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1. Introduction

The description of the biological process of growth and remodeling is of interest
both because of its importance as a fundamental mechanical process that occurs
in normal development and in a number of pathological conditions, and because it
offers an interesting and unusual application of continuum mechanics. It is known
that mechanical quantities such as stress and strain can modulate growth, and
growth of a tissue can, in turn, induce the development of residual stress. These are
among the reasons that the phenomena of growth and remodeling have attracted
the attention of researchers in both the mechanics and the biology communities.
A number of earlier authors constructed kinematical descriptions of growth us-
ing the methods of continuum mechanics, but the work of Hsu [1], Cowin and
Hegedus [2], Skalak [3], and Skalak et al. [4] are the initial efforts made to formu-
late mechanical theories to describe the growth of biological tissues. An excellent
article by Taber [5] reviews the progress in the field through 1995.

The most general 3-dimensional theory of stress-dependent volumetric growth
for soft biological tissues was first presented by Rodriguez et al. [6]. That theory
introduced two fundamental ideas. The shape change of the unloaded tissue during
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growth can be described by a mapping whose gradient is analogous to a deforma-
tion gradient tensor. The first fundamental idea in [6] was that this gradient could
be decomposed into the product of a “growth stretch tensor”, which describes the
addition of material at a point and the orientation of its deposition, and a tensor that
represents the gradient of the elastic accommodation of the body to the new ma-
terial. This elastic portion of the gradient ensures compatibility of the total growth
deformation. The second fundamental idea was that the stress due to growth of a
tissue was a function of only the elastic portion of the gradient of the mapping.

Because at the time when [6] was written it was not yet known how to construct
constitutive equations for residually stressed finite elastic materials, the theory pre-
sented in [6] was illustrated only by problems in which the initial configuration was
stress-free. In addition, their interpretation of the theory required knowledge of a
locally stress-free reference state for the grown material. That such a zero-stress
state exists is suggested by the destructive experiments that are commonly used to
determine the residual stress in biological tissues and other materials. When a piece
of residually stressed material is cut into progressively smaller pieces, the residual
stress is relieved as the cuts are made.

Johnson and Hoger [7] stated and proved a mathematical description of this
destructive testing process, which they used to motivate the concept of a virtual
configuration of a residually stressed material. They applied the concept of the
virtual configuration to derive constitutive equations for residually stressed elastic
materials [7, 8]. The derivation of these constitutive equations requires that the
response function of the corresponding natural material be locally invertible and
satisfy certain smoothness requirements.

Recently, Hoger [9] expanded the theory of growth originally presented in [6] to
take advantage of the availability of constitutive equations for finite elastic residu-
ally stressed materials. That work included an example of growth where the origi-
nal configuration of the body supports a residual stress. It also contains a discussion
of the growth stretch tensor, and identifies broad classes of growth based on the
form taken by the growth stretch tensor.

The theory of growth presented by Rodriguez et al. and Hoger incorporates
the use of a locally stress-free configuration of the material either explicitly [6]
or through the use of the virtual configuration in the construction of a constitutive
equation [9]. In both cases, the locally stress-free state is used as a reference con-
figuration in which the mechanical properties of the natural material are known. In
this paper we will not rely on the existence of a locally stress-free configuration,
but, instead, will present a more general approach to developing the appropri-
ate constitutive equation for a material comprising a residually stressed growing
body.

To accomplish this, we will first focus on the issue of how to determine whether
two material points are equivalent in the sense that their intrinsic mechanical prop-
erties are the same. The two points may be in different elastic bodies, or they
may be the same material point in two configurations of the body; they may be



CONSTITUTIVE FUNCTIONS OF ELASTIC MATERIALS 177

in different stress states and may have deformation histories that are unknown. We
engage this question by defining the constitutive functions with the current config-
uration taken as reference. The material properties are completely characterized by
a density function that gives the density in the current state, and a response function
that gives the stress in any configuration obtained by an elastic deformation out of
the current state. No information on the histories of the deformation and stress of
the material is needed. In particular, it is not necessary to identify a zero-stress
configuration.

We then will use this framework to construct a theory of growth in which the
growth tensor and the total deformation are defined on the current configuration.
The forms of the density function and the response function evolve as the material
grows and deforms.

There are two advantages of the theory of growth that we present in this pa-
per over the theory of Rodriguez et al. [6] and Hoger [9]. The first advantage is
due to the use of the current configuration as reference. The growth theory of [6]
and [9] is Lagrangian: every function is referred to the original configuration. This
typically presents no difficulty in the mechanics of solid materials, but if a body
is growing, it is gaining material points, so there is no easily identified fixed refer-
ence configuration. One consequence of this difficulty is that the theory can only
approximate continuous growth by modeling the growth as taking place in discrete
increments [9]. The theory of growth we present in this paper is constructed with
the current configuration as reference, thereby making it ideal for the description
of continuous growth processes.

