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Abstract:An anisotropic plasticity model is proposed to describe the fabric effect on sand behavior under both monotonic and cyclic loading

conditions within the framework of anisotropic critical state theory. The model employs a cone-shaped bounding surface in the deviatoric

stress space and a yield cap perpendicular to the mean stress axis to describe sand behavior in constant mean stress shear and constant stress

ratio compression, respectively. The model considers a fabric tensor characterizing the internal structure of sand associated with the void

space system and its evolution with plastic deformation. The fabric evolution law is assumed to render the fabric tensor to become codirec-

tional with the loading direction tensor and to reach a constant magnitude of unit at the critical state. In constant stress ratio compression, the

final degree of anisotropy is proportional to a normalized stress ratio. An anisotropic variable defined by a joint invariant of the fabric tensor

and loading direction tensor is employed to describe the fabric effect on sand behavior in constant mean stress monotonic and cyclic shear. A

systematic calibrating procedure of the model parameters is presented. Satisfactory comparison is found between the model simulations and

test results on Toyoura sand in both monotonic and cyclic loadings with a single set of parameters. The important role of fabric and fabric

evolution in capturing the sand behavior is highlighted. Limitations and potential improvement of the model in describing cyclic mobility of

very dense sand and sand behavior in nonproportional loading have been discussed.DOI: 10.1061/(ASCE)EM.1943-7889.0000907.© 2015

American Society of Civil Engineers.

Author keywords: Constitutive modeling; Fabric tensor; Anisotropy; Bounding surface; Cyclic loading; Sand.

Introduction

Natural and manmade sand deposits/samples are frequently cross-

anisotropic due to gravitational forces and/or compaction. The

anisotropic soil fabric consists of preferentially orientated sand par-

ticles, interparticle contacts, and void spaces with special geometric

properties, and plays an important role in affecting the overall sand

behavior. For example, repeated experimental data indicate that

sand fabric may significantly affect both the strength and the de-

formation behavior of sand. Careful consideration of fabric effects

has to be a major component in safe design of major infrastructures

since they are commonly built on/in sand with fabric anisotropy

(Uthayakumar and Vaid 1998).
With two model strip foundations built on the same sand, Oda

et al. (1978) demonstrated that the bearing capacity for the model

with the load perpendicular to the bedding plane may be 34%

higher than one with a load parallel to the bedding plane. The ob-

served difference in strength is apparently attributable to the effect

of cross-anisotropy. Similar observations have been further con-

firmed by many laboratory tests (Miura and Toki 1982; Azami et al.

2010; Gao et al. 2010). Meanwhile, the undrained shear strength

and cyclic liquefaction resistance of sand, which are of great con-

cern in earthquake engineering design, are also found to be strongly

dependent on the degree of fabric anisotropy and the relative

orientation between the loading direction and material fabric
(Miura and Toki 1982, 1984; Yoshimine et al. 1998; Uthayakumar

and Vaid 1998; Oda et al. 2001; Sze and Yang 2014). For instance,

Miura and Toki (1982) and Sze and Yang (2014) found that sand

deposits with a higher degree of anisotropy (bedding plane is hori-

zontal) show higher undrained shear strength in monotonic triaxial

compression tests but lower liquefaction resistance in undrained

cyclic triaxial tests. This is mainly because sand samples that are

more anisotropic show more contractive responses in the triaxial

extension side in cyclic loading. For the same anisotropic sand de-

posit tested with horizontal and vertical deposition plane orienta-

tions, the sample with the horizontal deposition plane has higher

undrained shear strength in monotonic triaxial compression tests

but lower liquefaction resistance in undrained cyclic triaxial tests,

which is also owes to the fact that it shows more contractive

response in the triaxial extension side during cyclic loading (Miura

and Toki 1984; Oda et al. 2001; Sze and Yang 2014).
To characterize the fabric effect on sand behavior, many theo-

retical attempts have been made during the past few decades. For

example, various constitutive models have been developed to

describe the effect of inherent anisotropy on sand responses

(e.g., Pietruszczak 1999; Li and Dafalias 2002; Dafalias et al.

2004; Yin et al. 2010). These models are shown to be able to char-

acterize the stress–strain and strength behavior of sand under cer-

tain loading conditions with varied degree of satisfaction. However,

the assumption of a constant fabric during loading in these models

may not be consistent with experimental and numerical observa-

tions where sand fabric has been found to change appreciably dur-

ing loading in order to accommodate the applied stress in an

optimum manner (Oda et al. 2001; Cui and O’Sullivan 2006;

Li and Li 2009; Li and Dafalias 2012; Guo and Zhao 2013; Zhao

and Guo 2013). The evolution of sand fabric, if not properly

accounted for, may result in some important features of sand behav-

ior unable to be well captured. Typical examples include the
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noncoaxiality between the principle axes of plastic strain increment
and stress (Gao et al. 2014) and the uniqueness of the critical state
line (Li and Dafalias 2012). There have been attempts to account
for the change of anisotropy through incorporating rotational hard-
ening (Sekiguchi and Ohta 1977; Gajo and Muir Wood 2001; Oka
et al. 1999) and/or kinematic hardening (Wang et al. 1990; Li
2002). However, as shown by Kaliakin (2003), these techniques
consider the loading history only, and are generally unable to
adequately account for the influence of fabric and its evolution as-
sociated with the physical structure of sand. Proper fabric tensor(s)
characterizing the internal structure of sand have to be proposed
and incorporated into a constitutive model to render physically real-
istic and mathematically robust modeling of sand behavior (Oda
and Nakayama 1989; Wan and Guo 2001; Dafalias and Manzari
2004; Li and Dafalias 2004; Bauer et al. 2004; Gao et al. 2010).
In this regard, Wan and Guo (2001), Li and Dafalias (2012) and
Gao et al. (2014) were among the first to develop advanced con-
stitutive models for sand with proper consideration of fabric evo-
lution. These studies are however limited to the description of sand
behavior in monotonic shear with fixed principal stress directions.
The behavior of sand in relation to fabric and fabric evolution under
other general loading conditions (such as constant stress ratio com-
pression and cyclic loading), which is of apparent importance for
engineering practice, remains inadequately addressed.

The main objective of this work is to present a comprehensive
bounding surface model to describe the fabric effect on sand behav-
ior in both monotonic and cyclic loading based on the recent work
by Gao et al. (2014) and the anisotropic critical state theory (Li and
Dafalias 2012). An evolving bounding surface and a yield cap are
employed to model sand response in constant mean stress shear and
constant stress ratio compression, respectively. An anisotropic var-
iable defined by a joint invariant of the fabric tensor and loading
direction tensor is conveniently employed to characterize the fabric
effect on plastic hardening, plastic flow, and dilatancy of sand in
constant mean stress shear. Fabric evolution in both constant mean
stress shear and constant stress ratio compression will be considered.

