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A constitutive model for describing the mechanical response of an amorphous glassy polycarbonate is
proposed. The model is based on an isotropic elastic phase surrounded by an SO�3� continuum of plastic
phases onto which the elastic phase can collapse under strain. An approximate relaxed energy is developed for
this model on the basis of physical considerations and extensive numerical testing, and it is shown that it
corresponds to an ideal elastic-plastic behavior. Kinetic effects are introduced as rate-independent viscoplas-
ticity, and a comparison with experimental data is presented, showing that the proposed model is able to
capture the main features of the plastic behavior of amophous glassy polycarbonate.
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I. INTRODUCTION

The inelastic deformation of glassy polymers in the solid
state is of considerable technological importance, e.g., as the
basis of a number of industrial processes such as drawing
and lamination, and as such has long been the subject of
research �cf., e.g., �1��. Prominent among engineering poly-
mers is bisphenol-A-polycarbonate �BPA-PC�, often simply
called polycarbonate, a linear chain thermoplastic whose
chemical structure is shown in Fig. 1. For instance, polycar-
bonate is the nonmodified bulk polymer with the highest
impact resistance in the 70–400 K temperature range, 15–20
times larger than PMMA. Polycarbonate is generally amor-
phous and transparent, and remains ductile at temperatures
well below its glass transition Tg=418 K. These properties
render polycarbonate the technopolymer of choice for appli-
cations requiring good thermal resistance, transparency, and
shock resistance over a wide range of temperature, including
canopies for supersonic aircraft, helmets, windshields, bullet-
resistant laminates, food-processing equipment, computer
housing, eye goggles, and others.

Despite this technological importance, the physics of
glassy-polymer plasticity remains the subject of considerable
conjecture. Indeed, a brief survey of the existing models
serves to highlight the present lack of consensus regarding
fundamental mechanisms of plastic deformation and their ef-
fective mathematical modeling. Argon �2� suggested that
plastic shear deformation in glassy polymers is the result of
localized shear transformations occurring in small atom clus-
ters. In this scenario, the rate of plastic deformation is nucle-
ation controlled. Argon described the shear transformations
as the formation of pairs of molecular kinks extending over
the molecular diameter of the polymer chains �2� or as eigen-
deformations deforming the volume elements into oblate
spheroids �3�. Further extensions of this model �4–6� postu-
late two distinct barriers to deformation: an isotropic, visco-
plastic barrier to chain segment rotations induced by local
shear transformations and an isotropic barrier to chain align-
ment. Each barrier is assumed to evolve independently with
strain. The resulting constitutive model is able to capture the
main features of the stress-strain curves of polycarbonate.

Argon �3� also argued that nonuniformity of local structure,
especially in the form of low-density regions containing an
excess of free volume, plays an important role in shaping
plastic behavior. According to this model, these weak regions
are more abundant and percolate in the melt, thus giving rise
to its compliant behavior �7,8�, whereas the weak regions are
spatially isolated in the polymer below the glass transition
temperature, where they act as preferential sites for plastic
deformation �9,10�. Perez and co-workers �11–13� have mod-
eled the correlated dynamics of weak low-density regions,
which they call quasi-point-defects. According to this model,
the relaxation times of the quasi-point-defects are widely dis-
tributed, ranging from a low value corresponding to the ac-
tivation of an elementary molecular motion to a high value
representing the time required for two sheared microdomains
to coalesce, thus giving rise to a complex collective and hi-
erarchically correlated dynamics. Stachurski �14� instead
posited that deformation and yield in amorphous polymers
can be understood in terms of the integrity of the network of
the strongest intermolecular bonds, or constriction points, in
a weaker, lower-density matrix. The important role of hetero-
geneity and of the varying degrees of crystallization over the
polymer, as well as the dynamics and percolation of the lose
and cohesive regions, has been recognized by a number of
authors �15–18�. The mean size of these heterogeneities has
been experimentally estimated to be of the order of 4–5 nm.

The picture of a noncontinuous nanometric structure of
the glassy matrix and its bearing with the plastic process has
been confirmed and refined by recent atomistic simulations
of the plastic behavior of polycarbonate �cf. �19� and discus-
sion of previous computational modeling therein�. These
simulations have provided detailed insight into the funda-

FIG. 1. Schematic structure of bis-phenol-A polycarbonate.
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mental mechanisms of plastic deformation in glassy poly-
mers and effectively removed much of the speculation sur-
rounding their precise nature. The simulations show that
plastic yielding in polycarbonate presents a collective and
cooperative character: individual segmental motions perco-
late in an avalanche motion involving a sizable fraction of
the cell. Such a motion, however, is not random, but rather
takes the form of a nanoscopic lamination. Thus, with in-
creasing stress the system separates into two alternating
phases in the manner of solid-solid phase transition �20�: �i�
a region substantially unmodified with respect to the ideal
structure that is prevalent in the initial elastic regime and �ii�
a region that is transformed into a different ideal structure
that becomes increasing prevalent in the plastic regime. The
volume and one of the principal stretches of the transformed
region remain invariant throughout deformation, which
shows that the transformed phase deforms in shear. The in-
terfaces between the two faces are somewhat irregular, as
expected for such amorphous materials, but are clearly rec-
ognizable as planar interfaces. A typical plastic transition in
polycarbonate reproduced from the atomistic simulations of
Ref. �19� is shown in Fig. 2. The thickness of the observed
lamellae is very small: roughly �5 nm, in agreement with
experimental estimates �16,18�. Their extension, or persis-
tence length, could not be determined from the molecular
dynamics �MD� simulations due to the limited size of the
cell.

In this paper we take the observation of lamellar struc-
tures reported in �19� as a basis for formulating a continuum
model of glassy-polymer plasticity. The fundamental picture
that arises from atomistic calculations is that glassy-polymer
plasticity is a process of accommodation that exploits the
existence of two types of low-energy phases: the undeformed
structure of the polymer and deformed structures that differ
from the former by a transformation shear. Conveniently, the
transformation shear of polycarbonate can be deduced from
the atomistic simulations reported in �19�. Since the parent
phase is essentially amorphous, the plane and direction of the
transformation shear are arbitrary, which introduces an infin-

ity of wells, parametrized by SO�3�, in the phase diagram.
This multiwell phase diagram enables the material to reduce
its energy while preserving its average deformation by devel-
oping microstructure. These microstructures are fine mix-
tures of phases that are in equilibrium and satisfy compat-
ibility conditions at all interfaces. The macroscopic effect of
the formation of microstructure is to introduce a yield point
and a compliant plastic branch in the stress-strain curve. As
the macroscopic deformation is increased, the volume frac-
tions of the phases evolves by a process of interfacial mo-
tion. That process is dissipative and renders the macroscopic
behavior hysteretic.

