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Abstract

We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable
to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient
term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of
hysteresis. The advancing and receding angles of a surface, the liquid–vapor interfacial energy and three-phase line tension are the only required
constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that
it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of
a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at
the contact line in accord with recent experimental data.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Wetting of surfaces by liquid drops has been studied for over
two centuries starting with Young in 1805. The associated phe-
nomena are still of significant current interest due to the many
technological applications. A major result of Young [1] relat-
ing the contact angle of a drop (θY) to the solid–liquid (γSL),
liquid–vapor (γLV) and solid–vapor (γSV) surface energies,

(1)cos θY = γSV − γSL

γLV
,

pertains to the equilibrium state of the drop. Young’s equation
(1) which neglects the solid–liquid–vapor three-phase contact
line tension was modified by Boruvka and Neumann [2] as

(2)cos θ ′
Y = cos θY − τK

γLV
,

where τ is the three-phase contact line tension and K is the cur-
vature. The contact angle of the drop obtained from these the-
ories is the equilibrium contact angle on a smooth, chemically
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homogeneous surface. For heterogeneous surfaces, Cassie [3]
derived the equation for the equilibrium contact angle

(3)cos θC
Y = f A cos θA

Y + f B cos θB
Y ,

in terms of the equilibrium contact angles (θi
Y) and area frac-

tions (f i ) of the component surfaces (i = A,B); for a smooth
surfaces f A +f B = 1. On the other hand, for a rough homoge-
neous surface, Wenzel [4,5] derived the equation

(4)cos θW
Y = r cos θY,

where r is the roughness factor (ratio of the actual area to the
projected area of the surface).

The equilibrium contact angle is rarely observed experimen-
tally even for smooth homogeneous surfaces. Instead the mea-
sured contact angle of a sessile drop usually lies in a range
θr � θ � θa bounded by the receding and advancing angles θr

and θa respectively. The advancing and receding angles are em-
pirically reproducible and the contact angle hysteresis (CAH)
�θ = θa − θr is a characteristic describing surface wettability.

The origin of CAH has been the subject of vigorous de-
bate for over thirty years now. Some important causes that have
been shown to affect the hysteretic behavior of a sessile drop
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are surface roughness, chemical heterogeneities and presence
of solutes in the liquid [6,7]. The relative contributions of these
factors to the total CAH depends on the system being consid-
ered. In addition, Yang [8] and Extrand [9] have shown that the
irreversible adhesion and separation events that occur during
the advancing and receding processes contribute to hystere-
sis. The creation of bonds during the advancing process and
their destruction during the receding process are inherently ir-
reversible due to the dispersion of energy from the interface
through atomic vibration (analogous to crack growth in solids).
These effects on atomically smooth and chemically homoge-
neous defect free surfaces have been experimentally demon-
strated by Chen et al. [10] and Extrand and Kumagai [11]
as well as through molecular dynamics simulations by Fre-
und [12]. Roughness, chemical heterogeneities, solutes, sur-
face deformation, liquid absorption and retention, molecular
rearrangement upon wetting, and interdiffusion may be other
factors that augment this fundamental cause.

Most theoretical models till date have focused on surface
roughness and heterogeneities as the source of CAH. The
first models studied idealized surfaces with periodic rough-
ness in the form of parallel grooves [13,14] or axisymmetric
grooves [15]. Later models were used to obtain the contact
angle for smooth but heterogeneous surfaces [16,17]. Sub-
sequently, models of surfaces with randomly distributed de-
fects invoked pinning of the three-phase contact line to study
CAH [18,19]. Further, explicit consideration of the three-phase
contact line pinning due to defects allowed random distribution
of defects to be studied in a statistical manner [20]. A thermody-
namic model combining surface roughness and heterogeneities
has also been proposed [21]. Hysteresis on smooth homoge-
neous surfaces has been addressed theoretically by [22] as a
consequence of the shape of disjoining isotherms.