Bounding Surface f̄ 1 and Yield Cap f 2

The proposed model is based on the bounding surface concept
originally described by Wang et al. (1990) and Li (2002) and
the double hardening concept (Vermeer 1978), with further adap-
tation to be consistent with the anisotropic critical state theory re-
cently developed by Li and Dafalias (2012) and materialized by
Gao et al. (2014). Experimental observations show that there is ap-
preciable plastic strain accumulation in sand during cyclic shear
(Oda et al. 2001; Kiyota et al. 2008; Chiaro et al. 2009); hence,
the authors employ a cone-shaped bounding surface f̄1 to describe
sand behavior under such loading conditions (Fig. 1). Since the
sand behavior is found to be nearly elastic in constant stress ratio
unloading and reloading (Pestana and Whittle 1995; Taiebat and
Dafalias 2008; Northcutt and Wijewickreme 2013), a yield cap
f2 perpendicular to the mean stress axis is employed to model sand
behavior under such loading conditions (Fig. 1). As a notation con-
vention, all the quantities evaluated on the bounding surface f̄1 are
distinguished by a superposed bar.

The bounding surface f̄1 is expressed as (Li 2002)

f̄1 ¼ R̄=gðθ̄Þ − H̄1 ¼ 0 ð1Þ

where R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2r̄ijr̄ij
p

with r̄ij being the image stress ratio tensor
of the current stress ratio tensor rij ¼ sij=p ¼ ðσij − pδijÞ=p
(Fig. 2), in which σij = stress tensor, sij = deviatoric stress tensor
and δij = Kronecker delta (¼1 for i ¼ j and ¼0 for i ≠ j); H̄1 = a
function of the internal state variables associated with the loading

history; gðθ̄Þ = an interpolation function describing the variation of
critical state stress ratio with Lode angle θ̄ (Li 2002)

gðθ̄Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ c2Þ2 þ 4cð1 − c2Þ sin 3θ̄
q

− ð1þ c2Þ

2ð1 − cÞ sin 3θ̄
ð2Þ

where c ¼ Me=Mc with Me and Mc denoting the critical state
stress ratio in triaxial extension and compression, respectively.

The condition of consistency for the cone, df̄1 ¼ 0 is expressed
as (Li and Dafalias 2002; Li 2002)

df̄1 ¼ pn̄ijdr̄ij − hL1iK̄p1 ¼ pn̄ijdrij − hL1iKp1 ¼ 0 ð3Þ

where n̄ij½¼
∂f̄1=∂r̄ij−ð∂f̄1=∂r̄mnÞδmnδij=3

k∂f̄1=∂r̄ij−ð∂f̄1=∂r̄mnÞδmnδij=3k
& is the deviatoric unit loading

direction tensor defined as the norm to f̄1 at the image stress ratio
point r̄ij (Fig. 2), K̄p1 and Kp1 = plastic moduli for the reference
and current stress state, respectively; L1 = loading index for con-
stant mean stress shear; and hi = Macauley brackets such that
hL1i ¼ L1 for L1 > 0 and hL1i ¼ 0 for L1 ≤ 0. Eq. (3) indicates
the size of the bounding surface f̄1 (denoted by H̄1) increases and
decreases when K̄p1 is greater and less than 0, respectively (Li and
Dafalias 2002; Li 2002). An explicit expression of H̄1 is not nec-
essarily needed but the evolution of H̄1 is provided in Appendix II.

The image stress ratio tensor r̄ij is obtained by the radial map-
ping rule shown in Fig. 2. In the virgin loading, the projection
center αij is located at the origin of the deviatoric stress ratio space
O. If L1 changes from being positive to negative, αij will be re-
located to the current stress ratio point in the following step (Fig. 3).
Therefore, there will be a sudden change in the direction of n̄ij
when the projection center αij is relocated. More detailed discus-
sion on this can be found in Li (2002). In Fig. 3, ρ̄ and ρ = the
distances of the image and current stress ratio point, respectively,
from the projection center αij. Notice that the relocation of the

Fig. 1. Bounding surface f̄1 and yield cap f2

Fig. 2. Mapping rule and the definition of loading direction tensor
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projection center in a small unloading and reloading cycle can
cause the “overshoot” problem for this model (E-Kan and Taiebat
2014).

The cap yield surface is expressed as (Li 2002)

f2 ¼ p −H2 ¼ 0 ð4Þ

whereH2 = location of the flat cap at the mean stress axis. Its initial
value is equal to the maximum mean stress to which the sample
has been subjected. The condition of consistency for this cap is
(Li 2002)

df2 ¼ dp − hL2iKp2 ¼ 0 ð5Þ

where L2 = loading index for constant stress ratio compression and
Kp2 = plastic modulus for the yield cap. At the initial state, there is
a preexisting yield cap f2, the location of which is defined by the
initialH2, which = maximum mean stress the sand sample to which
the sample has been subjected. For virgin consolidation before
shearing, H2 is just the maximum consolidation pressure. When
the current stress state lies on f2 and p increases, H2 will increase
as Kp2 is always ≥0 (formulation for Kp2 will be shown in the sub-
sequent sections).

Following Gao et al. (2014) and Gao and Zhao (2013), a fabric
dependent flow rule expressed as below is employed for constant
mean stress shear

de
p1
ij ¼ hL1im̄ij; with m̄ij ¼

∂ḡ=∂r̄ij − ð∂ḡ=∂r̄mnÞδmnδij=3

k∂ḡ=∂r̄ij − ð∂ḡ=∂r̄mnÞδmnδij=3k
ð6Þ

where de
p1
ij = plastic deviatoric strain increment associated with the

loading index L1. The plastic potential function ḡ is expressed in
terms of the fabric tensor Fij, r̄ij and n̄ij as below

ḡ ¼ R̄=gðθ̄Þ − H̄ge
−kðĀ−1Þ2 ¼ 0 ð7Þ

where k = a positive model parameter with default value of 0.03;
Ā = an anisotropic variable expressed as a joint invariant of Fij and
n̄ij (the definition of Ā will be shown in the following section); and
H̄g should be adjusted to make ḡ ¼ 0 based on current r̄ij and Fij.
The plastic potential expressed by Eq. (7), which borrowed the
same expression used by Gao et al. (2014), has been based on a
micromechanical consideration that the shear resistance of sand
is jointly contributed by interparticle friction (denoted by H̄g)
and fabric anisotropy (denoted by Ā) (see also Nemat-Nasser
2000). Notably, the inclusion of fabric anisotropy via the joint
invariant Ā in ḡ naturally addresses the noncoaxiality between
the plastic strain increment and current stress in monotonic shear
when the stress and fabric are initially noncoaxial (Gao et al. 2014;

Gao and Zhao 2013). Eq. (6) is a general expression based on
Eq. (7). Notice that the surface of ḡ can only be visualized in
the principal stress space (or the π-plane) in special cases with fixed
relative orientation between the principal axes of Fij and n̄ij
(related to r̄ij) [see Fig. (10) in Gao et al. 2014 for demonstrative
examples], since ḡ is a general function dependent on Ā, which is a
joint invariant of Fij and n̄ij.