The central problem addressed in this paper is that of
ascertaining the macroscopic behavior of the material from
its nanoscopic energetics and kinetics, as described by the
multiwell energy and interfacial mobility just outlined, lead-
ing to a continuum model that can be used in large-scale
engineering simulations. Conveniently, a number of math-
ematical tools are presently in existence that can be resorted
to in order to forge that connection. In the calculus of varia-
tions, the process of accommodation described in the forego-
ing is known as relaxation �cf., e.g., �21,22��. Relaxation
replaces an energy functional that gives rise to microstruc-
ture by a relaxed energy functional that represents exactly
the macroscopic behavior of the material. The computation
of the relaxed energy functional requires the evaluation of all
possible microstructures that can arise in response to a mac-
roscopic affine deformation. Often, such exhaustive evalua-
tion is not possible, and a fallback position is to consider
special classes of microstructures that are amenable to analy-
sis, leading to a partially relaxed energy functional. Moti-
vated by the atomistic calculations reported in �19�, in this
work we specifically consider a class of microstructures
known as sequential laminates �21,23�, which are obtained
recursively by fitting laminates within laminates. This pro-
cess of lamination results in the so-called rank-1 convex hull
of the energy density, which in general lies above the com-
pletely relaxed energy density. We account for interfacial dis-
sipation by means of a simple model proposed by Aubry,
Fago, and Ortiz �24�. The proposed approach provides a
physics-based and analytically tractable means of bridging
the atomistic and continuum scales of glassy polymers. The
resulting model provides a simple constitutive framework for
describing the plasticity of glassy polymers.

II. UNRELAXED ENERGY

Given F, the deformation tensor, written according to the
polar decomposition as F=RU with R a pure rotation and U
the �symmetric positive� stretch tensor, one can always find
�25� a reference system �the principal stretch system� such
that U=diag��1 ,�2 ,�3�, with �i�0. Let us assume for con-
venience that the ��i� are ordered: �3��2��1�0.

We assume that the material is isotropic. By material
frame indifference, the free energy can depend only on the
stretch tensor U. For isotropic materials, the expression can
depend only on its eigenvalues ��i� or, equivalently, on the
invariants of U. Given the isochoric character of the plastic
phenomenon �which implies incompressibility—i.e., that the

FIG. 2. �Color online� A view of the atoms involved in a typical
plastic transition of BPA-PC �light �blue��, as opposed to atoms
which do not undergo significant motions �dark �red��. Reused with
permission from Fortunelli, Geloni, and Lazzeri �19�.
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third invariant is constant along the transformation: I3
=�1�2�3=1� and the theory of rubber elasticity, we will as-
sume that in the elastic regime the free energy depends only
on the first invariant I1, thus obtaining the following �neo-
Hookean� form:

W0�F� =
�

2
��1

2 + �2
2 + �3

2 − 3� =
�

2
�I1 − 3� , �1�

where � is the shear modulus. Based on the results of the
atomistic simulations of Ref. �19�, according to which the
elementary steps of the plastic transition correspond to lami-
nates, we further assume that the elastic structure is sur-
rounded by plastic structures which are connected to it via
pure shear transformations—i.e., transformations character-
ized by the eigenvalues �2=1 and �1=1/�3 �in Appendix A
we show that this formalism is equivalent to the usual defi-
nition of shear deformation matrices�. By requiring isotropy
and invoking self-similarity, we finally assume that we can
extrapolate the nanoscopic behavior at an appropriate, larger
�mesoscopic� length scale. The unrelaxed energy expression
must therefore correspond to an isotropic double well. In
other words, starting from W0 and moving along any direc-
tion in pure shear, one runs into W1 which lies at higher
energy by a term �U and attains its minimum for these val-
ues of �i: ��2=1; �3=�; �1=1/��—i.e.,

W1�F� = �U +
�

2
��2�1

2 + �2
2 + ��3/��2 − 3� . �2�

In keeping with the atomistic simulations of Ref. �19� �see
Figs. 4 and 5 therein�, W1 represents the energy of a structure
which lies at higher energy at zero strain, but crosses with
W0 and becomes the lowest-energy one at large shear defor-
mations, so that W0 dynamically collapses onto it �plastic
collapse�. Since we suppose to run into one such structure
along any direction in pure shear, what we really have is an
SO�3� continuum of neighboring states. It can be noted that,
for simplicity, we have supposed constancy of the elastic
shear modulus—i.e., constancy of �. The value of � is re-
lated to the amount of plastic yield, or irreversible plastic
deformation, and can be inferred from experimental data: for
BPA-PC at room temperature �RT� ��1.5–2.0. �U repre-
sents the energy stored into the material by virtue of the
plastic transformation: see Ref. �19� for numerical values of
�U for BPA-PC. Due to the assumption of isotropy, �U has
the same value for all the plastic structures.

By taking � /2 as the energy unit and correspondingly
defining a normalized value of �U as: �U=2�U /�, the final
expression for the unrelaxed energy is

Wunrelax�F� = min�W0�F�;W1�F��

= min��1
2 + �2

2 + �3
2 − 3;�U + �2�1

2 + �2
2

+ ��3/��2 − 3� . �3�

In Appendix B it is shown that Eq. �3� coincides with that
obtainable through the usual definition of shear deformation
matrices. For ease of notation, it is convenient to define 	 as
an alternative parameter characterizing the amount of plastic
yield: 	=�−1/�.

III. RELAXED ENERGY

The constitutive equation �3� is in a form similar to those
considered in nonlinear elastostatics �25�. It is therefore ame-
nable to analysis via the mathematical machinery developed
for describing phase transitions in crystalline systems
�20,22�. Essentially, the problem reduces to finding the qua-
siconvex envelope Wqc�F� of Eq. �3�—i.e., the largest func-
tion f lying below Wunrelax�F� and such that

	



f„A + � · v�x�…dx � 	



f�A�dx ,

where v�x� is a smooth perturbation of the affine deformation
Ax, vanishing on the boundary of 
, but otherwise arbitrary.
To this aim, special but very useful constructions are
“laminates”—i.e., piecewise affine deformation functions
given by the alternance of two �in the case of first-order
laminates� or more �in the case of higher-order laminates�
deformation tensors differing by rank-1 matrices, the latter
requirement being a consequence of Hadamard compatibility
conditions; see Ref. �22� for more details. The largest such
function lying below Wunrelax�F� is called the lamination con-
vex envelope Wlc�F�. Proof of quasiconvexity has a particu-
lar significance, as it is known �26� that it is equivalent to
weak sequential lower semicontinuity of the associated free-
energy integral and thus to the convergence of minimizing
sequences in the case that an absolute minimum is not at-
tained due to frustration of spatially uniform states �an ex-
perimentally observed microstructure can be thought of as an
element of a minimizing sequence that oscillates more and
more finely�.

The model here considered differs with respect to previ-
ously known cases. For example, in martensitic materials
one has only a finite number—say, 3 or 6—of energy wells
�27,28�. Nematic elastomers �29� have an energy expression
similar to Eq. �3�—indeed, the recent analytic solution given
by DeSimone and Dolzmann �30–32� has inspired the
present work—as the wells outside the “origin” �the refer-
ence structure of the high-temperature phase� are arranged in
an SO�3� continuum of directions �isotropy�. However, in
nematic elastomers below the transition temperature the ori-
gin lies above the quasiconvex envelope of the wells off the
origin, so that it does not interfere with its construction. In
the present case, instead, one has the necessity to combine
both the W0 well with the �W1� wells and the various �W1�
wells among themselves to quasiconvexify the energy. In
other words, we have an asymmetric two-well isotropic
model with pure shear. We call the model “asymmetric,”
because the energy difference between the bottoms of the
wells, �U, introduces an additional degree of freedom which
cannot be got rid of through a simple shifting or rescaling of
the energy.