There have been several numerical approaches to studying
wetting of surfaces. Schwartz [23] proposed a lubrication model
of the Navier–Stokes equations. Several researchers [24–27]
have used the Surface Evolver program for minimization of
surface energy of the drop to obtain realistic drop shapes on
heterogeneous surfaces. Porcheron and Monson [28] studied
the Wenzel and Cassie states using a lattice gas model. Most
recently, Kusumaatmaja and Yeomans [29] have presented a
lattice Boltzmann solution of the Navier–Stokes equations cou-
pled with the minimization of a free surface energy functional to
model sessile drops on heterogeneous surfaces. The approaches
described above are useful for developing fundamental under-
standing of sessile drop behavior on heterogeneous surfaces.
However, they have one serious physical limitation in that the
smooth, chemically homogeneous, component surfaces are as-
sumed to be free of hysteresis. Hysteresis of component ma-
terials has been shown to impact the macroscopic sessile drop
behavior [30]. Our proposed approach allows a thermodynam-
ically consistent method of incorporating hysteresis on smooth
surfaces into models of sessile drops, thereby enhancing their
applicability.

In all the above models, the specific geometry of the surface
roughness and the distribution of chemical heterogeneities is
assumed and the source of hysteresis is limited to these two

mechanisms in spite of the fact that other mechanisms have
also been shown to be important. Furthermore, even if chem-
ical heterogeneities are solely responsible for hysteresis and
the component surfaces are hysteresis free, it is in practice ex-
tremely difficult to obtain the component surface equilibrium
angles in many instances. To take an example which we will
study further in this paper, Extrand [31] reports CAH of 23
degrees for PFA and 55 degrees for etched PFA with similar
roughness values for the two materials. The etching process
strips the fluorine molecules from the carbon in PFA and the
surface reacts with oxygen, water vapor and hydrogen in some
random manner when exposed to air. To obtain the “compo-
nent” surface equilibrium angles and model the distribution of
heterogeneities in this case is clearly impractical.

Thus due to practical considerations, it seems desirable to
develop a phenomenological model which incorporates hys-
teresis without explicit consideration of the source. Our model
is a constitutive approach analogous to, for example, the
Hooke’s law for elastic solids. While the origin of elasticity
may be due to different causes in metals and polymers, the same
constitutive form of the equation is used. Similarly, provided
constitutive information about the advancing and receding an-
gles, our model describes wetting of surfaces regardless of the
origin of the hysteresis.

In this paper, we present such a phenomenological theory
which describes the equilibrium aspects embodied in Eqs. (1)
and (2) as well as kinetic aspects of CAH independent of
the physical origins. The theory is developed in a Ginzburg–
Landau (GL) framework and uses a phase field to describe the
amount of wetting at each point on the solid surface. Previously,
phase field models have been used successfully to describe
solid–liquid phase transitions [32] and solid–solid phase tran-
sitions (e.g., ferroelectric, martensitic transitions [33]). In the
current model, we treat the motion of the sessile drop as caus-
ing a “phase transition” of the solid surface between wetted and
non-wetted “phases.” The theory consists of two essential fea-
tures: a free energy functional and an evolution equation for the
phase field variable. The free energy functional is composed
of a coarse grained free energy function and a gradient energy
term. The coarse grained energy accounts for the surface energy
contributions of the solid–liquid, liquid–vapor and solid–vapor
interfaces. The gradient term accounts for the three-phase con-
tact line tension. We focus purely on quasistatic drop motion in
this paper and neglect hydrodynamic effects. The instantaneous
shape and contact angle, θ , of the sessile drop is computed from
an evolution equation which is capable of taking the metastable
nature of drop states with θr � θ � θa into account.

We would like to emphasize an important aspect of this the-
ory. The only constitutive inputs for this theory are: (i) the
advancing and receding angles, (ii) the surface energy of the
liquid–vapor interface, and (iii) the line tension coefficient; all
of which are physically meaningful parameters. Using these
inputs, GL theory provides a simple, thermodynamically con-
sistent means of incorporating hysteresis. An immediate pos-
sible application could be to study wetting of composite sur-
faces whose component surface hysteresis is constitutively pre-
scribed. Since the line tension is incorporated in a natural man-
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ner, the interaction of the contact line with the heterogeneities
can be studied. To the best of our knowledge, this is the only
such model capable of constitutively incorporating hysteresis
to date.