In constant stress ratio compression, the plastic deviatoric strain
increment is assumed to align in the same direction of rij as follows
(Li 2002)

de
p2
ij ¼ hL2ilij; with lij ¼ rij=krijk ð8Þ

where de
p2
ij is the plastic shear strain increment associated with the

loading index L2.
Assuming that the plastic deviatoric and volumetric strain incre-

ments (de
p
ij and dε

p
v ) can be decomposed into two parts associated

with L1 and L2, respectively, one has

de
p
ij ¼ de

p1
ij þ de

p2
ij ¼ hL1im̄ij þ hL2ilij ð9Þ

dε
p
v ¼ dε

p1
v þ dε

p2
v ¼

ffiffiffiffiffiffiffiffi

2=3
p

"

D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

de
p1
ij de

p1
ij

q

þD2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

de
p2
ij de

p2
ij

q

#

¼
ffiffiffiffiffiffiffiffi

2=3
p

ðhL1iD1 þ hL2iD2Þ ð10Þ

where D1

$

¼ dε
p1
v

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p1
ij de

p1
ij =3

q
%

and D2

$

¼ dε
p2
v

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p2
ij de

p2
ij =3

q
%

= dilatancy relations for constant mean stress

shear and constant stress ratio compression, respectively. It

should be mentioned that dε
p2
v ≥ 0 as Kp2 > 0 and dε

p2
v occurs

only when p increases.
It is instructive to briefly discuss the interaction between the two

loading mechanisms. The shear loading mechanism is active as
long as n̄ijdrij > 0 [Eq. (3)], and the compression loading mecha-
nism is active only when p ¼ H2 and p increases. The interaction
between the two mechanisms is detailed in Appendix I. An exam-
ple of undrained cyclic triaxial compression is also shown in Fig. 4.
Both mechanisms are active for path A to B and only the shear
loading mechanism is active from O to A and B to C.

Anisotropic Variable Ā and Dilatancy State Parameter ζ

The evolving bounding surface f̄1 and the projection center αij can
help to effectively capture the effect of loading history (e.g., cyclic
loading) on sand behavior (Wang et al. 1990; Li 2002; Ling and
Yang 2006). Meanwhile, a fabric tensor characterizing the internal

(a) (b)

Fig. 3. Illustration for the relocation of the projection center: (a) current

step with negative L1; (b) the following step with relocated projection

center

Fig. 4. Illustration for the interaction between the shear and compres-

sion loading mechanisms in undrained cyclic loading
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structure of sand also needs to be introduced to account for the
fabric effect on sand response (Li and Dafalias 2004, 2012; Gao
et al. 2014). The current model adopts the void–vector–based de-
viatoric fabric tensor Fij defined in Li and Li (2009). This tensor
characterizes the geometric property of the void spaces of a granu-
lar assembly and has been shown to be more efficient than other
fabric tensors in describing the dilatancy of granular materials (Li
and Li 2009). For an initially crossanisotropic sand sample with the
isotropic plane being the x-y plane and the deposition direction
aligning with the z-axis, the initial Fij can be expressed as

Fij ¼

0

B

@

Fz 0 0

0 Fy 0

0 0 Fx

1

C

A
¼

ffiffiffi

2

3

r

0

B

@

F0 0 0

0 −F0=2 0

0 0 −F0=2

1

C

A
ð11Þ

where F0 = initial degree of anisotropy. For convenience, Fij is
normalized in a way that its magnitude F ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

FijFij

p

is the maxi-
mum and unit at the critical state. If one chooses a coordinate sys-
tem that is not aligned with the deposition direction or the material
has been rotated in a fixed coordinate system, a corresponding
orthogonal transformation must be carried out.

The following anisotropic variable Ā and dilatancy state param-
eter ζ (Li and Dafalias 2012) will be used to characterize the fabric
effect on the dilatancy and plastic hardening of sand in constant
mean stress shear

Ā ¼ Fijn̄ij ð12Þ

ζ ¼ ψ − eAðĀ − 1Þ ¼ ψ − er½2 − ðρ=ρ̄Þx&μðĀ − 1Þ ð13Þ

where er and μ = positive model parameters, ψ ¼ e − ec = state
parameter defined by Been and Jefferies (1985) with ec being
the critical state void ratio corresponding to the current p. x ¼ 50

is a default model constant that makes the term ðρ=ρ̄Þx ≈ 0 unless ρ
is very close to ρ̄ (Fig. 3). It can be seen that Eq. (13) guarantees a
smooth transition of eA from er in virgin loading with ρ=ρ̄ ¼ 1 to
2μer when the current stress state is inside the bounding surface
with ρ=ρ̄ < 1. An eA varying with ρ=ρ̄ is used here to gain a better
description of sand response in cyclic loading. Consider a case in
which the current stress state is inside the bounding surface and
ðρ=ρ̄Þx ≈ 0, Eq. (13) gives ζ ¼ ψ − 2μerðĀ − 1Þ. On the other
hand, a constant eA ¼ er (Li and Dafalias 2012; Gao et al. 2014)
will lead to ζ 0 ¼ ψ − erðĀ − 1Þ, which is typically smaller than ζ
as Ā − 1 ≤ 0. A larger ζ will render the sand behavior more con-
tractive (see Eq. 18 below) and such consideration is found to offer
better description of the sand dilatancy in cyclic loading. Notice
that the use of a variable eA will improve model response but
the physical significance for such assumption is not clear.

In the present model, the critical state line in the e-p plane is
given by (Li and Wang 1998)

ec ¼ eΓ − λcðp=paÞ
ξ ð14Þ

where eΓ, λc and ξ are material constants and pað¼ 101 kPaÞ is the
atmospheric pressure.

Plastic Modulus and Dilatancy Relation for Constant
Mean Stress Shear

The following plastic modulus is employed in constant mean stress
shear

Kp1 ¼
Gh

R̄

&

Mcgðθ̄Þe
−nζ

"

ρ̄

ρ

#

2

− R̄

'

ð15Þ

where G = elastic shear modulus, the expression of which will be
shown in the subsequent sections; n = a positive model parameter;
and h = a scaling factor for the plastic modulus dependent on the
density, Ā, and loading history. It can be seen from Eq. (15) that the
model gives pure elastic sand response at the onset of loading di-
rection reversal as Kp1 is infinite ðρ̄=ρ ¼ ∞Þ, which is supported
by experimental observations (Kiyota et al. 2008; Chiaro et al.
2009). When ρ̄ ¼ ρ (corresponding to the virgin loading case),

Kp1 ¼ K̄p1 ¼ Gh=R̄½Mcgðθ̄Þe
−nζ − R̄&, which essentially gives a

peak stress ratio R̄ (or R) dependent on ζ.
In the present model, the following form of h is used

h ¼ hmhc ð16Þ

where

hm ¼ ð1 − cheÞe
Ā and hc ¼ ðρ=ρ̄Þx þ

h1

ð1þ FÞ2
½1 − ðρ=ρ̄Þx&

ð17Þ

where ch and h1 = two positive model parameters, x ¼ 50 renders
h ≈ hm in the virgin loading with the stress state on f̄1ðρ=ρ̄ ¼
ðρ=ρ̄Þx ¼ 1Þ, and h ≈ hmh1=ð1þ FÞ2 when the stress state is in-
side f̄1 (ρ=ρ̄ < 1 and ðρ=ρ̄Þx ≈ 0). The function hm is proposed
based on the observations of monotonic sand behavior wherein
the shear modulus increases as the void ratio decreases and the
anisotropic variable Ā increases (Li and Dafalias 2012). The term
ð1þ FÞ2 is used to render h1 to decrease with F. This is based on
experimental observations that more anisotropic sand samples
show a higher rate of positive excess pore pressure accumulation
in undrained cyclic loading under otherwise identical conditions
(Miura and Toki 1982; Sze and Yang 2014).