Second, neither Rodriguez et al. [6], nor Hoger [9] provided a theoretically
sound foundation for the two central ideas in their theory of growth: the decom-
position of the gradient of the total deformation; and the related assertion that the
response of the material should depend only on the elastic portion of the decom-
posed gradient. In this paper we provide that foundation. We present a derivation
of the evolution of the response function during growth and deformation, and
determine explicitly how the evolution depends on the growth and on the total
deformation. In particular, we provide a mathematically rigorous justification for
the statement made in [6]: “Intuitively, residual stress arises from the part of the
total growth deformation that is responsible for accommodating the newly grown
tissue to prevent discontinuities in the grown state of the body.”

In the next section we focus on the general issue of the characterization of
the mechanical properties of a compressible material in the context of continuum
mechanics. The density function and the response function are introduced with
the current configuration taken as reference. Our goal in the section is to provide a
rigorous definition for the statement that two material points have the same intrinsic
material properties. We do this through the definitions of identical material points
and equivalent material points, both of which are constructed using the density
and response functions. The definition of equivalent material points requires the
introduction of the equivalence transformation tensor, whose properties are ex-
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amined. The relationship of this transformation tensor to the locally-stress-free
configuration of [6] and the virtual configuration of [7–9] is also discussed.

In Section 3, we construct a theory of growth for a compressible elastic body.
Only growth processes in which the intrinsic mechanical properties of the material
do not change are considered. This allows the equivalence transformation tensor
associated with the growth at a point to be defined through the requirement of
material equivalence. The growth tensor, which describes the amount and the ori-
entation of the material added at a point during a growth process, is defined. The
dependence of the equivalence transformation tensor on the growth tensor and the
total deformation gradient is then derived, and used to obtain the equations that
explicitly describe the evolution of the density function and the response function
during a growth process.

In Section 4, we outline the analogous theory of growth for incompressible
elastic materials. The concepts of identical material points and equivalent material
points are defined for incompressible materials; the appropriate equivalence trans-
formation tensor is introduced; and the dependence of the Cauchy stress on the
growth tensor and on the total deformation gradient is given.

We conclude the paper in Section 5 with an example in which we examine
the spherically symmetric continuous growth of a spherical shell that is initially
stress-free. The shell remains unloaded during the growth process. This growth
boundary value problem is solved for the general class of homogeneous, isotropic,
incompressible, elastic materials. We obtain expressions for the components of the
residual stress generated by the growth process in terms of the growth tensor. In
addition, explicit expressions for the time rates of change of the residual stress
components are derived in terms of the growth rate. The section concludes with a
discussion of the dependence of the growth-induced residual stress on the form of
the growth tensor.

2. Characterization of Material. Equivalence of Material Points

Consider a body composed of a compressible elastic material that occupies the
domain� ⊂ R3 at the current time. The body may undergo deformations due
purely to external loads or deformations that include growth. It is usual in con-
tinuum mechanics to characterize the material of the body, especially the relation
between the deformation and the stress, in terms of its mechanical properties in a
fixed reference configuration. This approach is not convenient, however, if a fixed
reference configuration cannot be easily identified, or if there is no fixed reference
configuration in which the properties of the material are known.

An alternate approach is to use the current configuration� as the reference
configuration, and to define the response function of the material in terms of the
relation between deformations out of� and the stresses in the deformed configu-
rations. If the body is subject to a time dependent deformation or growth process,
then� will vary in time continuously, as will the characterization of the material.
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For the present study, we will characterize the material by a density function?

ρ: � → R+ and a response function̂T: Lin+ × � → Sym, where Lin+ is the
set of all linear transformations onR3 that have positive determinant, and Sym the
set of all symmetric linear transformations onR3. These functions are assumed to
possess the smoothness needed in the analysis. The value of the density function
ρ(x) gives the current density of the material atx ∈ �. We will term a deformation
that is produced purely by external loads apure deformationto distinguish it from
a deformation in which growth occurs. Let the mappingw: � → R3 represent a
pure deformation of the body out of the current configuration. Then the value of the
response function̂T(∇w(x), x) gives the Cauchy stress tensorT(w) at w = w(x).
Note that the Cauchy stressT(x) atx in the current configuration� is given by

T(x) = T̂(I , x), (1)

whereI is the identity tensor. If the body is not loaded in the current configuration,
this stress is typically called the residual stress.