Our focus in this work is twofold: (1) we describe the es-
sential features of the phase field model applied to the problem
of wetting by sessile drops and (2) we demonstrate how the
material properties at the three-phase contact line affect the
contact angle [34]. The main advantage of this model is the ease
with which topographical and chemical heterogeneities can be
incorporated in a phenomenological fashion. We discuss the
effect of roughness in the context of the Wenzel equation (4)
and how our model can incorporate hysteresis on a arbitrary
roughness. Next, we study the effect of heterogeneous chem-
ical properties in an axisymmetric setting and show that our
theory describes the phenomena presented experimentally by
Extrand [31]. Similar experiments [35,36] showing the effect
of surface roughness at the contact line will not be discussed
here but can be described by the theory in an entirely analogous
manner. Elsewhere we present the consequences of contact line
contortions on the contact angle on two-dimensional heteroge-
neous surfaces [37]. Since the wetting–dewetting transforma-
tion is modeled through the three-phase contact line kinetics
in the current phase field description, Cassie–Wenzel transition
would also be restricted to the contact line [38,39].

2. Theory

The basic feature of the phase field theory is a two-
dimensional field variable (order parameter) η(x, t) which rep-
resents the wetted state of the solid surface. The phase field
variable is assumed to take a value 1 (say) where the liquid
drop is in contact with the solid surface and 0 (say) where the
solid surface is in contact with the vapor. The phase field vari-
able undergoes smooth but steep transitions (see, for example,
Fig. S1 of supporting material) between the wetted and non-
wetted regions on the solid surface. Since our order parameter
describes the amount of wetting of the solid surface, we are
able to use a non-conserved phase field variable in contrast to
[40] in which a three-dimensional conserved order parameter
describes the volume of the liquid.

Our aim is to parametrize the full three-dimensional system
Gibbs free energy,

(5)G = γSLASL + γLVALV + γSVASV,

using the phase field variable η(x, t). In other words, we seek
a function f (η) such that G = ∫

A
f (η)dA where the domain

of integration is the entire solid surface area. In order to con-
struct our free energy function f (η), it is instructive to view
the free energy as G = ∫

A(η=0)
f (0) dA + ∫

A(η=1)
f (1) dA +∫

A(0<η<1)
f (η) dA, where A(η = 0) and A(η = 1) represent

the area of the non-wetted (η = 0) and wetted (η = 1) regions of
the solid surface respectively. In the phase field theory the tran-
sition region is finite though small. Purely for the purpose of
comparison of the energy of the phase field model to Eq. (5) we
consider the limit of vanishing interface thickness in which case
A(0 < η < 1) = 0. Then the term

∫
A(η=0)

f (0) dA represents

the solid–vapor contribution γSVASV and
∫
A(η=1)

f (1) dA rep-
resents solid–liquid and liquid–vapor contribution to the Gibbs
free energy: γLVALV + γSLASL.

Since η = 0 represents the non-wetted regions (solid sur-
face in contact with vapor) on the solid surface, we choose
f (0) = γSV. Where η = 1, the liquid drop is in contact with the
solid surface. Therefore, f (1) is required to provide the liquid–
vapor and the solid–liquid interfacial energy contributions. We
achieve this by associating the interfacial energy of an elemen-
tal liquid–vapor area to an elemental liquid–solid area on the
solid surface. Note from Eq. (5) that the surface energy compo-
nents must be multiplied by the appropriate surface areas while
the domain of integration of f (η) is only the solid surface area.
This can be accounted for by assuming the shape of the liq-
uid drop to be a spherical cap (appropriate for drops of radius
smaller than the capillary length under quasistatic advancing or
receding conditions). For a drop of spherical cap shape, the vol-
ume of the drop V is related to the wetted circle radius R and
the contact angle θ through

(6)V = 1

3
πR3 (2 − 3 cos θ + cos3 θ)

sin3 θ
.

The liquid–vapor surface area of the drop is given by ALV =
2πR2(1 − cos θ)/ sin2 θ and the solid–liquid surface area is
given by ASL = πR2. Thus the elemental liquid–vapor surface
area is given by

dALV = 4πR
(1 − cos θ)

sin2 θ
dR

(7)+ 2πR2
(

1

sin θ
− sin θ

1 + cos θ

)
dθ

and the elemental solid–liquid area is

(8)dASL = 2πR dR.

Differentiating Eq. (6) at constant volume we obtain R dθ =
−2(sin θ + sin 2θ/4) dR. Substituting for dθ in Eq. (7) we ob-
tain

(9)dALV = dASL cos θ.