The following dilatancy relation in constant mean stress shear is
proposed based on the work by Li (2002), Li and Dafalias (2012)
and Gao et al. (2014)

D1 ¼
dε

p1
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p1
ij de

p1
ij =3

q ¼
d

Mcgðθ̄Þ

&

Mcgðθ̄Þe
mζ

"

ρ̄

ρ

#

− R̄

'

ð18Þ

where

d ¼ d1fðρ=ρ̄Þx þ ½1 − ðρ=ρ̄Þx&dcg ð19Þ

dc ¼
e
ω
R

h−dεp1v i

1þ dre
ω
R

h−dεp1v i
ð20Þ

where m, d1, ω and dr = positive model parameters, ω is a model
constant with default value of 5,000, and dr = relatively small num-
ber with default value of 0.1. Eqs. (19) and (20) indicate that d
varies smoothly from d1 when the stress state is on f̄1 in virgin
loading to d1dc when the stress state is inside.

The newly introduced dc is used to describe the effect of cyclic
loading history on sand dilatancy. It is commonly observed that,
during undrained cyclic loading with moderate stress ratio, the rate
of excess pore water pressure increases dramatically at the onset of
loading direction reversal when the stress state goes above the
phase transformation line, which may be attributable to the fact that
the highly anisotropic void space system that has developed due to
fabric evolution can be extremely unstable when the loading direc-
tion changes (Oda et al. 2001; Sazzad and Suzuki 2010; Soroush
and Ferdowsi 2011). It can be seen from Eq. (20) that dc will in-
crease dramatically after the occurrence of the first phase transfor-
mation (∫ h−dεp1v i becomes positive). This is because ω is very big
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and a small increase in ∫ h−dεp1v i can result in big increase in
eω∫ h−dε

p1
v i and dc according to Eq. (20). The integral ∫ h−dεp1v i

keeps increasing as long as dε
p1
v < 0 and remains unaltered to

the value they have reached when the stress reversal takes place
above the phase transformation line. The maximum dc is around
10 when R̄=Mcgðθ̄Þ ¼ 1 and eω∫ h−dε

p1
v i ¼ ∞. Therefore, the model

gives an increasing D1 after the first phase transformation. Higher
D1 leads to a higher rate of excess pore pressure accumulation in
undrained cyclic loading. It is worth mentioning that Eq. (20) is
essential for getting a better fit of sand behavior in cyclic loading
but has its own drawback as one cannot distinguish whether the
plastic volumetric strain is caused by the shear or compression
mechanism. Indeed, other similar approaches have also been pro-
posed to model the cyclic loading history on sand behavior by em-
ploying plastic deformation–dependent dilatancy relation and/or
plastic modulus (e.g., Wang et al. 1990; Oka et al. 1999; Li 2002;
Ling and Yang 2006; Wang and Xie 2014).

Plastic Modulus and Dilatancy Relation for Constant
Stress Ratio Compression

We propose the following plastic modulus under constant stress
ratio loading

Kp2 ¼

ffiffiffi

2

3

r

d2
McgðθÞ

Rr2
ð21Þ

where θ = Lode angle for rij, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3rijrij=2
p

is the current stress
ratio, and d2 = a positive model parameter. The expression for r2
describes the e-p relation in constant stress ratio compression,
which is always greater than zero. The term

ffiffiffiffiffiffiffiffi

2=3
p

is added to offer
a simpler relation between dε

p2
v and dp [Eq. (23)], where dε

p2
v =

plastic volumetric strain increment in constant stress ratio compres-
sion and dp = increment of mean effective stress. It follows from
Eqs. (5), (8), and (20) that Kp2 ¼ ∞ at R ¼ 0, and thus, L2 ¼ 0,
which indicates that no plastic shear strain occurs in isotropic com-
pression. Kp2 becomes finite when R > 0 and plastic shear strain is
produced for constant stress ratio compression with R > 0. Eq. (21)
is proposed to have such features based on the following experi-
mental observations. In isotropic compression with R ¼ 0, shear
strain is not expected for an isotropic sample and negligible amount
of plastic shear strain is found for an anisotropic one (Abelev et al.
2007). In a constant stress ratio compression with R > 0, however,
shear strain is always observed for both isotropic and anisotropic
samples (McDowell et al. 2002; Northcutt and Wijewickreme
2013).

The dilatancy in constant stress ratio loading is expressed as
follows

D2 ¼
dε

p2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p2
ij de

p2
ij =3

q ¼ d2
McgðθÞ

R
h1 − ½R=McgðθÞ&

xi ð22Þ

where x ¼ 50 is a default big number that renders 1 −
½R=McgðθÞ&

x ≈ 1 when R < McgðθÞ. The McCauley brackets hi
are to prevent D2 becoming negative at R > McgðθÞ (plastic volu-
metric expansion is not expected in constant stress ratio compres-
sion) and guarantee zero dilatancy at the critical state (Li 2002).
Note that a similar dilatancy relation has also been employed in
other models (Wang et al. 1990; Taiebat and Dafalias 2008).

Based on Eqs. (5), (10), (21), and (22), the compressive behav-
ior of sand under constant stress ratio loading ½R < McgðθÞ& can be
obtained as below

dε
p2
v ≈ r2dp ð23Þ

In the present model, the expression for r2 is proposed based on
Taiebat and Dafalias (2008)

r2 ¼
e

1þ e

&

ρc −
ðp=paÞ

1=3

K0

'

1

p
ð1 − sgnδjδjβÞ ð24Þ

where K0 = a model parameter for the elastic modulus of sand, β =
a parameter that controls the curvature of the predicted e-p relation
in constant stress ratio compression, ρc is the slope of the limit
compression curve (LCC) for isotropic compression in the log e −
logp space (Pestana and Whittle 1995), and

δ ¼ 1 −
p

pb

&

1þ 2

"

R

McgðθÞ

#

2
'

ð25Þ

where pb = image mean stress on the LCC for isotropic compres-
sion corresponding to the current void ratio e (Pestana and Whittle
1995; Taiebat and Dafalias 2008). The expression for the LCC in
isotropic compression is log e ¼ ρc logðpr=pÞ, where pr = means
stress corresponding to e ¼ 1 on the LCC. For more detailed dis-
cussion on the derivation of Eqs. (24) and (25), please refer to
Pestana and Whittle (1995) and Taiebat and Dafalias (2008).

