of 1 v,M. 
After an additional 24 h, the explants were fixed in formal- 
dehyde, cut into frozen sections, and stained with propid- 
ium iodide (PI) to visualize the nuclei. In all cases, most of 

the cells in the STS-treated explants had a pyknotic, and 

often fragmented nucleus, whereas fewer than 20% of the 

cells in untreated explants were pyknotic (not shown). 

We then tested similar explants of neonatal mouse heart, 

kidney, lung, muscle, pancreas, liver or skin, either on 

floating polycarbonate filters or on agarose platforms. In 
these experiments the explants were treated with 1 p~M or 
10 IxM STS in the presence or absence of 10 wg/ml CHX, 
for either 1 or 2 d. The results in all organs were similar. In 
control cultures maintained in the absence of STS and 
CHX, there were always some cells with a pyknotic nu- 
cleus, but most of the cells appeared normal. By contrast, 
in cultures treated with 1 or 10 wM STS alone, or with STS 
and CHX, most of the cells had a pyknotic, and sometimes 

fragmented, nucleus. To quantify the PCD induced by STS 
plus CHX, explants were double-labeled by the TUNEL 
technique to detect D N A  fragmentation and with PI to vi- 
sualize all the nuclei. The proportions of PI-labeled nuclei 
that were TUNEL-positive were counted in confocal fluo- 
rescence micrographs. In all cases the majority of the nuclei 
in treated explants were TUNEL-positive; only a minority 
of the nuclei in untreated control explants were TUNEL-  

positive. In explants treated with 10 I~M STS and 10 l.Lg/ml 
CHX for 2 d, almost all of the nuclei were TUNEL-posi-  
tive, as shown for representative experiments in Table I 
and Fig. 1. These findings suggest that the great majority 
of the nucleated cells in developing organs are capable of 
undergoing PCD and apparently do not have to make new 
proteins to do so. 

Adult Organs 

To determine whether cells in adult tissues respond simi- 
larly to those in developing tissues, we cultured explants of 
adult mouse kidney, lung and ear pinna on agarose plat- 

forms and treated them as described above for developing 
tissues. Although the cells in the adult tissues were gener- 

Table L (STS + CHX)-induced PCD in Explants of Newborn 
Mouse Organs 

Treatment 
Organ durat ion Staurosporine PCD 

Heart 

Skin 

Lung 

1 0 37 

" 1 85 

" 10 99 

1 0 26 

" 1 69 

" 10 78 

2 0 41 

" 1 65 

" 10 100 

1 0 22 

" 1 55 

" 10 64 

2 0 31 

" 1 96 

" 10 98 

Pieces of newborn (Balb/c × C57B1/6) FI mouse organs were cultured on agarose 
platforms in DMEM/FCS. In STS-treated explants, CHX was added (to a final con- 
centration of 10 ~g/ml) 30 min before adding the STS. Frozen sections of the explants 
were double-labeled with PI and by the TUNEL technique, and the proportions of PI- 
labeled nuclei that were TUNEL-positive were counted in confocal fluorescence mi- 
crographs. Between 300 and 3,000 cells in multiple representative fields were as- 
sessed for each organ and condition. 
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Table II. (STS + CHX)-induced PCD in Explants of Adult 
Mouse Organs 

Treatment 
Organ duration Staurosporine PCD 

d ~ 

Kidney  1 0 3 

" 10 80 

2 0 31 

" 10 88 

Ear  p inna  1 0 10 

" 10 46  

2 0 27 

" 10 70 

Lung  2 0 35 

" 10 100 

Pieces of adult (Balb/c × C57B1/6) F1 mouse organs were cultured and assayed as in 
Table I. Between 100 and 1,400 cells in multiple representative fields were assessed 
for each organ and condition. 