As a body deforms, the expressions for the density function and the response
function at a point will evolve to reflect the changing reference configuration. We
now examine how these functions evolve over a pure deformation. To be definite,
let the configurations of the body before and after a pure deformationw be de-
noted by� and�w, respectively, where�w ≡ w(�). In addition, let(ρ, T̂) and
(ρw, T̂w) be the density and response function pairs in� and�w, respectively. By
the conservation of mass, the density of the deformed body atw = w(x) is given
by [det∇w(x)]−1ρ(x).

Now consider a further pure deformationz: �w → R3 of the body out of
configuration�w. The Cauchy stress atz = z(w(x)) is given by T̂(∇z∇w, x).
Hence, the density functionρw and the response function̂Tw are given by

ρw(w) = det
[∇w(x)

]−1
ρ(x), (2)

and

T̂w(F,w) = T̂
(
F∇w(x), x

)
, (3)

wherew = w(x).
Up to this point we have obtained the relations between the density functions

and the response functions for the pointsx andw that are related by a pure de-
formation. We now turn to the more general problem of describing the relation
between the constitutive functions of any two points that have the same intrinsic
material properties. By intrinsic properties of a material point, we mean the density
and response functions at this point in a configuration with a prescribed stress state.

? Here we have chosen to include the density function in the characterization of a material,
because mass change is an important aspect of growth, and because the evolution of density must
be taken into account when studying a full dynamical problem of growth. The density function is,
however, not needed in a static or quasistatic problem, such as the one presented in Section 5.
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If a material has a stress-free natural state, it is convenient to use the properties of
this underlying natural material as the intrinsic material properties. In any case, the
intrinsic properties of a material do not change when the material undergoes pure
deformations.

Two material points will be said to beidentical if their density functions and
their response functions are the same. Two such identical material points may
belong to the same body or to different bodies, or may be the same material point at
two different deformation or growth configurations.? In any case, it is not possible
to distinguish between two identical material points with mechanical experiments.

During all pure deformations and for certain types of growth, the intrinsic prop-
erties of a material point remain unchanged, although the forms of the density
function and the response function at the material point will typically change.
In order to identify materials which share intrinsic material properties, we now
introduce the concept ofequivalent material points: two material pointsx1 andx2

will be said to beequivalentif there exists a pure deformation atx1 such that after
this deformation,x1 is identical tox2. More precisely, let(ρ1, T̂1) and (ρ2, T̂2)

be the density and response function pairs associated with the material pointsx1

andx2. These two material points are equivalent if there existsF ∈ Lin+ such that

ρ2(x2) =
(
detF

)−1
ρ1(x1) (4)

and

T̂2(F, x2) = T̂1
(
FF, x1

) ∀F ∈ Lin+. (5)

The tensorF will be termed theequivalence transformation.
By comparing equations (4) and (5) with equations (2) and (3), we observe

that the equivalence transformation tensor can be thought of as the gradient of the
homogeneous deformation under which the material pointx1 becomes identical to
the material pointx2.

It is obvious that if two material points are identical, then they are equivalent
with F = I . It is also clear that a material point is equivalent to itself after any
pure deformation. For example, letw: � → R3 be a pure deformation of�. The
material pointx ∈ � is equivalent tow = w(x) with

F = ∇w(x). (6)

It follows from equation (6) that if the material undergoes a further pure defor-
mationz: w(�) → R3, then the new equivalence transformationF

∗
for the point

z = z(w(x)) is given by the product of∇z and the equivalence transformation
associated withw:

F
∗ = ∇(z ◦w)(x) = ∇z∇w = ∇zF. (7)

? In this latter case, one must redefine the “current times” of the two configurations accordingly.
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If the stresses at two equivalent material pointsx1 andx2 are the same, then it
follows from (1) and (5) that

T̂1(I , x1) = T̂2
(
I , x2

) = T̂1(F, x1).

A solution of the above equation isF = I . We shall assume that this solution is
unique. Hence, if the stresses and densities at two equivalent material points are
the same, these two material points are identical.

In the next section we shall use the concept of material equivalence developed
above to study growth of soft biological tissues. Of course, growth does not happen
in discrete increments, but is a continuous process. Using the current configuration
as reference leads to a natural formulation for a continuous growth process, as
displayed at the end of Section 3.

3. Growth

Changes in size and shape of a biological tissue can involve both growth, a change
in mass, and remodeling, which includes changes in internal structure, density and
material properties. Often growth and remodeling are linked, since the process of
mass alteration can change the mechanical properties of the tissue. For example,
the newly deposited tissue may have different material properties than the original
tissue; or only one component of the tissue may grow, thus changing the mechan-
ical properties of the tissue as a whole. Here we will focus exclusively on growth,
which can involve both the addition and removal of material, sometimes occurring
simultaneously. See Rodriguez et al. [6] and Hoger [9] for a full discussion of the
kinematical description of growth.