Building up on the results of DeSimone and Dolzmann
�30–32� and of Šilhavý �33�, we will take advantage of the
fact that W1�F�—after subtracting the constant energy shift
�U—is of the form considered in Ref. �31� when we take
p=2, 	1=1/�, 	2=1, and 	3=�. From their work we thus
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know the lamination convex envelope of the W1�F� term
�which in their case they prove to coincide with the quasi-
convex envelope�. The corresponding phase diagram can be
divided into �a� a “liquid” phase ��1�1/� ;�3���, in which
the relaxed energy Wrelax

1 �F� coincides with �U and the opti-
mal microstructures are double laminates; �b� two “smectic”
regions ��3��; �1�1/
��3� and ��1�1/�; �3�
� /�1�,
in which Wrelax

1 �F� only depends on �3 or �1, respectively,
and the optimal microstructure is a single laminate; �c� a
“solid” region �encompassing the rest of the phase diagram�,
in which no microstructures are formed and the relaxed en-
ergy coincides with the unrelaxed one.

A. Construction of a lamination convex envelope

We make the assumption that the material is incompress-
ible, in analogy with Ref. �31�, so that �1�2�3=1. For elastic
materials, this assumption implies that the material is neo-
Hookean: this is accurate for rubbers, somewhat less accu-
rate for the elastic response of amorphous polymers in the
glassy state. However, here we are studying the plastic phe-
nomenon which is essentially isochoric �as confirmed by the
atomistic simulations of Ref. �19��, so that we need to con-
sider only constant-volume laminations in the construction of
the lamination convex envelope. In order to draw the phase
diagram, we use the same variables introduced by DeSimone
and Dolzmann �31�: s=�3 and t=1/�1, where �3 is the larg-
est singular value of F and �1 is its smallest �we recall that
the eigenvalues are ordered�. �2 is then recovered by the
volume constraint as �2= t /s. Given the ordering of the ei-
genvalues ��3��2��1�0�, the only accessible region of
the phase diagram is that defined by the two constraints t
�
s and t�s2; see Fig. 3. In this section, we propose an
approximate construction based on laminations, and we give
numerical evidence that it corresponds to the lamination con-
vex envelope of the original unrelaxed energy expression,

Eq. �3�. We anticipate that we are not able to prove that it
also corresponds to the quasiconvex envelope of Eq. �3�, but
as the lamination convex envelope of Eq. �3�, we suggest
that in any case it represents the only experimentally acces-
sible response of the system to strain.

1. Neighborhood of the �2=1 line

We will concentrate for the sake of simplicity only on the
lower half of the phase diagram: �2�1 or t�s. Let us start
by considering a deformation tensor F lying on the �2=1
line. Here, the optimal lamination is naturally suggested by
analogy with the two-dimensional case. Given a generic de-
formation tensor F with eigenvalues ��2=1; �3 ,�1�, we can
always bring it to a standard �upper-diagonal unit� form �see
Appendix B�:

F = �1 0 �

0 1 0

0 0 1
� , �4�

where ��3 ,�1=
1+�2 /4±� /2� and �=�3−�1.
By fixing �2=1 �as suggested by the analogy with the

two-dimensional case�, we now consider a lamination be-
tween the elastic W0�F� well and one of the plastic W1�F�
wells:

F = 
F1 + �1 − 
�F2 = 
�1 0 �1

0 1 0

0 0 1
� + �1 − 
��1 0 �2

0 1 0

0 0 1
� ,

Wrelax�F� = 
W0�F1� + �1 − 
�W1�F2� , �5�

where 
 is the fraction of the F1 phase. The condition 
�1
+ �1−
��2=� gives


 =
�2 − �

�2 − �1
, 1 − 
 =

� − �1

�2 − �1
. �6�

The optimal lamination can be obtained by minimizing
Wrelax�F� with respect to �1 and �2. By imposing the zeroing
of the derivatives of Wrelax�F� with respect to �1 and �2, one
obtains a system of two equations in two unknowns, which
can be easily solved numerically to give the standard Gibbs
�isotangent or common tangent� construction. The solution is
that lamination is effective when � belongs to the interval

�1
min � � � �2

max, �7�

where �1
min and �2

max denote the optimal values, correspond-
ing to the lower and upper extremes of this interval, respec-
tively �34�.

Let us now consider the �2�1 case. Given a generic de-
formation tensor F with eigenvalues ��2�1; �3 ,�1�, we can-
not bring it to an upper-diagonal unit form, but to a similar
standard form �see Appendix B�:

FIG. 3. Phase diagram of the proposed construction, Eq. �16�,
for the lamination convex envelope of the unrelaxed energy expres-
sion, Eq. �3�. The curves YS=0, UL=0, and ZD=0 delimiting the
various lamination regions are defined in the text. The rank order of
the laminations is shown in the appropriate regions. The values of
the parameters are �=1.55 and �U=0.431.
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F =�
1


�2

0 �

0 �2 0

0 0
1


�2

� , �8�

where ��3 ,�1=
1/�2+�2 /4±� /2� and �=�3−�1, as before. By holding the value of �2 fixed, we now consider a lamination
between the elastic W0�F� well and one of the plastic W1�F� wells:

F = 
F1 + �1 − 
�F2 = 
�
1


�2

0 �1

0 �2 0

0 0
1


�2

� + �1 − 
��
1


�2

0 �2

0 �2 0

0 0
1


�2

� , �9�

Wrelax�F� = 
W0�F1� + �1 − 
�W1�F2� , �10�

where

W0�F1� = �2
2 +

2

�2
+ �1

2 − 3,

W1�F2� = �2
2 + �U + �2
 1

�2
+

�2
2

2
− �2
 1

�2
+ �2

2/4�
+

1

�2
 1

�2
+

�2
2

2
+ �2
 1

�2
+ �2

2/4� − 3.

The condition 
�1+ �1−
��2=� gives formula �6� as above.
The optimal construction can be obtained by minimizing
Wrelax�F� with respect to �1 and �2, thus obtaining a system
of two equations in two unknowns which can be easily
solved numerically to give again the standard Gibbs �isotan-
gent or common tangent� construction

W1�F2� − W0�F1�
�2 − �1

=
�W1�F2�

��2
=

�W0�F1�
��1

�11�

�exploiting the fact that �W0�F1� /��1=2�1, the system of
two equations can easily be reduced to a single equation�.
The solution is that lamination is effective when � belongs to
the interval

�1
min��2� � � � �2

max��2� , �12�

where �1
min��2� and �2

max��2� denote the optimal values, cor-
responding to the lower and upper extremes of this interval,
respectively �35�. The proposed construction can be further

justified and put on a firmer basis by showing that �a� it is the
optimal single lamination when keeping �2 constant; �b� it is
a local minimum in the energy hypersurface; i.e., the gradi-
ent of the relaxed energy with respect to the lamination pa-
rameters is zero for �1=�1

min��2� and �2=�2
max��2�. The

proof �which uses techniques similar to those employed in
Appendix A� is quite lengthy and is not reported here. It can
be noted in passing that the solution of Eq. �11� is unique
�27�.

For definiteness, let us call Wplastic�F� the energy relaxed
with respect to plastic laminations—i.e., that obtained by
minimizing Eq. �10� with respect to �1 and �2 in the interval
where plastic lamination is effective and coinciding with
W0�F� and W1�F�, respectively, in the appropriate regions of
the phase diagram. The region of the phase diagram in which
Eq. �12� is satisfied is the region where plastic lamination is
effective and is delimited by the two curves

�1
min��2 = t/s� � � = �3 − �1 = s −

1

t
, YS�t,s� = 0,

�13�

and

s −
1

t
= �3 − �1 = � � �2

max��2 = t/s�, UL�t,s� = 0,

�14�

from below and from above, respectively, furnishing as a
lower limit �1

min��2�, the yield surface in the t /s phase dia-
gram, YS�t ,s�=0, and as an upper limit �2

max��2�, the surface
outside which plastic lamination is no longer effective,
UL�t ,s�=0. Note that the relaxed energy and its derivatives
are continuous on the critical lines YS�t ,s�=0 and UL�t ,s�
=0. It can be observed that, neglecting the slight dependence
of �1

min��2� on �2 �which is accurate for small strain�, the
curve YS�t ,s�=0 reduces to the condition �=�3−�1=cost,
which essentially corresponds to the Tresca yield criterion;
see Sec. V A. It is also useful to note that the optimal �2

max is
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so large as to completely bypass the “liquid” region of the
phase diagram of the W1�F� term. This follows from the fact
that the end point of the Gibbs construction must have a
positive derivative in the �2 direction and thus must lye be-
yond the minimum of the W1�F� curve.