Figure 1. Confocal fluorescence micrographs of (STS + CHX)- 
induced PCD in explant cultures of newborn mouse heart (upper 
four panels) and lung (lower four panels). The cultures were 
treated and processed as in Table I. The heart tissue was cultured 
for 1 d in the presence or absence of 10 ~M STS and 10 ixg/ml 
CHX, while the lung tissue was cultured for 2 d in the presence or 
absence of 1 ~.M STS and 10 ~g/ml CHX. Bar, 100 i~m. 

ally less sensitive to STS plus CHX than cells in develop- 
ing tissues, when treated with 10 IxM STS in the presence 
of CHX for 2 d, most of the cells had a pyknotic and some- 
times fragmented nucleus, which was labeled when ana- 
lyzed by the TUNEL technique (Table II). The amount of 
PCD in both control and treated specimens varied across 
the explant. In control explants, however, there were 
many regions where most of the cells were alive and only 
rare regions where most of the cells were dead; in treated 
cultures, by contrast, there were no regions where most of 
the cells were alive and many regions where almost all of 
the ceils were dead (Fig. 2). The only ceils that seemed re- 
sistant to treatment with STS and CHX were chondrocytes 

in the pinna, but this could be because the drugs failed to 
penetrate the cartilage matrix (see Discussion). Thus, even 
in adult tissues, the majority of nucleated cells seem to be 
capable of undergoing PCD and apparently do not have to 
make new proteins to do so. 

Blastomeres and Eggs 

As mouse blastomeres do not require signals from other 
cells to survive in vitro, it was of interest to test whether they 
could be induced to undergo PCD when treated with STS 
in the presence or absence of CHX. Blastomeres dissoci- 
ated from 2- or 4-cell mouse embryos did not die when cul- 

tured for 18 or 24 h with 1 ~M STS, with or without CHX: 
the cells remained phase-bright, excluded ethidium homo- 
dimer (indicating plasma membrane integrity), had a nor- 
mal looking nucleus when stained with bisbenzimide, and 
were not labeled when analyzed by the TUNEL technique 
(not shown). Blastomeres in intact 4-cell embryos behaved 
similarly, even with 10 I~M STS (Table Ill),  as did freshly 

ovulated mouse eggs (not shown). Thus, blastomeres and 
oocytes are unusually resistant to the lethal effects of STS 
and CHX, as all other normal, developing nucleated cell 
types we have tested undergo PCD when treated with 
these doses for this time in dissociated-cell culture. 

When eggs or 1-4-cell embryos were treated with 10 p.M 
STS, with or without CHX, for 26-60 h, however, most of 
the cells died (Table III), as judged by their abnormal mor- 
phology when viewed by phase contrast microscopy, their 
failure to fluoresce when exposed to calcein, their staining 
with ethidium homodimer, their pyknotic nucleus visualized 
by bisbenzimide or PI staining, and by their staining when 
labeled by the TUNEL technique (Fig. 3). Thus, blasto- 
meres and eggs seem to be capable of undergoing PCD 
and do not need to make new proteins to do so. 

Blastocysts 

By the 32-cell stage, mouse blastomeres have developed 
into two distinct cell types, ICM cells, which will give rise to 
the cells of the embryo proper, and trophectoderm cells, 
which will give rise to cells of the extraembryonic mem- 
branes. When 32--64-cell hlastocysts were treated with 1 ~M 
STS and 10 p~g/ml CHX for 18 h, more than 90% of the 
cells died with the characteristic morphological features of 
apoptosis (Fig. 4) indicating that both ICM and trophecto- 
derm cells are more sensitive to these agents than are blas- 
tomeres. When isolated ICMs were treated in this way, all 
of the cells died with the features of apoptosis (Fig. 4). 
Thus, blastomeres become more sensitive to (STS plus 
CHX)-induced PCD after they differentiate into ICM and 
trophectoderm. 

Human Red Blood Cells 

When human red blood cells were cultured in DMEM/ 
FCS at 106 cells/ml, they survived as normal-appearing, 
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Figure 2. Confocal fluorescence micrographs of (STS + CHX)- 
induced PCD in explant cultures of adult mouse pinna. The tis- 
sues were cultured for 2 d and processed as in Table I. STS was 
used at 10 p~M and CHX at 10 Ixg/ml. Bar, 100 ~m. 

phase-bright, biconcave cells for at least a week. After this 
time, the cells began to die, and all were dead by 2 wk. 
Dead cells were easily distinguished as small, phase dark, 
round ghosts. Treatment with 10 IxM STS, with or without 
CHX, had no effect on the morphology or survival of the 
cells (not shown). 