It has to be emphasized that Eq. (9) is not a trigonometric
relationship but one that arises from association of elemental
areas gained or destroyed under the constraint of constant vol-
ume. Thus if we choose f (1) = γSL + γLV cos θ , the integral
of f (1) over the wetted surface area includes the solid–liquid
and liquid–vapor contributions of the free energy. Without loss
of generality, we shift the reference energy and conveniently
choose f (0) = 0 and f (1) = γSL + γLV cos θ − γSV.

It is worth noting that surface roughness can be incorporated
by scaling the surface areas by r , the ratio of the actual area
to the projected area. Thus, in general, f (1) = r(γSL − γSV) +
γSL cos θ . This form is used in the discussion of the Wenzel
equation (4). For the rest of the paper, we focus on chemical het-
erogeneities and ignore the roughness factor by setting r = 1.

We next require f (η) to reflect the fact that the wetted
and non-wetted regions of the solid surface may be stable or
metastable states. Here we use “metastable” to describe a drop
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Fig. 1. Double-well potential f (η)/γLV for three contact angles.

state that corresponds to a local minimum of the free energy
function which is different from the global minimum. All other
states of η should be unstable. Further, the exact shape of the
double-well potential affects the equilibrium shape of the in-
terface between the wetted and non-wetted regions but not the
kinetics or the location of the interface.

The required properties for f described above can be ob-
tained by choosing f (η) to take a double-well form with local
minima at η = 0,1. The fine structure of the interface does
not affect the equilibrium results as described above and so we
choose a simple double-well form for f (η) as a quartic function
of η,

(10)f (η) = γLV
{
8η4 − 2(H + 8)η3 + (3H + 8)η2},

where we have set H = (f (1)−f (0))/γLV = cos θ −cos θY us-
ing Eq. (1). Fig. 1 shows the plot of f (η)/γLV for three different
values of the contact angle. The equilibrium Young’s angle for
the material is given by the average of the cosines of the ad-
vancing and receding angles θY = cos−1( 1

2 (cos θa + cos θr)) =
95.4◦, using typical values for a perfluoroalkoxy (PFA) film-
coated substrate [31]. H represents the imbalance in the capil-
lary forces and is the difference in heights of the two minima
at η = 0,1. As can be seen from Fig. 1, for θ < θY, the η = 1
minimum is metastable and the drop attempts to retreat into a
smaller wetted circle while aspiring to reach the Young’s equi-
librium condition. Whereas the η = 0 well is metastable when
θ > θY with the drop attempting to wet additional solid sur-
face in order to reach the Young’s equilibrium condition. It can
therefore be seen that when the non-wetted and wetted regions
are both stable (f (1) = f (0)), Young’s equation (1) is obtained.

The total free energy for the phase field model is written as

(11)F =
∫
A

(
f (η) + 1

2
λ|∇η|2

)
dA.

The gradient term provides a penalty for the presence of in-
terfaces between η = constant regions, which, in the current
context, is the three-phase contact line tension associated with
the solid–liquid–vapor contact line. It has been postulated that

this line tension arises out of finite range molecular forces at
the contact line [41]. The gradient coefficient λ (thermodynam-
ically required to be positive) is shown below to be related to
the three-phase contact line tension. Equation (11) is the phase
field equivalent of the Gibbs free energy expression (5) and in-
cludes the energy of the three-phase contact line.

In the Ginzburg–Landau framework of the phase field the-
ory, the equilibrium solution for the order parameter is obtained
through a gradient flow evolution equation of the form

(12)βη̇ = −δF
δη

= λ∇2η − ∂f (η)

∂η
,

where δ is a functional derivative and β(x, t, η,∇η, η̇) > 0 is
the kinetic coefficient which is required to be positive for all
admissible values of its arguments [42]. It is worth remarking
that in regions away from the three-phase contact line, where
η = 0 or 1, both terms on the right-hand side of Eq. (12) vanish
and there is no evolution of η. Thus the evolution of the drop
radius is only through the motion of the contact line and the
local material properties at the contact line determine the state
of the drop. This is physically consistent with thermodynamic
energy minimization principle that the change in free energy
determines the state of the drop [34].