2. Neighborhood of the t=
s line

The approximate construction is not complete yet because
it turns out that the plastic lamination is unstable with respect
to a second-order lamination in the proximity of the curve
t=
s. In fact, Wplastic�F� is, by construction, monotonically
increasing as a function of s or t along lines �2=const. How-
ever, if we keep �3=s constant and we move downwards in
the phase diagram starting from the line �2=1, Wplastic�F� is
decreasing with decreasing t only in a neighborhood of the
line �2=1, while passing through a minimum and then start-
ing to increase before getting to the line t=
s. It is easy to
see, in fact, that the derivative of Wplastic�F� with respect to t
keeping s constant is positive for �2=1 and negative for t
=1 by virtue of the constraints in Eq. �12�. Let us call
ZD�t ,s�=0 the line of the phase diagram where the deriva-
tive of Wplastic�F� with respect to t keeping s constant equals
zero. Now, the F tensors lying on this line can be reached
from below through a different lamination, essentially
equivalent to that used by DeSimone and Dolzmann in the
smectic regions of the phase diagram �31�. Assuming to
work for the sake of simplicity in the reference system in
which a generic deformation tensor F—lying below the line
ZD�t ,s�=0—is diagonal, we construct a lamination of F
keeping �3 constant as

F = ��1 0 0

0 �2 0

0 0 �3
� =

1

2��1 � 0

0 �2 0

0 0 �3
� +

1

2��1 − � 0

0 �2 0

0 0 �3
�

=
1

2
F1 +

1

2
F2,

where � is chosen in such a way that F1 ,F2=Fcritical; i.e.,
F1 ,F2 lie on the line ZD�t ,s�=0. The corresponding relaxed
energy will be

Wrelax�F� =
1

2
Wplastic�F1� +

1

2
Wplastic�F2�

= Wplastic�Fcritical� = Wplastic��F��ZD�t,�3�=0 �15�

and will therefore be constant as a function of t along the
vertical line �3=s=const from the intersection with the line
t=
s up to the intersection with the line ZD�t ,s�=0. Note
that the relaxed energy and its derivatives are continuous on
the line ZD�t ,s�=0. Furthermore, they join smoothly with
the convex envelope of the plastic W1�F� wells at
�3

�crossing�—i.e., at the value of �3 where the line ZD�t ,s�=0
crosses the line t=
�s, which delimits the upper border of
one of the smectic regions of the phase diagram of the W1�F�
term. It can be noted in passing that in the case of double
laminations the construction is known to be nonunique �27�.

The approximate relaxed energy �in the lower half of the
phase diagram� is then finally given by the following
expression:

Wr2�F� =�
W0�F� if � � �1

min��2� ,

Wplastic�F� if �1
min��2� � � � �2

max��2� and ZD�t,s� � 0,

Wcritical�F� if �3 � �3
�crossing� and ZD�t,s� � 0,

�U +
�3

2

�2 +
2�

�3
− 3 if �3 � �3

�crossing� and t � 
�s ,

W1�F� if � � �2
max��2� and t � 
�s ,

� �16�

where Wcritical�F�= �Wplastic�F��ZD�t,�3�=0; see Eq. �15�. The cor-
responding phase diagram is shown in Fig. 3.

B. Convexity: Numerical tests

We start by observing that Eq. �16� corresponds to a
finite-value function. To satisfy the constraint of incompress-
ibility, one needs to extend the definition of Wr2�F� in Eq.
�16� by setting the energy to +� when det�F��1:

Wlc,i�F� = �Wr2�F� if det�F� = 1,

+ � if det�F� � 1.
� �17�

The construction of Eqs. �16� and �17� has many nice
features; as it is a natural generalization of the two-
dimensional case, it is locally stationary and it has a clear
appeal to physical intuition. Equation �16� is defined in terms
of a finite �maximum two� set of laminates. We will now
show that it also corresponds to the lamination �or rank-1�
convex envelope of Wunrelax�F� in Eq. �3�—i.e., that further
laminations cannot lower the energy. Due to the huge diffi-
culties one runs into when trying to deal with the compli-
cated analytical expressions generated by constructing lami-
nates of Eq. �3�, we resorted to numerical tests. These cannot
pretend to have the same compelling evidence of rigorous
mathematical proofs, but are more widely generalizable and
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applicable to cases �such as the present one� in which analyic
proofs are exceedingly difficult.

Two independent approaches were used to prove rank-1
convexity of Eq. �17�.

In the first approach, we followed the lines of Refs.
�36,37�. We thus chose a given F, the deformation tensor, in
diagonal form: F=diag��1 ,�2 ,�3�, with �1�2�3=1. We then
considered a general rank-1 �single� lamination of F into F1
and F2 as

F2 = F�I + 
N�m��n�� ,

F1 = F�I − �1 − 
�N�m��n�� , �18�

where I is the identity, 
� �0,1�, N�R+, and �m� and �n� are
orthonormal vectors. The best possible single lamination cor-
responds to the minimum of the partially relaxed energy,

Wrelax�F� = 
W0�F1� + �1 − 
�W1�F2� ,

as a function of the lamination variables. A general lamina-
tion such as this is defined in terms of five degrees of free-
dom: 
, N, and the three angles defining �m� and �n�. Actu-
ally, one of these variables—say, 
—can be obtained
analytically by a simple minimization of Wrelax�F�, thus leav-
ing only four degrees of freedom. For each F in a properly
selected set �see below�, we then searched for the best pos-
sible lamination in this four-dimensional space through two
different possibilities: an equispaced grid containing about
50 points for each degrees of freedom and a random selec-
tion of 107 �N , �m� , �n�� sets �of course, more sophisticated
procedures could have been applied, such as global optimi-
zation approaches, etc., but we found that these simple
search schemes were sufficient in such a low-dimensional
space�. The phase diagram of Fig. 3 was sampled in the
relevant region �i.e., for ��1.3� with an equispaced grid
containing 200 points. The parameters of the models were
chosen as to be physically reasonable for BPA-PC at RT: �
=0.9 GPa, �=1.55, and �U=0.431. It turned out that the best
possible lamination always coincided with the plastic lami-
nation in the region where this was effective. The lowest
branch of the exact lamination tree for Wr2�F� in Eq. �16�
must therefore coincide with a plastic lamination. Having
determined the lowest branch of the exact lamination tree,
we then considered a double lamination; i.e., for each F we
considered a lamination of the type given in Eq. �18�, but in
which F1 and F2 were themselves simple laminates if they
belonged to the region of the phase diagram where plastic
lamination was found to be effective. Again, we searched for
the best possible F1 and F2—i.e., those minimizing
Wrelax—in the five-dimensional space defined by 
, N, �m�,
and �n� through two different possibilities: an equispaced
grid containing about 50 points for each degrees of freedom
and a random selection of 107 �
 ,N , �m� , �n�� sets. We found
that double lamination was effective only in the region of the
phase diagram in which ZD�t ,s��0 and that in this region
the best possible double lamination coincided with that pro-
posed in Eq. �16�. A final search of triple laminations—i.e.,
laminations of the type given in Eq. �18�, but in which F1
and F2 were themselves simple laminates or double lami-

nates, if they belonged to the appropriate regions of the
phase diagram—turned out to be ineffective. We underline
that this is a general approach to construct the lamination
convex envelope of a given unrelaxed energy expression. Its
constructive character makes it appealing for complicated
situations in which physical intuition does not provide much
help. The approach is particularly viable from a computa-
tional point of view in the present isotropic case, as the phase
diagram reduces to three �in the compressible case� or two
�in the incompressible case� degrees of freedom, and the
CPU and memory storage requirements become trivial by
modern computational standards, but it is in principle appli-
cable in general �36,37�.