The same d2 is employed to express the plastic modulus in
Eq. (21) and the dilatancy relation in Eq. (22), which facilitates
the derivation of Eq. (23). However, it does not imply that d2

has the same effect on both dε
p2
v and dε

p2
q ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p2
ij de

p2
ij =3

q

Þ

in constant stress ratio compression. Indeed, the relation between
dε

p2
v and dp is uniquely controlled by the expression for r2 in

Eq. (24) while the relation between dε
p2
q and dp is dependent

on d2. Nevertheless it should be noted that the model gives a
constant K0 value only when p is large enough to cause particle
crushing, and hence may not be particularly effective in predicting
the K0 behavior in sand.

Fabric Evolution

It remains a challenging task to measure the fabric and its evolution
of sand in the laboratory. Knowledge of fabric evolution of granular
materials has been mainly based on micromechanics-based inves-
tigations such as distinct element simulations (Li and Li 2009; Guo
and Zhao 2013; Zhao and Guo 2013). By neglecting potential
fabric change due to pure elastic deformation, the following fabric
evolution is assumed in the present model

dFij ¼ kf

(

ðn̄ij − FijÞdε
p1
q þ

&

R

McgðθÞ
lij − Fij

'

dε
p2
v

)

ð26Þ

where kf = a model parameter describing the rate of fabric
evolution with plastic strain increment associated with

dε
p1
q

$

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2de
p1
ij de

p1
ij =3

q
%

and dε
p2
v . Note that the same kf is used

for dε
p2
v and dε

p1
v for simplicity. A better and more reasonable

description of fabric evolution under general loading conditions
can be obtained if different values of kf are used for the two load-
ing mechanisms. It is worth mentioning that dε

p2
q cannot be used

in Eq. (26) as dε
p2
q ¼ 0 in isotropic compression for the present

model. According to Abelev et al. (2007), fabric evolution does
occur under such loading conditions when the sample is initially
anisotropic. Eq. (26) indicates that Fij will eventually become
codirectional with n̄ij and reach a constant magnitude of F ¼ 1

when ε
p1
q ð¼ ∫ dεp1q Þ is sufficiently large, which complies with the

anisotropic critical state theory (Li and Dafalias 2012). In a pure
constant stress ratio compression, Eq. (26) will not lead Fij to
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critical state but give a material fabric that is codirectional
with lij and has a constant magnitude F ¼ R=McgðθÞ when

ε
p2
v

*

¼ ∫ dεp2v
+

is large enough. This assumption is reasonable

as the sample will not reach the critical state if it is subjected to
constant stress ratio compression only. The fabric evolution
law [Eq. (26)] can also be expressed as below based on Eqs. (9)
and (10),

dFij ¼

ffiffiffi

2

3

r

kf

(

hL1iðn̄ij − FijÞ þ hL2iD2

&

R

McgðθÞ
lij − Fij

')

ð27Þ

Fig. 5 shows the simulated e-p relation and fabric evolution in
isotropic compression. It can be seen that F decreases with the
accumulation of plastic volumetric strain [Fig. 5(b)], which is in

agreement with the experimental observations by Abelev et al.
(2007). In the unloading and reloading cycles, the model gives
pure elastic response [Fig. 5(a)] and the fabric does not evolve
[Fig. 5(b)]. Fig. 6 shows the simulated stress–strain relation and fab-
ric evolution in a drained triaxial test with one unloading and reload-
ing cycle. The fabric and stress are initially codirectional and
F0 ¼ 0.5. For this case, fabric evolution is dominated by the shear
loading mechanism as dε

p1
q is much bigger than dε

p2
v . At large strain

level, the fabric reaches the critical state with a constant magnitude 1,
which complies with the anisotropic critical state theory (Li and
Dafalias 2012). Noting that the loading direction n̄ij reverses when
unloading occurs (Fig. 3), and the fabric Fij will hence adjust itself
to become codirectional with the loading direction [Eq. (26)]. Spe-
cifically, the major principal component decreases and the minor
principal component increases, which makes F decrease [Fig. 6(b)].
At the onset of loading direction reversal, there is a sudden change in

(a) (b)

Fig. 5. (a) Comparison between the model simulation and test results for the e-p relation of Toyoura sand in isotropic compression (test data from

Miura et al. 1984); (b) simulated fabric evolution

(a) (b)

(c)

Fig. 6.Model simulation for (a) the stress–strain relation; (b) evolution of F; (c) evolution of A for Toyoura sand in a drained triaxial compression test

© ASCE 04015017-6 J. Eng. Mech.
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A [Fig. 6(c)]. The model parameters used in the two simulations
above are shown in Table 1. More discussion on the fabric evolution
and its relation with sand behavior can be found in Gao et al. (2014).

Elastic Stress–Strain Relations

Hypoelastic stress–strain relations are used in this model. For the
elastic shear modulus G, the equation by Richard et al. (1970) is
adopted, which is a function of p and e expressed as

G ¼ G0

ð2.97 − eÞ2

1þ e

ffiffiffiffiffiffiffiffiffi

ppa

p
ð28Þ

where G0 = a model parameter.
Following Taiebat and Dafalias (2008) and Pestana and Whittle

(1995), the elastic bulk modulus K expressed below is used for the
present model

K ¼ K0pa

1þ e

e

"

p

pa

#

2=3

ð29Þ

Note that Eq. (29) has been used to derive Eq. (24) in Taiebat
and Dafalias (2008). One may also use K ¼ 2Gð1þ νÞ=3ð1 − 2νÞ
to obtain K based on Eq. (28) where ν = Poisson’s ratio. However,
the behavior of sand in isotropic compression may not be well
captured.

Determination of Model Parameters

The initial degree of anisotropy F0 needs to be determined before
the model parameters. Since it remains difficult to measure the fab-
ric of sand using conventional laboratory tests and other in situ test
techniques, F0 ¼ 0.5 is simply assumed for Toyoura sand prepared
by dry deposition in several layers (Yoshimine et al. 1998) and air
pluviation (Kiyota et al. 2008; Chiaro et al. 2009) in this study
(Figs. 7–10). Different F0 is used for Toyoura sand prepared by
other methods (see the text below). A feasible way to determine
F0 may be based on the anisotropic elastic stiffness tensor of sand,
which can be expressed as a function of the fabric tensor (Cowin
1985; Lashkari 2010). Since the initial stress state is isotropic for all
the simulations here, the initial H̄1 ¼ 0 and the initial H2 = mean
effective stress after consolidation.