When the drop is axisymmetric, the Ginzburg–Landau equa-
tion (12) becomes

(13)βη̇ = λ

(
∂2η

∂r2
+ 1

r

∂η

∂r

)
− ∂f

∂η
,

where r is the radial coordinate measured from the center of the
wetted circle. Assuming for the moment that β = constant and
the boundary conditions for a drop of radius R to be

η = 1,
∂η

∂r
= 0, at r = 0,

(14)η = 0,
∂η

∂r
= 0, at r = ∞,

it is instructive to integrate (13) from 0 < r < ∞ to obtain

(15)αβv = f (0) − f (1) − αλ

R
.

Here v is the velocity of η = constant surfaces (contact line
velocity) and α = ∫ ∞

0 (∂η/∂r)2 dr [43]. Equation (15) is the
sharp interface analog of the phase field equation (13) [42,44–
46]. Substituting for f (0) and f (1), and identifying τ = αλ,
Eq. (15) for a stationary interface (v = 0) gives the modified
Young’s equation [2].1 It may also be noted from Eq. (15) that
thermodynamic equilibrium condition is only realized under
quasistatic conditions (v = 0). However, the current phase field
model is capable of handling finite contact line velocity situa-
tions although we restrict our current study to quasistatic drop
evolution. Thus the evolution of the interface is curvature driven
and the effect of the line tension is naturally accounted for by
the gradient term. We note that since the gradient coefficient

1 If the roughness factor is taken into consideration as discussed in the para-
graph following Eq. (9), Wenzel’s equation (4) modified by line tension is
obtained.
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is required to be positive in our theory, we cannot treat neg-
ative line tensions reported in the literature (e.g., Pompe and
Herminghaus [41]). In order to study the effect of negative line
tension a three-dimensional description may be required.

From Eq. (15), if the contact angle of a drop advancing with
a velocity v is θa and receding with velocity −v is θr , the CAH
at a particular drop radius is given by

(16)cos θa − cos θr = 2αβv.

It is seen from Eq. (16) that the CAH vanishes for v → 0. In
addition, Eq. (16) also suggests that CAH is proportional to
the velocity [47]. Experimental evidence however indicates that
CAH is non-zero for negligibly small contact line velocities and
is also independent of v over two orders of magnitude [7,11].
Therefore the CAH obtained with a constant kinetic coefficient
is not consistent with empirical observations. We observe from
Eq. (16) that a term which is proportional to 1/v in β may be
required for non-zero CAH to be obtained as v → 0.

In order to account for finite and rate-independent hysteresis
for small advancing and receding drop velocities, we choose a
more general form for the kinetic coefficient [48]:

(17)β = (
δH

(|∇η|) + ω|η̇|m)/|η̇|, δ,ω > 0.

We have used the notation H(|∇η|) to represent the function
H(x) = 1 for x > 0 and H(x) = 0 for x � 0. The δ term pro-
vides the rate-independent contribution of the hysteresis and
ω|η̇|m provides a power law dependence of the hysteresis. In
addition, the new form of the kinetic coefficient describes the
intermediate kinetic states of the drop in a hysteretic system.
Substituting the general form in an axisymmetric setting into
(13) gives(

δH
(∣∣∣∣∂η

∂r

∣∣∣∣
)

+ ω|η̇|m
)

sgn(η̇)

(18)= λ

(
∂2η

∂r2
+ 1

r

∂η

∂r

)
− ∂f

∂η
,

where we use sgn(S) to denote the sign of S. Taking the sign
of both sides of Eq. (18), we see that sgn(η̇) = sgn(λ∂2η/∂r2 +
(λ/r)∂η/∂r −∂f /∂η). After some algebraic manipulation, (18)
can be rewritten as

(19)η̇ =
{
W1/m sgn

(
λ

∂2η

∂r2 + λ
r

∂η
∂r

− ∂f
∂η

)
, W > 0,

0, W � 0,

where we have set

W = 1

ω

(∣∣∣∣λ
(

∂2η

∂r2
+ 1

r

∂η

∂r

)
− ∂f

∂η

∣∣∣∣ − δH
(∣∣∣∣∂η

∂r

∣∣∣∣
))

.

W � 0 indicates the metastable drop contact angle states θr �
θ � θa . From the above equation it can be seen that δ represents
the hysteresis and is given by δ/γLV = 1

2 (cos θr − cos θa).

