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STE4 encodes the 13-subunit of a heterotrimeric guanine nucleotide-binding protein (G protein) that is an early 
and essential component of the pheromone signal transduction pathway. From a ste4 deletion strain we have 
isolated both dominant and recessive suppressors that show increased transcription of pheromone responsive 
genes and have regained the ability to mate, albeit at a low level. Each of these suppressor mutations 
suppresses ste4 and ste5 deletions but not deletions in STE7, STEll ,  or STE12. Among the dominant 
mutations, we have identified two alleles of STEll ,  a gene that encodes a protein kinase activity essential for 
mating. One allele contains an alteration in the putative regulatory domain of the protein kinase; the second 
allele has an alteration in the catalytic site. In strains carrying these mutations, a second protein kinase 
required for mating, STE7, becomes hyperphosphorylated, just as it does in wild-type cells treated with 
pheromone. Thus, a protein kinase cascade appears to be an essential feature of the response pathway and 
probably connects the receptor/G protein to an identified transcription factor, STE12. 
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The response to extracellular signals is an essential ele- 

ment in the control of the growth and differentiation of 

all living cells. In haploid cells of the yeast Saccharomy- 

ces cerevisiae, the differentiation pathway from vegeta- 

tive growth to the sexual cycle is controlled by the mu- 

tual exchange of extracellular, diffusible peptide phero- 

mones: Cells of mating type c~ produce a-factor and 

respond to a-factor, and cells of mating type a produce 

a-factor and respond to a-factor. Exposure of cells to the 

opposite mating pheromone generates an intracellular 

signal that leads to a variety of physiological changes 

that prepare the cell for mating. This suite of changes 

includes transcription induction of genes required for 

cell and nuclear fusion, arrest of the mitotic cell cycle in 

the G1 phase, and emergence of a projection from the cell 

body (shmoo formation). These last two changes also re- 

sult, at least in part, from altered transcription of appro- 

priate genes. Thus, to a first approximation, the phero- 

mone response pathway is a pathway in which the pat- 

tern of transcription is altered (for review, see Cross et al. 

1988; Marsh et al. 1991). 

Components or regulators of the signal transduction 

pathway have been identified by mutations that abolish 

aCorresponding author. 

pheromone response or, in a few cases, by mutations that 

lead to constitutive signaling even in the absence of 

pheromone. Genetic and physiological experiments with 

these mutant  strains have led to the following picture of 

the response pathway. Detection of pheromone is medi- 

ated by specific cell-surface receptors, encoded by STE3 

in a cells and by STE2 in a cells, that belong to the 

seven-transmembrane receptor family (Jenness et al. 

1983; Burkholder and Hartwell 1985; Nakayama et al. 

1985; Hagen et al. 1986). These receptors couple to a 

heterotrimeric G protein (Dietzel and Kurjan 1987; 

Miyajima et al. 1987; Nakafuku et al. 1987; Jahng et al. 

1988; Whiteway et al. 1989; Blumer and Thorner 1990) 

and thereby activate an intracellular pathway that is 

common to a and a cells (Bender and Sprague 1986; Na- 

kayama et al. 1987). Binding of pheromone to receptor is 

believed to lead to the exchange of GTP for GDP on the 

G~ subunit and to the attendant release of G~.  In con- 

trast to most mammalian cells and to fission yeast 

(Obara et al. 1991), in S. cerevisiae, free G ~  propagates 

the signal to downstream targets. This conclusion fol- 

lows from the observation that deletion of G~ [encoded 

by GPA1 (SCG1)] or overexpression of G~ (encoded by 

STE4) activates the pathway in the absence of phero- 

mone (Dietzel and Kurjan 1987; Miyajima et al. 1987; 

Jahng et al. 1988; Cole et al. 1990; Nomoto et al. 1990; 
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Whiteway et al. 1990). Although the immediate target of 

G ~  is not known, a terminal target is STE12, a DNA- 

binding protein that binds to the promoter regions of 

inducible genes (Dolan et al. 1989; Errede and Ammerer 

1989). These genes include FUS1 and KAR3, required for 

cell and nuclear fusion (McCaffrey et al. 1987; Trueheart 

et al. 1987; Meluh and Rose 1990), and FUS3 and FAR1, 

required for G~ arrest (Chang and Herskowitz 1990; 

Elion et al. 1990). STE12, therefore, plays a pivotal role in 

the execution of the pheromone-induced changes in cel- 

lular physiology. 