In the second approach �38�, we chose a given F, the
deformation tensor, in diagonal form: F=diag��1 ,�2 ,�3�,
with �1�2�3=1. We then defined two modified deformation
tensors F+ and F− as

F± = F�I ± ��m��n�� ,

where ��0 is an infinitesimal quantity and �m� and �n� are
orthonormal vectors. The local rank-1 convexity of Wr2, Eq.
�16�, at F with respect to the lamination defined by �m� and
�n� was checked by numerically evaluating its second deriva-
tive with respect to � as

�Wr2�F�
��2 =

Wr2�F+� + Wr2�F+� − 2Wr2�F�
�2 .

The value of � was fixed at 10−5: smaller values �down to
10−14� or larger values �up to 10−3–10−4� were checked to
produce the same results up to the numerical accuracy, which
was set to quadrupole precision to be on the safe side. For
each F, �i.e., for each set ��1 ,�2 ,�3��, 107 ��m� , �n�� pairs
were randomly generated. The phase diagram of Fig. 3 was
sampled in the relevant region �i.e., for ��1.3� with an eq-
uispaced grid containing 200 points. The parameters of the
models were chosen as above. In all cases, it was found that
the second derivative of Wr2 with respect to � was always
positive and larger than the numerical accuracy �minimal
typical values were around 0.003�.

The construction of Eq. �16� was thus numerically con-
firmed to coincide with the lamination envelope of Eq. �3�
both directly �constructively� via the first approach and indi-
rectly �by the check of local rank-1 convexity� via the second
approach.

It is known that rank-1 convexity does not imply quasi-
convexity �22�. The strategy employed in Ref. �31� to prove
quasiconvexity passes through the definition of polyconvex-
ity. We recall �26� that the polyconvex �respectively, convex,
etc.� envelope �pc of a function � is the largest poly-
convex function less than or equal to �, that a function
� :R3�3→R is polyconvex if there exists a convex function
h :R19→R such that ��F�=h�F , cofF ,det�F��, and that,
given finitely many polyconvex functions �zi� and a function
� convex and nondecreasing in its arguments, all functions �
such that ��F�=���zi�� are also polyconvex. It is known �26�
that Wpc�F� gives a lower bound to the quasiconvex envelope
Wqc�F� and to the lamination convex envelope Wlc�F�. For a
finite-value function, polyconvexity in fact implies both qua-
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siconvexity and rank-1 convexity. Even for extended real-
valued functions, it follows from a result by Müller and
Šveràk �39� that the quasiconvex envelope coincides with the
polyconvex and lamination convex envelopes when these co-
incide and are continuous and finite valued when det�F�=1.
In order to prove that the lamination convex envelope Wlc�F�
is quasiconvex, it would suffice therefore to show that it is
polyconvex. The point is, however, that the variables s and t
�which we used to draw the phase diagram of Fig. 3� are
polyconvex functions of F, but Wr2 is not a convex function
of s and t; nor were we able to find other polyconvex func-
tions of F of which Wr2 is a convex and nondecreasing func-
tion. Furthermore, polyconvexity is a strictly nonlocal prop-
erty, which is extremely difficult to test numerically in three
dimensions. The issue of the quasiconvexity of the construc-
tion of Eq. �17� is thus left open. We can only suggest that
Wr2 being rank-1 convex, it represents the only physically
accessible response of the system to deformation.

IV. KINETICS

BPA-PC exhibits plastic unloading and obeys a rate-
sensitivity law �40� of the power form �0��̇0.06, with �̇ the
strain rate and �0 the yield stress. We wish to extend the
elastic relaxation results to account for the irreversible be-
havior of BPA-PC. To this end we consider the effect of
kinetics. The ansatz is that microstructures take the form of
laminates, as shown in Sec. III A, and dissipation is sup-
ported on the interfaces and restricts their motion �41�. The
effective behavior can be written as a kinetic law for the
motion of the interfaces, and the �attractive� equilibrium con-
figurations are given by the construction of Sec. III A �42�.
From a physical point if view, the energy barriers to plastic
lamination now assume a fundamental role. From the com-
putations of Ref. �19�, in good agreement with experimental
data, it turns out that the additional activation energy is of the
same order of magnitude as �U and cannot thus be ne-
glected, not even in a first approximation. A simple way of
introducing kinetic, viscoplastic effects into the model is to
use the 
 variables obtained from the lamination construction
as internal degrees of freedom and to assume viscous forces
connected with 
̇—i.e., with the time-dependent variation of
the volume fractions of the various laminates. In the spirit of
Refs. �42,43� we must supply a kinetic potential—i.e., a con-
vex function �*�x�, where x is the derivative of the internal
variable with respect to time—and generalize the definition
of the free energy by adding this supplementary kinetic term
to it. The dynamic problem is so turned into a static one,
which can be treated variationally, with obvious advantages
from both a fundamental and a numerical point of view. Fur-
thermore, we make the simplifying choice of solving the
resulting equations in a time-discretized setting by defining
incremental updates of the constitutive equation �42�. In such
an approach, the kinetic term to be added to the free energy
takes the form

�t�*
�


�t
� = �t�*

 − 
0

�t
� ,

where 
0 is the volume fraction of the previous step. To be
specific, we take a simple expression for �*�x�:

�*�x� = K
1

1 + �
�x�1+�, �19�

where the parameter � can be derived from the rate-
sensitivity law ���̇0.06 as ��0.06. Finally, since the expo-
nent � is very small, we approximate this behavior as rate
independent by setting �=0. The expression for the approxi-
mate relaxed energy then reads

Wrelax�F� = �1 − 
�W0�F1� + 
W1�F2� + K�
 − 
0� . �20�

The fact that the additional term K�
−
0� is linear in
�
−
0� corresponds to the hypothesis of rate-independent vis-
coplasticity �43�. This choice is reasonable for BPA-PC, in
which rate-independent viscoplastic effects predominate over
rate-dependent ones, and is also particularly convenient, as it
allows us to solve Eq. �20� analytically, as will be shown
presently.

In our approximate construction we have two different
types of lamination: �i� in the neighborhood of the line �2
=1 �i.e., in shear�, one finds a rank-1 plastic lamination be-
tween the lower elastic W0�F� well and the upper plastic
W1�F� wells; �ii� in the proximity of the lines t=
s and t
=s2 �i.e., in tension and compression, respectively�, one finds
a rank-2 lamination composed of a first balanced lamination,
similar to those employed by DeSimone and Dolzmann �see
Eq. �15��, combined with a plastic lamination of type �i�.
Note that in the balanced lamination all the 
’s assume the
constant value 1/2, independently of which variants are be-
ing considered, whereas in the plastic lamination the 
 values
vary along the phase diagram. Let us analyze the effect of the
K�
−
0� term on the two types of lamination separately.