In this work, we will restrict our attention to growth processes that meet the
following two requirements. First, the material points must be dense during growth.
This implies that in any arbitrary neighborhood in the grown body, there will
always be material points that existed before the growth took place. The second
requirement is that the intrinsic mechanical properties of the material should not
change during growth. In other words, the new material has the same properties as
does the original material. This implies that not only is a material point equivalent
(in the sense of Section 2) to itself after growth, but also that a new material point
added during growth is equivalent to an original material point in an arbitrarily
small neighborhood of the new material point. Growth processes that meet these
restrictions are special forms of volumetric growth, which takes place in the volume
of a tissue rather than on the surface.

Kinematically, the addition of material alone can be described by a tensor val-
ued functionG: � → Lin+, termed the growth tensor, that describes the amount
and the orientation of material deposition [6, 9].

To set ideas, we first consider the simple case of a homogeneous elastic body
with constant density and zero stress in the current configuration. Let the body
undergo a homogeneous growth, with no applied external loads. For this case, the
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shape change of the grown body can be described by an affine mapping similar to
a homogeneous deformation in continuum mechanics. The growth tensor in this
simple case would correspond to the gradient of this mapping, which is uniform.
The Cauchy stress in the grown body is maintained at zero, and the density of the
body remains constant.

The situation just described is atypical. The growth tensor is not homogeneous
in general, and the Cauchy stress in the body is usually inhomogeneous. To gener-
alize the idea introduced in the above simple example, consider an inhomogeneous
elastic body supporting an inhomogeneous stress in the current configuration�,
and consider a small spherical neighborhood centered at pointx ∈ �. Let the
body undergo an inhomogeneous growth, and suppose that loads are applied on
the grown body so that the stress at pointx remains the same in the grown state
as it was in�. Due to the growth, the sphere grows into a shape which can be
approximated by an ellipsoid. The growth tensorG(x) describes the geometric
change of the sphere to the ellipsoid.

The above argument is local. Globally, it is generally impossible to maintain, by
applying the surface loads alone, the same inhomogeneous stress in the entire body
during the growth. The shape change of a body subjected to an arbitrary growth
process can be described by a mappingy: � → R3, which will be referred to
as thetotal deformation. In general, the gradient of this total deformation will be
different from the growth tensor. Hence, the total deformation cannot be obtained
from the growth tensor alone. In fact, the growth tensor will in general not be the
gradient of a vector field. However, at any material point where the gradient of the
total deformation happens to be equal to the value of the growth tensor, the stress
at that point will remain unchanged after the growth process.

A growth process can also be accompanied by an additional pure deformation
due to a change of the applied loads on the body. Of course, in this case the
additional pure deformation will contribute to the total deformation.

Let ρ(x) andT̂(F, x) denote the density and response functions for the material
in the current configuration. And letρy(y) and T̂y(F, y) denote the density and
response functions of the material at some later time after growth and deformation
has occurred, as described by the total deformationy(x). We now examine how
ρy(y) andT̂y(F, y) are related toρ(x) andT̂(F, x).

By the definition of material equivalence and by the requirement that a material
point be equivalent to itself at any time during a growth or deformation, there exists
an equivalence transformationF: �× Lin+ × Lin+ → Lin+, such that

ρy
(
y(x)

) = [detF
(
x,G(x),∇y(x)

)]−1
ρ(x), (8)

and

T̂y(F, y(x)) = T̂
(
FF
(
x,G(x),∇y(x)

)
, x
) ∀F ∈ Lin+. (9)

Here we have temporarily assumed that the equivalence transformation depends on
the material point, the growth tensor, and the total deformation gradient.
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We now determine the form of the equivalence transformationF(x,G,∇y), and
show that the form ofF is actually independent of the material. By the properties
of the growth tensor, we observe that if the values of the total deformation gradient
and the growth tensor are the same at a point, then the stress and density at this
point do not change. Consequently, such a material point is identical to itself after
the growth and deformation. That is,

F
(
x,G(x),G(x)

) = I . (10)

If the material, after the total deformationy, undergoes a further pure deforma-
tion z: y(�)→ R3, then the transformation tensor for the combined deformations
can be obtained by consideringz as a pure deformation imposed after the to-
tal deformationy. The new equivalence transformation can be obtained by using
equation (7):

F(x,G,∇z∇y) = ∇zF(x,G,∇y) ∀z. (11)

For a given growth tensorG, the value of the total deformation gradient at a par-
ticular pointx ∈ � can be made equal to any given tensor in Lin+ by applying
appropriate loads to the body. Suppose that loads are chosen so that, at the pointx,
∇y(x) = G(x). Then by (11),

F(x,G,∇zG) = ∇zF(x,G,G) ∀z,
which, with (10) andF = ∇zG, can be written as

F(x,G,F) = FG−1 ∀F ∈ Lin+. (12)

Equation (12) gives the explicit form of the equivalence transformation. In par-
ticular, it indicates thatF does not depend explicitly on either position or on the
material. Rather, for a given growth tensorG and the total deformationy on�, the
value ofF depends onx implicitly throughG(x) and∇y(x).