Although there is a fairly concrete view of the events 

that occur at the cell surface and in the nucleus, how the 

signal is transmitted between these two sites is not 

known. Five genes that may be involved in transmitting 

the signal have been identified by the isolation of non- 

responsive mutants.  Four of these genes--STE7, STEl l ,  

FUS3, and KSSl - -are  predicted to encode protein ki- 

nases (Teague et al. 1986; Courchesne et al. 1989; Elion 

et al. 1990; Rhodes et al. 1990). In vitro kinase activity 

has been demonstrated for the STE11 protein (Rhodes et 

al. 1990). The role of the fifth gene, STE5, is elusive. 

Because loss-of-function mutations in these genes block 

the phenotype associated with the absence of Go or over- 

expression of G~, it has been inferred that these genes 

control steps subsequent to the G protein. Other inter- 

pretations are possible, however. For example, the STE 

gene products might be required to make the G protein 

competent to transmit a signal. The relationship be- 

tween gene products thought to participate in the same 

process is rigorously established only by examining the 

phenotype of reciprocal double mutants  involving gain- 

of-function and loss-of-function alleles for both genes. 

Nevertheless, in keeping with the possibility that at 

least one protein kinase functions at a post-G protein 

step in signal transmission, STE12 has been shown to be 

phosphorylated rapidly after pheromone treatment, and 

the degree of its phosphorylation correlates with its tran- 

scriptional activity (Song et al. 1991). 

To gain insight into how the pheromone-generated sig- 

nal is propagated from G ~  to STE12, we have isolated 

suppressors that restore signal propagation in a strain 

lacking G~ as a result of a deletion of the structural gene 

(STE4). We reasoned that mutations that activate the 

pathway downstream of the G protein would include 

dominant mutations in known STE genes or would iden- 

tify new components in the signaling cascade. Here, we 

report the isolation of dominant STEl l  alleles that ap- 

pear to encode hyperactive or unregulated forms of the 

protein kinase. Strains harboring these mutations ex- 

hibit a high level of expression of pheromone-inducible 

genes, exhibit morphological alterations characteristic of 

pheromone response, and have regained some capacity to 

mate. Strikingly, these mutants  also exhibit hyperphos- 

phorylation of the STE7 protein kinase, a biochemical 

alteration seen in wild-type cells after pheromone treat- 

ment  (Z.-Q. Zhou and B. Errede, unpubl.). Thus, these 

genetic and biochemical data suggest that STE11 phos- 

phorylates a protein kinase and that a kinase cascade is 

an integral part of the pheromone response pathway. 

R e s u l t s  

Isolation of ste4A suppressors that restore mat ing  

The FUS1 gene is transcriptionally regulated by phero- 

mone and by the products of the STE4, STE5, STE7, 

STEl l ,  and STE12 genes. In a wild-type STE + strain, 

FUS1 exhibits a low basal level of transcription that is 

increased 10-fold or more by treatment of the cell with 

pheromone. In addition, FUS1 transcription is undetect- 

able in strains harboring null mutations in any of these 

five STE genes, implying that the basal transcription re- 

sults from endogenous activity of the pathway in the 

absence of pheromone stimulation (McCaffrey et al. 

1987; Hagen et al. 1991). We exploited these properties of 

the FUS1 promoter to select suppressors of a deletion in 

the STE4 gene (ste4A::LEU2). A fragment that includes 

the FUS1 upstream activation sequence was joined to 

the HIS3 open reading frame to create a hybrid gene 

(FUS1 ::HIS3), which was integrated at the FUS1 locus by 

one-step gene replacement (see Materials and methods). 