3. Results and discussion

Equation (19) is solved numerically using an explicit finite
difference scheme with central differences for the spatial terms

Table 1
Line tension values for two different values of the gradient coefficient

λ τ

1.8 × 10−11 J 3.82 × 10−7 N
3.6 × 10−11 J 5.42 × 10−7 N

and forward difference for the temporal term. An initial distrib-
ution of η(r,0) is assumed and the radius of the drop is assumed
to be the location of η = 0.5. Equation (6) is then solved for a
given volume and radius of the drop to obtain the contact angle.
The contact angle is substituted in the Young’s driving force H

and the evolution equation (19) is solved. The domain size is
chosen such that the drop remains far from the boundary and
the boundary conditions do not influence the evolution of the
drop. The thickness of the interface measured from η = 0.95 to
η = 0.05 is approximately 2.5 µm (see Fig. S1 of the support-
ing material for a plot of an instantaneous solution of the phase
field variable for gradient coefficient λ = 1.8 × 10−11 J). The
grid size is chosen such that the interfaces contain at least 10
grid points.

Note that the line tension τ can only be calculated a pos-
teriori since τ = λ

∫ ∞
0 (∂η/∂r)2 dr requires the solution to be

known. Alternatively, the line tension has been determined from
the slope of the cosine of the contact angle versus the curvature
[49] (see Fig. S2 of the supporting material for a plot of the
cosine of the equilibrium contact angle for two different val-
ues of λ). Since we are interested in solving for the equilibrium
contact angle we set the rate-independent hysteresis parameter
δ = 0. The line tension values for two different values of the
gradient coefficient λ are shown in Table 1. The line tension is
in general a non-linear function of the gradient coefficient since
the solution profile (and, thus, α) depends on the gradient coef-
ficient.

Next we use the phase field theory to model the drop evo-
lution experiment from Extrand [31]. We plot the hysteresis
loops for two different materials: PFA and etched PFA (ePFA).
We take the advancing and receding angles of PFA (θPFA

a =
107◦, θPFA

r = 84◦), and etched PFA (θePFA
a = 67◦, θePFA

r =
12◦) reported by Extrand [31]. The equilibrium contact angles
(θPFA

Y = 95.4◦ and θePFA
Y = 46.8◦) and the hysteresis parameter

values (δPFA = 7.21 J/m2, δePFA = 10.70 J/m2) are obtained
from the experimental values of the advancing and receding an-
gles following the procedure outlined above.

Figs. 2 and 3 are plots of the hysteresis loops of the contact
angle vs the drop volume and the contact angle vs wetted cir-
cle radius respectively on smooth surfaces of PFA (loop ABCD)
and etched PFA (loop PQRS) as the drop volume is cycled from
1 to 10 µl. A 1 µl drop is given an initial condition with a large
radius and Eq. (19) is solved until a steady state for η is obtained
(given by the condition

∫
A

|η̇|dA < ε, where ε is a convergence
criterion) to give the receding angle (point A). The drop volume
is then incrementally increased and Eq. (19) is solved until the
condition

∫
A

|η̇|dA < ε is satisfied. The contact angle increases
at constant drop radius from A to B until the advancing angle
is reached. If the drop volume was not incremented at any state
between A and B, the drop would maintain its contact angle.
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Fig. 2. Hysteresis loops for two surfaces with advancing and receding angles of
PFA and etched PFA. The advancing drop is shown using circles and receding
drop is shown using triangles.

Fig. 3. Hysteresis loops for two surfaces with advancing and receding angles of
PFA and etched PFA. The advancing drop is shown using circles and receding
drop is shown using triangles.

In other words, all drop states between A and B are metastable.
With further volume injection the contact angle remains con-
stant at the advancing angle and the drop radius expands from B
to C. The intermediate states from B to C are again metastable.
When the volume of the drop reaches 10 µl, volume is with-
drawn and the drop contact angle decreases at constant radius
from C to D. Finally, when the contact angle attains the receding
angle of the material, the drop radius decreases with decreasing
volume from D to A.

When a drop wets a heterogeneous surface, the equilibrium
contact angle on the composite surface is assumed to be re-
lated to the component surface equilibrium angles through the
Cassie equation (3). It is also hypothesized that the advancing

Fig. 4. Contact angle vs drop volume for a drop on a surface with a circular
heterogeneity. The radius of the circular patch is r = 1.35 mm. The circles
represent simulation results on a homogeneous PFA surface and the squares
represent the simulation results on a homogeneous etched PFA surface.