Substitution of (12) into (8) and (9) yields

ρy
(
y(x)

) = detG(x)
[
det∇y(x)

]−1
ρ(x), (13)

and

T̂y
(
F, y(x)

) = T̂
(
F∇y(x)G−1(x), x

) ∀F ∈ Lin+.

These equations describe the changes in the density function and the response
function after growth. In particular, the Cauchy stress in the grown state is given
by

T(y) = T̂y(I , y) = T̂
(∇y(x)G−1(x), x

)
, (14)

wherey = y(x).
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Figure 1. The body originally occupies domain�. In this configuration the material is charac-
terized by the density functionρ: �→ R+ and the response function̂T: Lin+ ×�→ Sym.
The density of the material atx ∈ � is given by ρ(x), and the Cauchy stressT(x) in
the configuration� is given byT(x) = T̂(I , x). After a growth process, represented here
by the total deformationy(x), the body occupies the regiony(�). The densityρy(y) and
the stressT(y) at point y ∈ y(�) are given byρy(y) = detG(x)[det∇y(x)]−1ρ(x) and
T(y) = T̂(∇y(x)G−1(x), x).

The derivations leading to equations (12) and (14) provide a rigorous foundation
for two suggestions originally proposed by Rodrigue et al. [6] and elaborated by
Hoger [9]. Equation (12) can be rewritten as

F(x,G,∇y) = ∇yG−1,

or

∇y = FG.

This is the decomposition of the total deformation originally presented in [6, equa-
tion 9]. The decomposition was introduced in the context whereG is defined as
the growth from the original stress-free reference state to a new locally stress-
free state, andF is viewed as an elastic deformation that ensures the continuity
of the body. In the present work,G corresponds to the growth of the body from
the configuration�, which is not necessarily stress free. The introduction of the
equivalence transformationF is based on the requirement of material equivalence
for growth rather than being assumed, as it was in [6, 7, 8, 9]. Of course,F is
generally not the gradient of a deformation of the body, as the notion of equivalence
of material points is local. In [6, 7, 8, 9], it is conjectured that the stress which
arises from the growth depends only on the elastic deformation that ensures the
continuity of the body. The derivation of (14) provided here gives a rigorous proof
of this conjecture.
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A continuous growth process can be described by a time-dependent growth
tensorG(x, t) and a time-dependent total deformationy(x, t). Equations (13) and
(14) can be applied to this growth process, yielding

ρy(y, t) = detG(x, t)
[
det∇y(x, t)

]−1
ρ(x),

and

T(y, t) = T̂
(∇y(x, t)G−1(x, t), x

)
,

wherey = y(x, t), andρy(y, t) andT(y, t) are the density and the stress aty in the
grown configuration at timet .

4. Incompressible Materials

The concepts developed in Sections 2 and 3 can also be used for incompressible
materials. In this section we present the parallel theory for the growth of an incom-
pressible elastic body. For brevity, we shall present the basic equations with little
or no derivation.

Let the body composed of an incompressible elastic material occupy the domain
� ∈ R3 at the present time. As in the compressible case, the material is charac-
terized by a densityρ function and a response function̂T, but for incompressible
materialŝT:Unim×�→ Sym, where Unim is the set of all linear transformations
on R3 whose determinant is unity. The value of the response functionT̂ gives the
Cauchy stress only up to an arbitrary hydrostatic pressure. Letw: � → R3 with
∇w ∈ Unim be a pure deformation of the body. The Cauchy stress in the deformed
configuration is

T(w) = −pw(w)I + T̂(F, x), (15)

wherew = w(x), F = ∇w(x), andpw: w(�) → R is the hydrostatic pressure
required by the incompressibility constraint. The Cauchy stressT(x) in the current
configuration� is given by

T(x) = −p(x)I + T̂(I , x),

wherep: �→ R is in general different frompw appearing in (15).
The notions of identical material points and of equivalent material points can

be defined for incompressible bodies in a way similar to that used for compressible
bodies. However, since for incompressible bodies the response function determines
only those components of the Cauchy stress that are orthogonal to the identity ten-
sorI , only the orthogonal components of the response function need be considered
when making the definitions. In the following,T will denote the part of̂T that is
orthogonal toI :

T ≡ T̂ − 1

3

(
trT̂
)
I .
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Consider two bodies�1 and�2 (which may represent two configurations of
the same body), with associated density and response function pairs(ρ1, T̂1) and
(ρ2, T̂2). Two material pointsx1 ∈ �1 andx2 ∈ �2 are said to be identical if

ρ1(x1) = ρ2(x2), (16)

and

T1(F, x1) = T2(F, x2) ∀F ∈ Unim.