Since in the balanced lamination all the 
’s assume the
constant value 1/2, the term 
̇ is formally infinite at the
beginning or at the end of a lamination and then identically
zero, so that the addition of the term K�
−
0� to the unre-
laxed energy makes a difference only when creating or de-
stroying an interface. Let us consider for definiteness to load
the system starting from a homogenous phase. For a certain
value of the strain, we enter the region of the phase diagram
where lamination is favorite. However, it will not be realized
until the gain in energy becomes greater than K /2 �recall
that 
opt is 1 /2, 
0=0, before lamination sets in�. At this
point, a laminate is created, which is exactly the same as the
one in the absence of the K�
−
0� term �44�. From this point
on, the laminate evolves as before, keeping the volume frac-
tions of the variants equal to 1/2 and thus effectively anni-
hilating the K�
−
0� term. The effect of the inclusion of this
term is thus only to add spikes to the original stress-strain
diagram at the beginning and at the end of the lamination.
For the rest, the phase diagram of the model with the K�

−
0� term included can be trivially obtained from that in the
absence of this term.

In the plastic lamination, supposing as always that F1 is
evaluated on the elastic well and F2 on one of the plastic
wells, we have

Wrelax�F� = �1 − 
�W0�F1� + 
W1�F2� + K�
 − 
0� . �21�
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Working for definiteness in loading conditions, where

�
0, Eq. �21� can be rewritten as

Wrelax�F� = �1 − 
�W0�F1� + 
Ŵ1�F2� − K
0,

where Ŵ1�F2�=W1�F2�+K; i.e., Ŵ1�F2� is obtained from
W1�F2� by simply modifying the value of �U as �U→�U
+K. In other words, the phase diagram of the model with the
K�
−
0� term included is trivially obtained by adding a con-
stant energy shift �K
0 to the energy and by substituting �U
with �U±K �with the choice of sign appropriate to loading or
unloading conditions�. This is tantamount to shifting the on-
set of the lamination and the value of the yield stress to
higher �lower� values if working in loading �unloading� con-
ditions. We thus ended up with the simplest possible model
of hysteresis in ideal plasticity. The above is true for the
plastic laminations both in the neighborhood of the line �2
=1 and of the lines t=
s and t=s2—i.e., both in shear and in
compression or tension. In the latter cases, one also needs to
consider the effect of the K�
−
0� term for the balanced
lamination, which as shown above gives an additional energy
barrier to the formation of laminates, thus producing spikes
in the stress-strain diagram in tensile or compressive line-
tests.

It can be recalled that in the case of rank-2 laminations
the construction is intrinsically nonunique �27�. However,
using the volume fractions 
’s as internal variables still
makes sense under the assumption that, once a rank-2 lami-
nation develops in a given form, it then evolves with conti-
nuity.

V. COMPARISON WITH EXPERIMENT

In this section, we compare the prediction of the model
with experimental results on the mechanical response of
BPA-PC in representative cases �behavior of a single volume
element�, concentrating attention on three topics: �a� yielding
criterion and effect of hydrostatic pressure, �b� sample his-
tory, and �c� effect of strain rate.

We start with a phenomenological description of the
stress-strain diagram of BPA-PC. Extensive mechanical test-
ing have proven that the plastic behavior of BPA-PC pro-
ceeds by the nucleation and growth of shear bands �see Ref.
�45� and references therein�. Local shear strain within the
bands is uniform at ��0.6 and remains nearly constant as
the bands grow first in length and then in width. A typical
experimental stress-strain curve obtained from a shear test on
BPA-PC at RT is shown in Fig. 4, taken from Ref. �45�. The
deformation typically consists of five distinct stages: �I� An
initial homogeneous viscoelastic response at small strains.
An upper yield stress �0 at ��0.15 terminates this stage. �II�
A shear stress drop of �8% following yield, associated with
the formation of a shear band. Material in the band deforms
until it attains a shear strain of ��0.6. �III� After strain soft-
ening, the stress stabilizes to an almost constant value. The
strain within the shear bands is constant, but the band broad-
ens along the axis of the specimen as the nominal shear
strain increases. �IV� When the shear band has consumed the
gauge length of the specimen, the test piece again strain-

hardens homogeneously. �V� Finally, the specimen fractures
at a fracture strain ��2.0. It must be stressed that the plastic
deformation is fairly uniform within the shear bands, even at
a scale as small as 100 nm �45�.

A. Yielding criterion and effect of hydrostatic pressure

In the literature, the criteria of von Mises or Tresca, prop-
erly modified to take into account the dependence of the
yield stress upon the hydrostatic pressure �46�, have been
used to analyze the results of mechanical testing of BPA-PC.
The most accurate analysis can be found in Ref. �47�. The
experimental results on high-molecular-weight BPA-PC
showed a deformation mode intermediate between homog-
enous and localized yield zones. The modified Tresca crite-
rion most closely reproduced the observed behavior

�t = �0 + � · P ,

where �t, the maximum shear stress, can be expressed in a
terms of the principal stresses ��i�,

�t =
1

2
��i − � j�max,

and �0 and � are constants. It appears sensible to use a cri-
terion based on the maximum shear stress in the lamellae
when the plastic deformation is localized in shear bands as
observed in BPA-PC �45�. This is in agreement with our
choice that the plastic structures surrounding the elastic one
are connected to it via pure shear transformations. We recall
that, due to this choice, in our model the yield surface is
defined by the equation �see Sec. III A 1�

��i − � j�max = �1
min��intermediate� ,

which, in the limit of small strain such as those realized for
BPA-PC at yielding, closely corresponds to the Tresca crite-
rion. The dependence of the threshold value upon hydrostatic
pressure can then be simply accounted for by assuming a
dependence of the energy shift �U of the plastic struc-
tures with respect to the elastic one on the pressure. This

FIG. 4. Typical stress-strain diagram for BPA-PC. Reused with
permission from Ref. �45�.
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assumption is fully reasonable: we recall that in the quad-
ratic approximation �see note �35�� one has �1

min��2�
=�U
�2 / �2	�—i.e., a magnification of the energy barriers
due to closer packing—as observed also in atomistic simula-
tions �48�.

B. Sample history

In Fig. 5 we show the behavior of a representative ele-
ment obeying the proposed constitutive equation �16� and
subjected first to shear stress and deformation up to the re-
gion where laminates are effective and then to a shear stress
in the opposite direction. As explained in the previous sec-
tion, the kinetic term K�
−
0� simply increases �decreases�
the value of the yield stress to higher �lower� values if work-
ing in loading �unloading� conditions by a term ±K. This
implies that the yield stress for compression following plas-
tic elongation is smaller than the yield stress of the virgin
curve, a phenomenon known as the Bauschinger effect �49�
in the plastic yielding of metals. Note that a Bauschinger
effect �10� is actually observed for BPA-PC �11� and is also
in agreement with the analysis of kinetic effects in Ref. �19�.