Table 1. Summary of Model Parameters for Toyoura Sand

Parameter Symbol Value Typical range

Elasticity G0 125 120–150
K0 150 120–160

Critical state Mc 1.25 1.0–1.6
c 0.75 0.75–0.8
eΓ 0.934 0.9–1.1
λc 0.019 0.01–0.03
λc 0.7 Around 0.7

Parameters associated with
constant mean stress shear

ch 0.90 0.8–0.9
er 0.09 0.09–0.11
n 4.0 2.0-5.0
d1 0.4 0.2–0.6
m 5.3 1.0–6.0
h1 7.6 3.0–10.0
ω 5,000 Default value
dr 0.1 Default value
μ 1 Assumed

Parameters associated with
constant stress ratio
compression

ρc 0.37 0.3–0.4
pr (kPa) 5,500.0 3,000–6,000

β 0.18 0.1–0.3
d2 1 Assumed

Fabric evolution kf 7.35 7.0–8.0
Initial anisotropy F0 0.5 for Figs. 7–10 0–0.6

(a) (b)

(c) (d)

Fig. 7. Comparison between the observed and model simulated behavior of Toyoura sand in undrained triaxial tests (data from Yoshimine et al. 1998)
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(a) (b)

(c) (d)

Fig. 8. Comparison between the model simulations and test results for the behavior of Toyoura sand in undrained cyclic simple shear test (data from

Chiaro et al. 2009)

(a) (b)

(c) (d)

Fig. 9. Comparison between the model simulations and test results for the behavior of Toyoura sand with e ¼ 0.8 in drained cyclic simple shear test

(data from Wahyudi et al. 2010)
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There are six groups of model parameters, and their values for

Toyoura sand are shown in Table 1. The calibration method will be

discussed in the following:
1. Elastic parameters. The elastic parameter K0 can be deter-

mined according to the e-p relation in constant stress ratio un-
loading [e.g., the unloading curve in isotropic consolidation
tests shown in Fig. 5(a)]. The parameter G0 can be determined
based on the stress–strain relations at the very beginning of the
triaxial tests (Taiebat and Dafalias 2008). Note that the max-
imum pressure level in Fig. 5 can cause particle crushing but
this model does not consider the effect of particle crushing on
sand behavior.

2. Critical state parameters. The critical state parameters can be
obtained directly from the critical state stress ratio in triaxial
compression and extension (for Mc and c) and the location of
the critical state line in the e-p plane (for eΓ, λc and ξ).

3. Parameters relevant to constant mean stress shear. There are
nine parameters associated with constant mean stress shear.
They can be determined based on shear-dominated tests such
as monotonic and cyclic triaxial and simple shear tests. The
parameter ch varies in a small range and only fine tuning is
needed for different sands to capture the effect of the void ratio
on plastic hardening of sand in monotonic loading (Gao et al.
2014). The parameter er describes the effect of fabric aniso-
tropy and loading direction on dilatancy and plastic hardening
of sand in shear-dominated monotonic loading. It can thus be
determined by fitting the test results in triaxial extension. It is
also found that the variation of er is small for different sands
(Gao et al. 2014). The parameters n, d1, and m can be deter-
mined by trial and error to fit the monotonic triaxial compres-
sion tests. It is found that these parameters (ch, er, n, d1,
and m) are closely related to the particle constitution of sand
(gradation, maximum, and minimum void ratio) (Gao et al.
2014) and their typical ranges are shown in Table 1. μ ¼ 1

is assumed in this paper. The parameter h1 controls the value
of plastic modulus Kp1 in cyclic loading and thence controls
the rate of excess pore pressure accumulation in undrained
cyclic loading. It can be determined by best fitting the effective
stress paths in undrained cyclic loading. A default value of
5,000 and 0.1 can be sued for ω and dr, respectively.

4. Parameters relevant to constant stress ratio compression. The
parameters ρc and pr can be directly obtained based on the
location of the LCC for isotropic compression in the log e −
logp space and β can be determined by best fitting the iso-
tropic/one-dimensional compression curve in the e-p plane
[Fig. 4(a)]. Since there is no test data available for dilatancy
of Toyoura sand in constant stress ratio compression, para-
meter d2 is assumed to be 1 here.

5. Fabric evolution parameter. While it is still not possible to
measure the fabric evolution in laboratory tests, kf cannot
be directly obtained. It is found that the predicted fabric evo-
lution with kf ¼ 7.0–8.0 is in qualitative agreement with the
distinct element simulations, especially when static liquefac-
tion occurs (Gao et al. 2014). Therefore, kf ¼ 7.35 is used in
this study and can be treated as a constant for other sands with
particle constitution similar to that of Toyoura sand.

Model Simulations for Sand Behavior in Monotonic
Loading

Fig. 7 shows the model simulations of undrained tests of dry-

deposited Toyoura sand in monotonic triaxial compression and ex-

tension in comparison with laboratory test results. The test setup

and loading conditions have been discussed in Yoshimine et al.

(1998). In Fig. 7, σa, σr, εa, and εr denote the axial effective stress

(in the vertical direction), radial effective stress, axial strain, and

radial strain, respectively. It can be observed that the model cap-

tures the effect of confining pressure, fabric anisotropy, and density

(a) (b)

(c) (d)

Fig. 10. Comparison between the model simulations and test results for the behavior of Toyoura sand with e ¼ 0.7 in drained cyclic simple shear test

(data from De Silva 2008)
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on monotonic sand behavior reasonably well. Since the current
model has been based on that in Gao et al. (2014), which was pro-
posed for monotonic shear, more of its predictive capacity for the

monotonic loading case can be referred to that early study.

Model Simulations for Sand Behavior in Cyclic Simple
Shear

This section will present the model simulations for sand behavior in
both drained and undrained cyclic simple shear. The test results for

Toyoura sand prepared by air pluviation (Kiyota et al. 2008; Chiaro
et al. 2009) will be used. Since this sample preparation method is
similar to the dry deposition method used by Yoshimine et al.
(1998), F0 ¼ 0.5 is also used for these sand samples.

Fig. 8 compares the model simulations against test data for
Toyoura sand in undrained cyclic simple shear tests. For the test

shown here, the sample was first isotropically consolidated to p ¼
100 kPa and cyclic undrained simple shear was then applied with
constant amplitude of shear stress τ (Chiaro et al. 2009). Evidently,
the model gives good predictions for the effective stress path and
shear stress–strain relation. In Figs. 8–10, τmax and τmin = maxi-

mum and minimum shear stresses in each cycle, respectively, and
γ = shear strain.

Figs. 9 and 10 show the comparison between the model simu-
lations and test results for drained cyclic simple shear behavior of
Toyoura sand. The samples were first isotropically consolidated to

100 kPa and constant amplitude of shear stress (50 kPa for Fig. 9
and 60 kPa for Fig. 10) was then applied by keeping all the normal
stress components constant. Figs. 9 and 10 show the circumferen-
tial stress. The model captures the main characteristics of sand
behavior in cyclic drained loading but the simulations are not quite

accurate. The model simulations can be improved in the following
aspects. First, the double amplitude cyclic strain decreases as the

number of cycles increases, but the rate is smaller than in the ob-
servations. Better model performance is expected if the hc of
Eqs. (16) and (17) is also assumed to be dependent on the plastic
strain accumulation during cyclic loading, which renders the plastic
modulus increase with the accumulation of plastic volumetric or

shear strain (see also Ling et al. 2006 and Wang and Xie 2014).
Secondly, the model gives stiffer shear modulus for both tests.
The model performance can be improved by better expression
for hm which can give better description of sand stiffness at rela-
tively low shear strain level.