If instead, the two material points satisfy (16) and

T1(FF, x1) = T2(F, x2) ∀F ∈ Unim (17)

for some equivalence transformation tensorF ∈ Unim, then the points are said to
be equivalent.

We consider the growth of an incompressible body that meets the requirements
that the material points are dense during the growth, and that the intrinsic me-
chanical properties of the material do not change. Such a growth is described, in
analogy to compressible materials, by a growth tensorG: �→ Lin+, along with a
total deformationy: �→ R3 which provides the total shape change of the body.

Let ρy(y) andT̂y(F, y) be the density and response functions of the material in
the grown body. Since a material point is equivalent to itself after a total deforma-
tion, it follows from (16) and (17) that there exits an equivalence transformation
tensorF: �× Lin+ × Lin+ → Unim such that

ρy
(
y(x)

) = ρ(x),
and

Ty
(
F, y(x)

) = T
(
FF
(
x,G(x),∇y(x)

)
, x
) ∀F ∈ Unim. (18)

The arguments that lead to (12) for compressible materials are equally valid for
incompressible materials; so the representation (12) for the equivalence transfor-
mation holds for incompressible materials as well. SinceF ∈ Unim, equation (12)
implies that

detG(x) = det∇y(x). (19)

Substitution of (12) into (18) gives

Ty
(
F, y(x)

) = T
(
F∇y(x)G−1(x), x

) ∀F ∈ Unim.

The Cauchy stress in the grown state is then given by

T(y) = −py(y)I + T̂y(I , y) = −p(x)I + T̂
(∇y(x)G−1(x), x

)
,

wherey = y(x).
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Continuous growth of an incompressible body can be described by a time-
dependent growth tensorG(x, t) and a time-dependent total deformationy(x, t).
For such a growth process the Cauchy stress becomes

T(y, t) = −p(x, t)I + T̂
(∇y(x, t)G−1(x, t), x

)
, (20)

wherey = y(x, t).

5. Growth of a spherical shell

In this section we examine the spherically symmetric growth of a spherical shell
which, in the initial configuration, is composed of a stress-free, homogeneous,
isotropic, incompressible, elastic material. The shell remains unloaded during the
growth process. Here we investigate the generation of residual stresses by growth.

The initial spherical configuration� is defined, in spherical coordinates(R,
8,2), by

A > R > B, 0> 8 > π, 0> 2 > 2π,

whereA andB are the inner and outer radii of the shell, respectively. We consider
the growth to be spherically symmetric and continuous, so in spherical coordinates
the growth tensorG(R, t) has the component form

G(R, t) =
(
G1(R, t) 0 0

0 G2(R, t) 0
0 0 G2(R, t)

)
. (21)

The smooth growth functionsG1 andG2, which represent the radial and circum-
ferential growth of the shell, respectively, must satisfy the initial conditions

G1(R,0) = G2(R,0) = 1. (22)

When the value of a growth function is greater than 1, it represents growth; a value
less than 1 represents resorption [9], which is the removal of material. Following
the nomenclature introduced by Hoger [9], we will refer to the case whereG1 > 1
andG2 = 1 as fiber growth in the radial direction; the case whereG1 = 1 and
G2 > 1 will be termed area growth perpendicular to the radial direction; and the
case whereG1 = G2 > 1 is called isotropic growth.

Because we have restricted our attention to the situation where the spherical
shell grows into a spherical shell, the total deformationy(x, t) associated with
the growth function is spherically symmetric, and its components in spherical
coordinates are given by

r = r(R, t), φ = 8, θ = 2,
where the radial deformationr(R, t) is a smooth function satisfying

r(R,0) = R. (23)
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With a prime denoting the derivative with respect toR, the corresponding defor-
mation gradient∇y(x, t) has the component form

∇y(x, t) =


r ′(R, t) 0 0

0
r(R, t)

R
0

0 0
r(R, t)

R

 . (24)

Substitution of (21) and (24) into the incompressibility condition (19) yields

G1G
2
2 =

r2r ′

R2
.

This equation can be integrated to give the deformationr(R, t) in terms of the
growth functionsG1(R, t) andG2(R, t):

r(R, t) =
[
a3(t)+

∫ R

A

3ξ2G1(ξ, t)G
2
2(ξ, t)dξ

]1/3

, (25)

where

a(t) ≡ r(A, t)
is the radial position of the inner surface during the growth process.