C. Effect of strain rate

It is found experimentally that the yield stress of BPA-PC
has a weak power-law dependence on strain rate, quantified
by the parameter � �45,50,51�:

� =
d�0

d ln �̇
,

where �0 is the yield stress and �̇ is the strain rate. This
equation is a phenomenological restating of the Eyring-type
�52� equation �̇= �̇0 exp�−��G0−v0�0� /RT�, derived from
the theory of non-Newtonian viscosity, where �G0, v0, and
�̇0 are constants. The measured values for the shear activa-
tion volume v0 are of the order of 3–6 nm3 for BPA-PC
�45,50,51�. This is much larger than the volume of a mono-
mer unit and confirms that yielding involves the cooperative

movement of a large number of chain segments. The idea
again is that polymer plasticity is controlled by the thermally
activated cooperative motion of several chain segments
against the elastic constraint of the surrounding matrix. It can
be noted that v0 decreases to 2 nm3 when T=−100 C �51�,
implying a more localized deformation micromechanism at
lower temperatures. � also depends on temperature, particu-
larly in the range of Tg, but substantially remains around
0.03–0.06 for BPA-PC in the vicinity of room temperature.

In the previous section, we made the assumption that the
additional kinematic term K�
−
0� is linear in �
−
0�, corre-
sponding to the hypothesis of rate-independent viscoplastic-
ity. This allowed us to solve Eq. �20� analytically. In prin-
ciple, one can introduce a true rate dependence by assuming
a form K�
−
0�1+� for the kinematic term, with �=0.06. To
first order, the effect of the full K�
−
0�1+� is to change the
value of K to an effective value K� ratio�, where “ratio” is
the ratio of two given strain rates. Figure 6 shows the results
of such an approximation for two different values of �̇ �dif-
fering by a factor of 20� and a deformation mode correspond-
ing to the pure elongation �tensile test� of a representative
constitutive element. This figure compares fairly well with
Fig. 7, taken from Ref. �50�. In this connection, an interest-
ing question regards the presence of a stress peak at yield
�i.e., a stress drop or strain softening after yield�. The origin
of this phenomenon is still controversial. It is known that
during strain softening the volume decreases by a small
amount �46� and the internal energy increases up to a steady
value �53� and that the stress peak is strongly dependent
upon thermomechanical history of the specimen, external
pressure, and temperature �10�. A detailed discussion of this
phenomenon is outside the scope of the present work. Here,
we simply recall that the stress peak we find from the solu-
tion of our model in Fig. 6 is of kinetic origin and is only
obtained for deformation close to the lines �2=�1 or
�3=�2—i.e., far from the line �2=1 corresponding to a pure
shear deformation �for which no stress peak is predicted by
our model�. In other words, in our model the stress-strain
diagram is predicted to exhibit strain softening after yield in
tension or compression �due to the rank-2 character of the
involved lamination�, but not in shear �for which simple

FIG. 5. Stress-strain diagram for a loading-unloading cycle of a
representative constitutive element of the proposed construction,
Eq. �16�, supplemented by a kinetic K�
−
0� term. The diagram
shows a significant Bauschinger effect. The dotted line represents
the response of the system in the absence of the kinetic term. The
values of the parameters are �=0.9 GPa, �=1.55, �U=0.431, and
K=0.139.

FIG. 6. Stress-strain diagram for a representative constitutive
element of the proposed construction, Eq. �16�, supplemented by a
kinetic K�
−
0�1+� term �whose effect is taken into account only in
the definition of an effective K� and evaluated at two different strain
rates differing by a factor of 20. The values of the parameters are
�=0.9 GPa, �=1.55, �U=0.431, K=0.139, and �=0.065.
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plastic laminates are sufficient�. It should be taken into ac-
count, however, that the plots in Fig. 6 represents the behav-
ior of a single mesoscopic constitutive element. A complete
finite-element calculation would be in order to predict the
mechanical response to a given mechanical stimulus �elastic
misfit stresses, etc., are known to influence the final stress-
strain diagram �54,55��. We finally note that the plastic be-
havior of amorphous polymers exhibits a noteworthy depen-
dence upon temperature. The inverse relation which is found
to exist between yield stress and temperature points to the
kinetic nature of yielding as an activated process in the solid
state �10�. In our model the effect of temperature can only be
accounted for in an indirect way, as it enters into the param-
eters �, 	, �U, K, and �, which are taken from the results of
atomistic simulations or experimental data.

VI. CONCLUSIONS

A constitutive model for describing the mechanical re-
sponse of bis-phenol-A-polycarbonate �BPA-PC� has been
developed. The model is predicated on recent atomistic
simulations of the plastic behavior of BPA-PC �19� and is
derived using the tools of the mathematical theory of solid-
to-solid phase transformations �22,31�. The fundamental ob-
servation that serves as the foundation of the model is that
plasticity occurs by accommodation of macroscopic defor-
mation through microstructures that exploit the multiwell
structure of the elastic energy �20,22,27�. Thus, the atomistic
simulations reported in �19� reveal that polycarbonate pos-
sesses an isotropic elastic phase and an SO�3� continuum of
plastic phases, differing from the parent undeformed struc-
ture by a positive energy shift and a finite pure shear trans-
formation. A form of a relaxed energy is proposed, based on
a simple lamination construction, and on the strength of ex-
tensive numerical tests, it is conjectured that this form rep-
resents the lamination-convex envelope of the original free-
energy density. The proposed construction gives rise to ideal
elastic-plastic behavior—i.e., to a yield point followed by a
zero-slope branch in the stress-strain curve. Kinetics is intro-
duced into the model—and the predicted material behavior is
rendered dissipative and hysteretic—by means of a rate-

independent interfacial mobility law. This kinetics gives rise
to a Bauschinger effect and a double-yield point in tension
and compression, but not in shear. These features are in gen-
eral agreement with the experimental observation of the plas-
tic behavior of BPA-PC.

We conclude by pointing out some of the limitations of
the model and suggesting possible extensions. First, different
elastic moduli can be accorded to the transformed and un-
transformed phases at no additional complexity of the model.
Experimentally, in fact, it is known that the compliance in
the strain-hardening region resembles rubber elasticity rather
than the initial elastic regime of amorphous polymers. Sec-
ond, in order to account for the glassy character of amor-
phous polymers, a spatial distribution of the parameters �, 	,
and �U characteristic of the material heterogeneity could be
assumed and the effective behavior obtained by homogeni-
zation. This extension would effectively smooth out the
elastic-plastic transition predicted by the present model,
bringing it into closer quantitative agreement with experi-
mental measurements. Third, we note that a broader class of
models can be obtained by allowing for more general trans-
formation strains. For instance, following Ref. �31�, we may
consider the general class of energies

W�F� = min��1
2 + �2

2 + �3
2 − 3;�U + ��1

2/�1�2 + ��2
2/�2�2

+ ��3
2/�3�2 − 3� ,

where �1�2�3=1 and �1��2��3 represent general transfor-
mation stretches. Corresponding approximate rank-1 convex
envelopes can then be computed using the approach de-
scribed in Sec. III. If, by way of example, we chose �1=1,
�2=1, �3�1 �31�, the yield surface is approximately given
by the condition �3=cost. This model is relevant to nematic
elastomers above the transition temperature or to nematic
elastomers characterized by polydomain networks �29�.
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APPENDIX A

Our goal in this appendix is to express a generic deforma-
tion tensor F with respect to another deformation tensor F*,
defined as a pure shear transformation with given norm, and
to do this in such a way that the neo-Hookean elastic energy
of F as resulting in the new reference system is minimized.
In other words, for any given deformation tensor F we are
looking for the plastic structure closest to it in energy.