Fig. 5. Contact angle vs wetted circle radius for a drop on a surface with a
circular heterogeneity. The radius of the circular patch is r = 1.35 mm.

and receding angles of the composite surfaces are related to
the advancing and receding angles of the component surfaces
through equations analogous to the Cassie equation. However,
recent experimental results of Extrand [31] show that the ef-
fective contact angle of the drop is determined by the surface
properties experienced in the vicinity of the contact line. We
study this situation by considering a surface of PFA in which a
circular patch of radius r = 1.35 mm has been etched (Extrand
[31]). A drop of volume 0.3 µl is placed inside the patch in a
just receded state and volume is gradually injected up to 9.5 µl.
The results of the simulations of contact angle vs drop volume
and contact angle vs wetted circle radius are shown in Figs. 4
and 5, respectively. As the drop volume increases the contact
angle increases from the receding angle to the advancing angle
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on the etched PFA patch from A to B. This occurs at constant
wetted circle radius. When the advancing angle is attained, the
wetted circle radius begins to increase from B to C till the PFA
surface in encountered at r = 1.35 mm. The contact angle then
increases from C to D at this constant radius till the advancing
angle of the PFA surface is attained. The wetted circle radius
then increases at constant angle from D to E. Liquid is then
withdrawn and the contact angle is observed to decrease till the
receding angle of PFA is reached after which the wetted circle
radius decreases till the etched PFA patch is encountered at G.
The contact angle then decreases at constant radius till the re-
ceding angle of the etched PFA surface is attained at point H.
For comparison, simulations results on homogeneous PFA and
etched PFA are shown using circles and squares respectively in
Fig. 4. The effect of the heterogeneous patch of the etched PFA
is not observed in the loop DEFG. This is consistent with the
experimental observations of Extrand [31].

As recognized by Cassie [3], the minimization of the free
energy arises from the calculation of the net change in en-
ergy as a result of the advancing or receding process. The net
change in energy per unit change in wetted area is computed as
the difference between the energy gained by the destruction of
the solid–air interfacial area and the energy that is expended
in forming the solid–liquid interface over the same area [3].
When the contact line is wholly resident on the smooth PFA
surface (with the etched PFA island entirely under the drop
footprint) and acquires an incremental unit geometrical wetted
area by advancement, all of the area acquired by the drop foot-
print is of material PFA. The net energy change for this event
is only dependent on the properties of PFA and not of etched
PFA. Therefore the appropriate area fractions to be used with
Cassie’s equation is f PFA = 1 and f ePFA = 0. When these val-
ues are used, Cassie equation yields the expected contact angle
which is that of the smooth PFA. In contrast, an inappropriate
choice of surface area fractions for this case would be based on
the total geometric surface area fractions under the drop, given
by f PFA = (area of etched PFA)/(total solid–liquid interfacial
area) and f ePFA = 1 − f PFA [35]. The disagreement between
Cassie theory and Extrand’s [31] experiment arises from an in-
correct choice of surface area fractions [50]. These observations
are embodied in the phase field simulations since the evolution
of the phase field variable occurs at the three-phase contact line
following an energetically favorable path.

4. Summary

We have proposed a phenomenological model of wet-
ting which is capable of characterizing sessile drop behavior
through the constitutive parameters: θa , θr , γLV, τ . The be-
havior of the drop is shown to be determined by the material
properties near the three-phase contact line in accord with the
experimental observations of Extrand [31] and Gao and Mc-
Carthy [35]. To the best of our knowledge this is the first com-
prehensive phenomenological model of hysteresis in wetting.
A significant advantage of this approach is that the individual
origins of hysteresis are not explicitly taken into account. This
allows the model to be applied to real surfaces on which mul-

tiple origins contribute to the overall hysteresis of the contact
angle without the need to characterize either the roughness or
chemical heterogeneities of the surface. While we presented the
theory in the context of axisymmetric droplet wetting in one di-
mension in this paper, extension to surface heterogeneities in
two dimensions [37] and other geometries poses no difficulty.
We envisage applications of this model in design and detailed
studies of heterogeneous surfaces, and in situations where the
contact line effects are important [51].

Supplementary material

The online version of this article contains additional supple-
mentary material.

Please visit DOI: 10.1016/j.jcis.2008.01.056.
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