Discussion 

We find that the vast majority of cells in explant cultures 
of 8/8 types of newborn organs and 3/3 types of adult or- 
gans die with the characteristic features of apoptosis when 
treated with high concentrations of STS in the presence of 
CHX. The only cell type that seems to resist this treatment 
is the chondrocyte in explants of adult pinna. It is likely, 
however, that this apparent resistance of the chondrocytes 
reflects the failure of the STS and/or CHX to penetrate the 
extracellular matrix of the cartilage, as we showed previ- 

ously that chondrocytes dissociated from adult rat sternum 
undergo apoptosis when treated in vitro with I IxM STS for 
1 d (Ishizaki et al., 1994). The requirement for a higher 
concentration of STS and a longer treatment time for cells 
to undergo PCD in explants of adult organs compared to 
neonatal organs may also reflect differences in drug pene- 
tration. Taken together with previous results obtained 
with various cell lines and dissociated primary cells (see ref- 
erences in Introduction), our present findings suggest that all 
nucleated mammalian cells, both in developing and mature 

Table III. STS and (STS + CHX)-induced PCD in Mouse 
Embryos and Eggs 

TreaUnent 

Stage duration Treatment Dead/Total Cell death 

h % 

4-Cell  22 0 0/99 0 

" C H X  0•53 0 

" STS 3/52 6 

" C H X  + STS 0/48 0 

1-Cell 36 0 0/84 0 

" C H X  0/22 0 

" STS 21121 100 

" C H X  + STS 23/26 89 

2-Cell  37 0 3/46 2 

" C H X  3/49 6 

" STS 57158 98  

" C H X  + STS 47149 96 

4-Cell  36 0 111204 5 

" C H X  0/56 0 

" STS 49153 93 

" C H X  + STS 66169 96 

E g g  28 0 2/42 5 

" STS 34145 76 

36 C H X  0/24 0 

" C H X  + STS 22123 96 

Embryos and eggs were flushed from the reproductive tract of mated or unmated su- 
perovulated female (Balb/c × C57B1/6) F1 mice. They were cultured with the zona 
pellucida intact in 300 ttl drops of M6 medium. STS was used at 10 t~M and CHX at 
10-30 ttg/ml. Cell death was indicated by an abnormal morphology when viewed by 
phase-contrast optics, fluorescent staining with ethidium homodimer, lack of calcein 
fluorescence, and nuclear pyknosis visualized by bisbenzimide staining. 

organs, are capable of undergoing PCD and constitutively 
express all of the protein components required to execute 
the death program. The fact that STS is not a physiological 

inducer of PCD and that we do not know how it activates 
PCD does not affect this conclusion. In those cases where 
inhibitors of RNA or protein synthesis inhibit PCD, it is 
presumably because macromolecular synthesis is required 
to activate the death program rather than to execute it. 

Even blastomeres and ovulated eggs, both of which are 
relatively resistant to STS treatment, die when the concen- 
tration of STS is increased from I I~M to 10 IxM and treat- 
ment time is extended from 18-22 h to 36-60 h, either in 

the presence or absence of CHX. In the case of blasto- 
meres, at least, in the presence or absence of CHX, the 
cells die with the characteristic features of apoptosis, sug- 
gesting that these cells too are capable of undergoing PCD 
and constitutively express the proteins required to execute 
the death program. It seems, therefore, that the reason 
blastomeres do not require extracellular signals to survive 
(Biggers et al., 1971) is not because they lack a functional 
death program, but rather because they can keep the 
death program suppressed in the absence of such signals. 
It is likely that eggs are similar to blastomeres in these re- 
spects. Because they are arrested in metaphase of the sec- 
ond meiotic division, however, eggs do not have a discrete 
nucleus, so it is difficult to assess whether the death in- 
duced by STS is PCD, although this seems likely. 