Let us consider a generic deformation tensor F. Defining
the right Cauchy-Green deformation tensor C as C=F†F, the

FIG. 7. Dependence of the stress-strain diagram of BPA-PC on
the strain rate. Reused with permission from Ref. �50�.
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neo-Hookean elastic energy W0�F� is written as the trace of
C

W0�F� = tr�C� − 3 = �1
2 + �2

2 + �3
2 − 3 = I1 − 3,

where I1 the first invariant of C and ��i
2� are its eigenvalues,

and we have dropped the factor � /2 taken as the energy unit.
We now express F in terms of a different reference defor-

mation tensor F*, connected to the original reference through
a pure shear transformation:

F* = I + �a��n� ,

with the constraints �a �n�=0 and �n �n�=1 �i.e., the vectors
�a� and �n� are orthogonal to each other and �n� is a unit
vector; see Appendix B�.

The elastic energy of F with respect to this new reference
system will be

W1�F� = W0�FF*−1�

= tr�F*†−1CF*−1� − 3

= tr�C� − 3 + �a�C�a� − 2�a�C�n�

= tr�C� − 3 + f , �A1�

where we have worked out the definition of W1�F� in terms
of matrix elements of C and we have defined f as the differ-
ence between W0�F� and W1�F�

f = W1�F� − W0�F� = �a�C�a� − 2�a�C�n� . �A2�

Our goal is to minimize f with respect to the vectors �a�
and �n�, with the only constraint that N—the norm of �a�—be
fixed.

Let us first minimize f with respect to the orientation of
�n�. From Eq. �A2�, this corresponds to finding the maximum
of �Ca �n�, with �a� and C given. In the three-dimensional
case, by requiring that the constraint �a �n�=0 be satisfied,
this can be achieved by taking �n� as the orthogonal comple-
ment of �Ca� with respect to �a� via a standard Schmid or-
thogonalization:

�nopt� � �Ca� −
�Ca�a�
�a�a�

�a� , �A3�

with the appropriate normalization factor—i.e., the norm of
the vector on the right-hand side of Eq. �A3�:

�Ca −
�Ca�a�
�a�a�

a� =
�a�C2�a� −
�a�C�a�2

�a�a�
�A4�

�note that the argument of the square root is a positive num-
ber by virtue of the Schwartz inequality�.

By inserting �nopt� in Eq. �A2�, it turns out that the mini-
mum value of f with respect to �n� is found by substituting
�a�C�n� with the normalization factor 25, so that now f reads

f = �a�C�a� − 2
�a�C2�a� −
�a�C�a�2

�a�a�

or, in terms of N and �m�,

f = N2�m�C�m� − 2N
�m�C2�m� − �m�C�m�2.

We now choose the Cartesian components �mi� of �m� as
our variables:

x = m1
2, y = m2

2, z = m3
2,

with the constraints

x,y,z � 0

and

x + y + z = 1,hence x = 1 − y − z ,

Let us now suppose to work in the reference system in
which C is diagonal, C=diag��1

2 ,�2
2 ,�3

2�, and let us introduce
the constants

kz = �3
2 − �1

2, ky = �2
2 − �1

2,

to rewrite f in a convenient form

f = N2��1
2x + �2

2y + �3
2z�

− 2N
kz
2�z − z2� + ky

2�y − y2� − 2kzkyyz

or, equivalently,

f

N
− �1

2N = N�kyy + kzz�

− 2
kz
2/4 − kyy�kz − ky� − �kyy + kzz − kz/2�2.

We now proceed to the change of variable, z→u=kyy
+kzz, with the new variables u and y ranging in the intervals
0�u�kz and 0�y�u /ky. f then reads

f

N
− �1

2N = Nu − 2
kz
2/4 − kyy�kz − ky� − �u − kz/2�2,

which is trivially minimized by y=0. Moreover, by imposing
that the derivative of f with respect to u equal zero, we find
the final solution as

x = m1
2 =

1

2
1 +
N/2


1 + N2/4
� , �A5�

y = m2
2 = 0, �A6�

z = m3
2 =

1

2
1 −
N/2


1 + N2/4
� , �A7�

fmin = N2�3
2 + �1

2

2
− ��3

2 − �1
2�N
1 + N2/4, �A8�

so that in conclusion the minimum energy W1�F�min can be
rewritten as

W1�F�min = �1
2
1 +

N2

2
+ N
1 +

N2

4
� + �2

+ �3
2
1 +

N2

2
− N
1 +

N2

4
� . �A9�

Defining �2=1+N2 /2+N
1+N2 /4, so that 1 /�2=1
+N2 /2−N
1+N2 /4, and adding a constant shift �U,
Eq. �A9� coincides with Eq. �3�.
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In passing, note that if we release the constraint that the
norm of �a� be fixed and minimize f also with respect to N,
we can find for any given deformation tensor F the pure
shear matrix F* closest in energy to F. A simple calculation
gives

N2 =
�3

2 + �1
2

�3�1
− 2,

fmin = 2�3�1 − �3
2 − �1

2 � 0.

Note that if �2=1 �i.e., F itself is a pure shear deforma-
tion�, then N2=tr�C�−3 and W1�F�=0; i.e., we recover F*

=F. If instead �2�1 but �1�2�3=1 �i.e., F is isochoric�, then
W1�F�=�2

2+2/�2−3�0.

APPENDIX B

In this appendix we consider some alternative formulas
for pure shear transformations. Let us consider a deformation
tensor F of the form

F = �1 0 �

0 1 0

0 0 1
� , �B1�

with ��0 for convenience. F is termed pure shear transfor-
mation since it does not contain any volumetric deformation
�isochoric� and is limited to a deformation along two princi-
pal directions, leaving the third one unmodified. For the right
Cauchy-Green deformation tensor C we have

C = F†F = �1 0 �

0 1 0

� 0 1 + �2� ,

which can be diagonalized to find

�3
2,�1

2 = 1 +
�2

2
± �
1 +

�2

4
,

�3,�1 =
1 +
�2

4
±

�

2
.

Note that det�F�=�1�3=det�C�=�1
2�3

2=1.
Apart from a multiplication by a rotation matrix �irrel-

evant for the evaluation of the energy�, a one-to-one corre-
spondence thus exists between F written as in Eq. �B1� and a
generic matrix with eigenvalues ��1= 1

�3
,�2=1 ,�3�1�: to

recover the value of �, simply put

� = �3 − �1 = �3 −
1

�3
. �B2�

Note that a pure shear transformation can also be ex-
pressed in a different notation as

F = I + �a��n� = I + a � n ,

with the constraints

�a�n� = a · n = 0,

�n�n� = n · n = 1;

i.e., the vectors �a� and �n� are orthogonal to each other and
�n� is a unit vector. The former notation is the Dirac notation,
which will be used hereafter. By bringing out the factor as-
sociated with the norm of �a�, N=
�a �a�, one finds

�a� = N�m� ,

F = I + N�m��n� ,

which shows the equivalence with Eq. �B1�.
Analogously, when �2�1 one finds a one-to-one corre-

spondence between a deformation tensor F written as

F =�
1


�2

0 �

0 �2 0

0 0
1


�2

� ,

whose right Cauchy-Green deformation tensor C reads

C = F†F =�
1

�2
0

�


�2

0 �2
2 0

�


�2

0
1

�2
+ �2� , �B3�

and a generic matrix with eigenvalues ��1

=1/ ��2�3� ,�2 ,�3�, with

�3
2,�1

2 =
1

�2
+

�2

2
± �
 1

�2
+

�2

4
,

�3,�1 =
 1

�2
+

�2

4
±

�

2
,

where

� = �3 − �1 = �3 −
1

�2�3
.
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