Recall that we assumed the material in the initial configuration� to be ho-
mogeneous and isotropic. Thus, the response functionT̂(F, x) has the following
representation (see [10, Section 49]):

T̂(F, x) = f1(I1, I2)V + f2(I1, I2)V2, (26)

whereV ≡ (FFT)1/2, I1 andI2 are the first and second principal invariants ofV,
andf1 andf2 are two scalar functions of the principal invariants. By substituting
(26) into (20), we obtain the Cauchy stress

T = −pI + f1(I1, I2)V + f2(I1, I2)V2.

For the total deformation gradient (24) and the growth tensor (21), we have

V =


r ′

G1
0 0

0
r

RG2
0

0 0
r

RG2

 ,

I1 = r ′

G1
+ 2r

RG2
, I2 = r2

R2G2
2

+ 2rr ′

RG1G2
. (27)
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The material is assumed to satisfy the Baker–Ericksen inequality, which asserts
that the greater principal stress occurs in the direction of the greater principal
stretch. For the present problem, the Baker–Ericksen inequality states

f1+ (v1+ v2)f2 > 0 if v1 6= v2, (28)

where the principal stretchesv1 andv2 are given by

v1 = r ′

G1
, v2 = r

RG2
. (29)

In the absence of body forces, the only nontrivial component of the equation of
equilibrium is

∂T1

∂r
+ 2(T1− T2)

r
= 0, (30)

whereT1 andT2 are the radial and circumferential stresses, respectively, given by

T1 = −p + v1f1+ v2
1f2, T2 = −p + v2f1+ v2

2f2. (31)

We shall examine the case where the spherical shell is unloaded during the
growth, so the boundary conditions are

T1
(
r(A, t), t

) = 0, T1
(
r(B, t), t

) = 0. (32)

Equation (30) can be written, with the help of (31), as

T ′1 =
2(v2 − v1)r

′

r

[
f1+ (v1+ v2)f2

]
,

which can be integrated to yield

T1
(
r(R, t), t

) = ∫ R

A

2[v2(ξ, t)− v1(ξ, t)]r ′(ξ, t)
r(ξ, t)

{
f1
(
I1(ξ, t), I2(ξ, t)

)
+[v1(ξ, t)+ v2(ξ, t)

]
f2
(
I1(ξ, t), I2(ξ, t)

)}
dξ. (33)

This solution satisfies the boundary condition (32)1 on the inner surface. It also
follows from (31) that

T2
(
r(R, t), t

) = T1
(
r(R, t), t

) + [v2(R, t)− v1(R, t)
]

×{f1
(
I1(R, t), I2(R, t)

)
+[v1(R, t)+ v2(R, t)

]
f2
(
I1(R, t), I2(R, t)

)}
. (34)

Equations (33) and (34) give the stresses in the growing shell as a function of time.
Since the shell is unloaded, these equations provide the residual stress due solely
to the growth that evolves during the growth process.
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A special case of isotropic growth is when the growth functions are uniform:
G1(R, t) = G2(R, t) = G(t). In this case, it is straightforward to verify that the
solution is given by

r(R, t) = RG(t), I1 = I2 = 3, T1 = T2 = 0.

That is, this uniform isotropic growth gives rise to a pure dilatation of the shell and
produces no residual stress.

For general growth functions, it is not possible to go any further than (33)
and (34) in the determination of the residual stress without specifying the form
of the constitutive functionsf1 andf2. However, it is possible to derive explicit
expressions for the time derivatives of the components of the residual stress in the
initial state. This provides useful information on the residual stress distribution for
configurations in which the shell has grown slightly.

First, observe from (22), (23) and (29) that

v1(R,0) = v2(R,0) = 1. (35)

This implies, by (33) and (34), that

T1(R,0) = T2(R,0) = 0,

which simply states that initially the material is in its natural, or stress-free, state.
We shall use the following notation for the time derivative of a functionF(R, t)

in the initial state:

Ḟ (R) ≡ ∂F (R, t)

∂t

∣∣∣∣
t=0

.

By differentiating (25) and applying (22) and (23), we find that

ṙ(R) = A2ȧ

R2
+ 1

R2

∫ R

A

ξ2[Ġ1(ξ)+ 2Ġ2(ξ)
]
dξ,

ṙ ′(R) = Ġ1(R)+ 2Ġ2(R)− 2A2ȧ

R3
− 2

R3

∫ R

A

ξ2
[
Ġ1(ξ)+ 2Ġ2(ξ)

]
dξ.