When blastomeres develop into ICM and trophecto- 
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Figure 3. Confocal fluorescence micrographs of 
(STS + CHX)-induced PCD in blastomeres. 
Mouse embryos (4-6 cells) were cultured for 36 h 
in medium alone or STS alone (not shown), or in 
CHX (10 Ixg/ml) or CHX plus STS (10 p,M). The 
zoua pellucida was removed and the btastomeres 
double-labeled with PI and the TUNEL tech- 
nique as described in Materials and Methods. A 
TUNEL-negative blastomere that was treated 
with CHX alone is shown in the upper panels. 
Three TUNEL-positive blastomeres that were 
treated with CHX and STS are shown in the 
lower panels. Blastomeres treated with medium 
alone were also TUNEL-negative. Bar, 25 txm. 

derm, we find that they become just as sensitive to (STS 

plus CHX)-induced PCD as other developing cells. The 

molecular basis for this change in susceptibility remains to 

be determined. The change in susceptibility is consistent 

with the findings that substantial numbers of  ICM, and 

possibly t rophectoderm cells, undergo PCD in normal de- 

velopment (EI-Shershaby and Hinchliffe, 1974), whereas 

blastomeres apparently do not. 

Perhaps not surprisingly, mature human erythrocytes do 

not die when treated with 10 I~M STS in the presence or 

Figure 4. (STS + CHX)-induced PCD in blastocysts and ICMs. 
Blastocysts at the 32-64-cell stage were flushed from the repro- 
ductive tract of timed pregnant PO mice, and the zona pellucida 
was removed with acidified Tyrode's saline. ICMs were isolated 
by immunosurgery. The blastocysts and ICMs were cultured in 
a-medium in the presence or absence of 1 I~M STS and 10 ~g/ml 
CHX for 18 h, and cell viability was assessed as in Table III. 

absence of CHX. Thus far, they are the only mammalian 

cells shown not to do so. These cells lack all organeUes and 

presumably do not have the molecular machinery required 

for PCD. It is not  simply the lack of a nucleus that is re- 

sponsible for their resistance, as anucleate cytoplasts are 

able to undergo PCD (Jacobson et al., 1994; Schulze- 

Osthoff et al., 1994; Nakajima et al., 1995). 

Much of what is known about the molecular mechanism 

of PCD came originally from genetic studies of the nema- 

tode C. elegans, which identified two genes, ced-3 and ced-4, 

that are required for all the PCDs that occur during devel- 

opment:  if either gene is inactivated by mutation, none of 

these cell deaths occur (Ellis and Horvitz, 1986). Whereas 

ced-4 encodes a novel protein (Yuan and Horvitz, 1992), 

ced-3 encodes a member  of the IL-113 converting enzyme 

(ICE) family of cysteine proteases (Yuan et al., 1993). One 

or more members of this family also seem to play impor- 

tant roles in PCD in vertebrate cells: ced-3 and other fam- 

ily members can induce PCD when ectopically expressed 

in mammalian cells (Gagliardini et al., 1994; Miura et al., 

1993; Wang et al., 1994; Fernandes-Alnemri et al., 1994; 

Kumar et al., 1994), and inhibitors of these proteases can 

inhibit PCD in vertebrate cells (for review see Martin and 

Green, 1995), including STS-induced PCD (Cain et al., 

1995; Mashima et al., 1995; Zhu et al., 1995, and accompa- 

nying paper). Another  C. elegans gene, ced-9, acts as a 

brake on the death program: when it is inactivated by mu- 

tation, most  of  the cells in the developing worm undergo 

ced-3- and ced-4-dependent PCD (Hengartner et al., 

1992). The latter finding suggests that ced-3 and ced-4, and 

the other genes required to execute the death program, 

are constitutively expressed in most, and perhaps all, cells 

in the developing worm. It may be, therefore, that consti- 
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tutive expression of the machinery for PCD including the 

relevant members of Ced-3/ICE family of proteases, is a 

general feature of animal cells. 

Two novel cell death genes, reaper (White et al., 1994) and 

hid (Grether et al., 1995), have been identified in Dro- 

sophila. A D N A  deletion that eliminates both genes elimi- 

nates all of the PCDs that occur during normal fly devel- 

opment, yet PCD can occur if the mutant flies are exposed 

to a very high dose of x-rays (White et al., 1994). Thus, 

these death genes apparently encode proteins that activate 

the death program rather than execute it. Moreover, 

reaper is transcriptionally activated 1-2 h before PCD, 

suggesting that the activation of the death machinery in 

flies normally depends on RNA and protein synthesis. 

This seems likely to be the case also for many of the nor- 
mal cell deaths that occur in developing vertebrates as well 

(Tata, 1966; Oppenheim et al., 1990; Coucouvanis and 

Martin, 1995), although a homologue of reaper has yet to 
be identified in vertebrates. 
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