Model Description for the Effect of Fabric Anisotropy
on Cyclic Sand Response

Figs. 11(a and b) show the undrained cyclic triaxial test results on
Toyoura sand prepared by two different methods (Miura and Toki
1982). The monotonic triaxial test results indicate that the sample

prepared by the wet rodding method is approximately isotropic
(Miura and Toki 1982), and thus F0 ¼ 0 is used in the simulations
[Fig. 11(c)]. The sample prepared by the multiple sieving pluvia-
tion method is found to be initially anisotropic (Miura and Toki
1982), and its initial degree of anisotropy is set to be F0 ¼ 0.22
based on best fitting of the effective stress path shown in Fig. 11(b
and d). Note that the model parameters listed in Table 1 (except F0)
are used for these two samples.

Although the predicted effective stress path shows relatively
large deviation from the measured one for the sample prepared
by the multiple sieving pluviation method, the model does give
reasonable characterizations of the fabric effect on the sand

behavior in cyclic loading, i.e., more isotropic sample shows
higher liquefaction resistance in undrained cyclic triaxial tests
(p decreases more slowly with the number of cycles). For
example, at the end of the sixth cycle, p for the sample

(a) (b)

(c) (d)

Fig. 11. Model simulations for the effect of initial degree of anisotropy on sand behavior in undrained cyclic triaxial test (test data from Miura and

Toki 1982)
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prepared by multiple sieving pluviation is around 110 kPa,

which is lower than that for the wet-rodded sample (155 kPa)

[Figs. 9(a and b)]. Figs. 11(c and d) indicate that the model

is capable of capturing this difference. The stress–strain loops

are not available and the corresponding simulations are not

presented.
Fig. 12 shows the model simulation for the behavior of

Toyoura sand in the cyclic triaxial test. The sample was prepared

(a) (b)

(c) (d)

Fig. 12. Comparison between model simulations and test results on the behavior of Toyoura sand in undrained cyclic triaxial test (data from Dafalias

and Manzari 2004)

(a) (b)

(c) (d)

Fig. 13. Model simulations for the effect of bedding plane orientation on sand behavior in undrained cyclic triaxial test
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by depositing boiled sand in de-aired water (Ishihara et al. 1975),
which is different from the preparation methods described above.

Thus, F0 ¼ 0.05 is used to best fit the test results. Other parameters

are the same as those shown in Table 1. The test results are obtained

from Dafalias and Manzari (2004). It can be seen that the model

gives good simulations for both the stress–strain relation and stress

path. It should be mentioned that only F0 is changed to simulate

effect of initial fabric (i.e., different preparation methods create dif-

ferent initial sand fabric) on sand behavior. However, this is based

on a limited number of tests. Other parameters may also need to be

changed to get an accurate prediction of the effect of sample prepa-

ration on sand behavior.
Fig. 13 demonstrates the effect of bedding plane orientation on

the undrained cyclic triaxial sand behavior. The initial confining

pressure is 196 kPa and F0 ¼ 0.2 for both samples. Under identical

loading conditions, the effective stress path for the sample with

α ¼ 0° approaches the origin faster than the comparison sample

with α ¼ 90° [Fig. 13(b and d)]. Such sand behavior has also been

observed by Miura and Toki (1984) and Oda et al. (2001) in both

manmade and in situ sand samples with initially anisotropic fabric.

Their studies indicate that, compared to the samples with horizontal

bedding plane orientation ðα ¼ 0°Þ, those with vertical bedding

plane orientation ðα ¼ 90°Þ have higher cyclic undrained triaxial

strength and reach initial liquefaction after more cycles. The main

reason is that the samples with horizontal bedding plane orientation

ðα ¼ 0°Þ show a much more contractive response in the triaxial

extension side (Miura and Toki 1984; Oda et al. 2001), which is

captured by our model [Fig. 13(b and d)]. In addition, the samples

with α ¼ 0° show faster accumulation of negative axial strain

[Fig. 13(a and c)], which is also in agreement with the experimental

observations (Miura and Toki 1984). Notice that cyclic mobility is

observed for both samples. Note that the model gives too much

preferred accumulation of negative εa in Fig. 13(a) and future im-

provement is needed.

Conclusion

This paper presents a comprehensive bounding surface model to
characterize the fabric effect on the behavior of sand in both mon-
otonic and cyclic loading conditions within the framework of the
anisotropic critical state theory (Li and Dafalias 2012). The model
has the following key features:
1. An evolving cone-shaped bounding surface and a yield cap per-

pendicular to the mean stress axis are used to describe the sand
behavior in constant stress ratio shear and constant mean stress
compression, respectively.

2. A fabric tensor that describes the geometrical properties of
void spaces of a granular assembly is employed in the model.
It is assumed to evolve with both plastic shear and volumetric
strains. In a shear-dominated loading, the fabric tensor will
eventually become codirectional with the loading direction
tensor and reach a constant magnitude of unity at the critical
state. In constant stress ratio compression, the fabric tensor
will finally become codirectional with the stress ratio tensor
and reach a magnitude proportional to a normalized
stress ratio.

3. An anisotropic variable that is defined as the joint invariant of
the fabric tensor and loading direction tensor is used to model
the fabric effect in the plastic hardening, plastic flow, and dila-
tancy of sand in constant mean stress shear, including both
monotonic loading with fixed loading direction and cyclic
loading.

4. The model offers a unified description to account for the effect
of fabric and fabric evolution in both monotonic and cyclic load-
ing of sand. The model predictions of sand behavior for a series
of tests on Toyoura sand compare well with the test data.
While it has been shown to be able to capture the fabric effect on

monotonic and cyclic sand behavior, the proposed model still con-
tains several notable limitations which may be improved in the
future:

(a) (b)

(c) (d)

Fig. 14. Comparison between test data and model simulations for behavior of very dense Toyoura sand in undrained cyclic simple shear test
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1. The term hc [Eqs. (16) and (17)] is assumed to be affected by
F only. Such formulation is not sufficient for modeling the
cyclic mobility of very dense sand. Fig. 14 shows the model
simulations for the behavior of dense Toyoura sand (relative
density Dr ≈ 80%, F0 ¼ 0.5) in an undrained cyclic simple
shear test (T. Kiyota, personal communication, 2013). The
model gives cyclic mobility at higher mean effective stress le-
vel and lower shear strain amplitude. Indeed, past studies in-
dicate that a plastic strain–dependent hc should be used to
model the cyclic mobility of very dense sand (Li 2002; Ling
et al. 2006; Wang and Xie 2014). For instance, in order to cap-
ture such soil response, Li (2002) and Wang and Xie (2014)
assume that hc decreases with plastic shear strain. However,
such assumption is valid for the undrained loading only, as
shear modulus degradation is not observed in drained loading.
A better treating technique is indeed needed to address this
issue in the future.