Differentiation of (29), together with (22) and (23), gives

v̇1(R) = ṙ ′(R)− Ġ1(R)

= 2Ġ2(R)− 2A2ȧ

R3
− 2

R3

∫ R

A

ξ2
[
Ġ1(ξ)+ 2Ġ2(ξ)

]
dξ, (36)

and

v̇2(R) = ṙ(R)

R
− Ġ2(R)

= −Ġ2(R)+ A
2ȧ

R3
+ 1

R3

∫ R

A

ξ2
[
Ġ1(ξ)+ 2Ġ2(ξ)

]
dξ. (37)
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Further, by (22), (23), (27), (33) and (35), we have

Ṫ1(R) = 2(f1+ 2f2)

∫ R

A

v̇2(ξ)− v̇1(ξ)

ξ
dξ. (38)

Because we are evaluating the derivatives of the stress in the initial configuration,
the functionsf1 andf2 are evaluated at(I1, I2) = (3,3). By substituting (36) and
(37) into (38) and evaluating one integral after changing the order of integration,
we find that

Ṫ1(R) = 2(f1+ 2f2)

R3

{
R3− A3

A
ȧ

+
∫ R

A

[
R3− ξ3

ξ
Ġ1(ξ)− R

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ

}
. (39)

The initial velocity ȧ of the inner surface appearing in (39) can be determined by
using the remaining traction free boundary condition (32)2 on the outer surface.
Indeed, evaluation of (39) atR = B and use of (32)2 give

ȧ = − A

B3− A3

∫ B

A

[
B3− ξ3

ξ
Ġ1(ξ)− B

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ. (40)

By substituting (40) back to (39) and simplifying the result, we arrive at

Ṫ1(R) = − 2(f1+ 2f2)

(B3− A3)R3

{(
B3 − R3

)
×
∫ R

A

[
ξ3− A3

ξ
Ġ1(ξ)+ A

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ

+(R3− A3
) ∫ B

R

[
B3− ξ3

ξ
Ġ1(ξ)− B

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ

}
. (41)

Finally, differentiation of (34), together with (22), (23), (27), (35)–(37), (40) and
(41), yields

Ṫ2(R) = Ṫ1(R)+ (f1+ 2f2)
[
v̇2(R)− v̇1(R)

]
= f1+ 2f2

(B3− A3)R3

{(
B3+ 2R3)

×
∫ R

A

[
ξ3− A3

ξ
Ġ1(ξ)+ A

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ

−(A3+ 2R3
) ∫ B

R

[
B3− ξ3

ξ
Ġ1(ξ)− B

3+ 2ξ3

ξ
Ġ2(ξ)

]
dξ

}
−3(f1+ 2f2)Ġ2(R). (42)
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Equations (41) and (42) give the residual stress rates in the initial state in terms
of the growth rates. Since the shell is stress free in the initial state, these equations
also give the first order approximations of the residual stress components that re-
sult from the growth. Some interesting observations can be made based on these
equations.

Firstly, it is straight forward to verify that the condition thatĠ1 andĠ2 are equal
to a same constant implies thatṪ1 = Ṫ2 = 0. This confirms the observation made
earlier that a uniform growth results in no residual stress.

Secondly, the radial residual stress rateṪ1 depends on the growth rate “globally”
in the sense that the values ofṪ1 depends on the values ofĠ1 andĠ2 in the entire
thickness of the shell. On the other hand, for the circumferential stress rateṪ2,
besides a global dependence, there is also a “local” dependence onĠ2, as indi-
cated by the last term in (42). This local dependence is due to the circumferential
constraint provided by the continuity condition.

Thirdly, we observe from (28) and (35) that the factorf1+2f2 appearing in (41)
and (42) is positive. It then follows from (41) that any radial fiber growth (in which
Ġ1 > 0, Ġ2 = 0) will produce a compressive radial residual stress component in
the entire shell, while a radial fiber resorption will result in a tensile radial residual
stress component. This observation seems to be consistent with our intuition that
growth leads to compressive residual stresses when the material is constrained in
the growth direction in some way. On the other hand, it is observed from (42) that
a fiber growth can lead to either tensile or compressive circumferential residual
stresses, depending on the distribution ofĠ1.

Finally, the effects of area growths on the residual stress are somewhat dif-
ferent, and perhaps more interesting. As can be seen from (41), an area growth
perpendicular to the radius (in whicḣG2 > 0, Ġ1 = 0) can lead to either tensile or
compressive radial residual stresses, depending again on the distribution ofĠ2. On
the other hand, equation (42) shows that the local contribution of an area growth to
the circumferential residual stress is compressive, while the global contribution is
tensile. This also is consistent with our intuition: consider a given spherical surface
in the spherical shell. If an area growth takes place in this surface but nowhere else,
a compressive circumferential residual stress will develop in the surface, while the
rest of the shell will be in tension circumferentially. If, on the other hand, an area
growth takes place everywhere but this spherical surface, the surface will be in
tension while the rest of the shell in compression.
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