2. The elasticity of sand is assumed isotropic in the present mod-
el. Experimental observations (e.g., Kuwano and Jardine
2002) have shown that the elastic stiffness is typically aniso-
tropic and evolves with deformation. This can indeed be
achieved by employing a fabric-dependent anisotropic elastic
stiffness tensor (Cowin 1985). The evolution of anisotropic
elasticity can then be naturally accounted for based on the evo-
lution of fabric with deformation. Indeed, Lashkari (2010)
showed that employment of an evolving anisotropic elastic
stiffness tensor can improve the model performance in describ-
ing undrained cyclic sand response.

3. The present model cannot describe the plastic strain accumu-
lation in sand when the stress increment is normal to the norm
of the bounding surface. A third loading mechanism may be
needed for modeling sand behavior under such loading con-
ditions (Li and Dafalias 2004).

Appendix I. Constitutive Equations

The elastic relations based on Eqs. (28) and (29) can be ex-
pressed as

deeij ¼
dsij

2G
¼

pdrij þ rijdp

2G
ð30Þ

and

dεev ¼
dp

K
ð31Þ

where deeij and dε
e
v = elastic deviatoric and volumetric strain incre-

ments, respectively.
Assuming that the total strain increment dεij = summation of the

elastic and plastic shear strain increments ðdεij ¼ dεeij þ dε
p
ijÞ, the

following equation can be obtained based on Eqs. (5), (10) and (31)

dp ¼ Kðdεv − dε
p
v Þ ¼ K

*

dεv −
ffiffiffiffiffiffiffiffi

2=3
p

D1L1 −
ffiffiffiffiffiffiffiffi

2=3
p

D2L2

+

¼ L2Kp2 ð32Þ

Thus, L2 can be expressed in terms of L1 as below according to
Eq. (32)

L2 ¼
Kdεv −

ffiffiffiffiffiffiffiffi

2=3
p

KD1L1

Kp2 þ
ffiffiffiffiffiffiffiffi

2=3
p

KD2

ð33Þ

According to the additive decomposition of the total strain in-
crement and Eqs. (3), (6), (9), (30), and (32), one has

2Gn̄ijðdeij − L1m̄ij − L2lijÞ ¼ Kp1L1 þ n̄ijrijKðdεv

−
ffiffiffiffiffiffiffiffi

2=3
p

D1L1 −
ffiffiffiffiffiffiffiffi

2=3
p

D2L2Þ

ð34Þ

The expression for L1 can be obtained based on Eqs. (33) and
(34) as below

L1 ¼
2Gn̄ij − ðn̄abrab þ BKÞδij

C −
ffiffiffiffiffiffiffiffi

2=3
p

BKD1

dεij ¼ Θijdεij ð35Þ

where

B ¼
2Gn̄ijlij − n̄ijrijK

ffiffiffiffiffiffiffiffi

2=3
p

D2

Kp2 þ
ffiffiffiffiffiffiffiffi

2=3
p

KD2

ð36Þ

and

C ¼ 2Gn̄ijm̄ij −
ffiffiffiffiffiffiffiffi

2=3
p

n̄ijrijKD1 þ Kp1 ð37Þ

The expression for L2 can be obtained by substituting Eq. (35)
into Eq. (33) as following

L2 ¼
Kδij −

ffiffiffiffiffiffiffiffi

2=3
p

KD1Θij

Kp2 þ
ffiffiffiffiffiffiffiffi

2=3
p

KD2

dεij ¼ Ωijdεij ð38Þ

The incremental stress–strain relation can then be written as the
following based on Eqs. (6), (8), (9), (10), (33), (38), and the ad-
ditive decomposition of the total strain increment

dσij ¼ Eijkldε
e
kl ¼ Eijklðdεkl − dε

p
klÞ

¼ Eijkl½dεkl − ðdepkl þ dε
p
vδkl=3Þ&

¼ Eijkl½dεkl − hðL1Þðm̄kl þ
ffiffiffiffiffiffiffiffiffiffi

2=27
p

D1δklÞL1

− hðL2Þðlkl þ
ffiffiffiffiffiffiffiffiffiffi

2=27
p

D2δklÞL2&

¼ ½Eijkl − hðL1ÞYijΘkl − hðL2ÞZijΩkl&dεkl ¼ Λijkldεkl

ð39Þ

where hðLÞ = Heaviside step function, with hðL > 0Þ ¼ 1 and
hðL ≤ 0Þ ¼ 0 and

Eijkl ¼ ðK − 2G=3Þδijδkl þ Gðδkiδlj þ δliδkjÞ ð40Þ

Yij ¼ Eijklðm̄kl þ
ffiffiffiffiffiffiffiffiffiffi

2=27
p

D1δklÞ ð41Þ

Zij ¼ Eijklðlkl þ
ffiffiffiffiffiffiffiffiffiffi

2=27
p

D2δklÞ ð42Þ

Appendix II. Evolution of the Bounding Surface

For a nonlinear elastoplastic model, it is not necessary (or often
impossible) to present an explicit expression of hardening param-
eter. However, an incremental of it, i.e., the evolution law, is needed
to furnish a constitutive model. It is instructive to add some remarks
on the bounding surface f̄1 first. In the current model, there is a
preexisting f̄1 at the initial state. When the initial state is on f̄1
(e.g., a virgin loading), the initial value of H̄1 = initial R=gðθÞ ac-
cording to Eq. (1). If the stress state is initially inside the bounding
surface, the initial H̄1 = a state variable that should be given based
on the past loading history, which is essentially equal to the size
of the bounding surface. Whereas the evolution of the size of f̄1
is implicitly given in the model, the derivation for the explicit
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expression of dH̄1 is provided here. The condition of consistency
for f̄1 can be expressed in terms of the image stress state as below

df̄1 ¼
∂f̄1

∂r̄ij
dr̄ij þ

∂f̄1

∂H̄1

dH̄1 ¼
∂f̄1

∂r̄ij
dr̄ij − hL1irH̄1

¼ 0 ð43Þ

where

dH̄1 ¼ hL1irH̄1
ð44Þ

Eq. (43) can also be expanded as below

df̄1 ¼

"

∂f̄1
∂r̄ij

−
∂f̄1
∂r̄mn

δmn

δij

3

#

dr̄ij þ
∂f̄1
∂r̄mn

δmn

δij

3
dr̄ij − hL1irH̄1

¼ 0

ð45Þ

Since ∂f̄1
∂r̄mn

δmn
δij
3
dr̄ij ¼ 0, Eq. (45) can be rewritten as

df̄1 ¼ Bn̄ijdrij − hL1irH̄1
¼ 0 ð46Þ

where

B ¼ k∂f̄1=∂r̄ij − ð∂f̄1=∂r̄mnÞδmnδij=3k ð47Þ

Combining Eqs. (3) and (46), one has

rH̄1
¼ B

K̄p1

p
ð48Þ
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