Transcription of FUSI::HIS3 was inducible by phero- 

mone and dependent on the STE genes (data not shown). 

Thus, his3A STE + cells containing FUSI::HIS3 grew 

without the addition of exogenous histidine, whereas 

his3A ste4A::LEU2 cells containing FUSI ::HIS3 did not 

(Table 1). 

We used the his3A ste4A::LEU2 FUSI::HIS3 strain 

(SY1436) and selected mutants that could grow in the 

absence of histidine (see Materials and methods). To 

identify suppressor mutations that led to activation of 

the pathway, rather than cis-acting mutations that af- 

fected only the expression of the FUS1 ::HIS3 construct, 

the initial collection of His + mutants was screened for 

suppression of two other ste4A phenotypes. First, ste4Zl 

mutants secrete much less pheromone than wild-type 

strains do because an intact pathway is required for ef- 

ficient transcription of the pheromone structural genes 

(Fields and Herskowitz 1985; Fields et al. 1988). Second, 

ste4A mutants cannot mate. Nine suppressors that se- 

creted substantial amounts of s-factor (Fig. 1) and had 

regained some degree of mating ability were isolated by 

selection and subsequent screening of -108 cells. 

To obtain a quantitative measure of the degree of sup- 

pression conferred by these mutations, three assays were 

performed. First, the level of expression of FUSI::HIS3 

was assessed by determining the level of resistance that 

the mutants exhibited to aminotriazole (AT), a compet- 

itive inhibitor of the HIS3 enzyme (Klopotowski and 

Wiater 1965; Struhl and Davis 1977). All suppressors 

were at least as resistant to AT as the isogenic STE + 

strain, and four were able to grow in the presence of 40 

mM AT, the highest concentration tested (Table 1). A 

second measure of transcriptional activity, expression of 

a F U S I - l a c Z  reporter plasmid, revealed that all mutants 

expressed substantial levels of f~-galactosidase, compara- 

ble to or greater than an isogenic STE + strain (Table 1). 

Four of the mutants expressed higher levels of ~-galac- 

tosidase than the wild-type strain did after treatment 

with pheromone. Finally, by a quantitative assay, the 

suppressor mutants mated one to four orders of magni- 
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Table 1. Transcription and mating phenotypes of the ste4A suppressors 

Strain a Dominance  b AT resistance (mM) c FUSI-lacZ expression a Mating efficiency e 

ste4A His -  0.3 <5 x 10 -8 

1 D 40 240 9.3 x 10 -s  

4 D 40 204 2.7 x 10 -4 

12 D 10 6.9 3.1 x 10 -6 

13 D 10 22.3 5.3 x 10 -6 

14 D 1 6.3 8.6 x 10 -6 

25 R 2.5 58.3 1.3 × 10 -6 

26 D 40 247 5.1 × 10 -4 

27 R 10 147 4.0 x 10 -5 

29 D 40 11.3 6.7 x 10 -5 

STE + 1 13.9 0.81 

STE + + a-factor ND f 104 ND f 

aAll strains are isogenic to SY1390 (MATa STE + FUSI::HIS3) except as indicated. Strains containing suppressor muta t ions  were 

derived from SY1436 or SY1491 (MATa ste4A::LEU2 FUSI::HIS3). 
bSuppressor mutat ions  were determined to be dominant  (D) or recessive (R) wi th  respect to wild type, as described in Materials and 

methods. 

CHighest concentrat ion of AT tested that  allowed growth on SD-His  plates. 

d~3-Galactosidase activity was determined as described in Materials and methods.  The values reported are the average of assays of at 

least three independent  transformants.  

eAbsolute mat ing efficiencies are presented, determined as described in Materials and methods.  

f(ND) Not  determined.  

tude better than the parental  s te4a::LEU2 strain (Table 

1). 
To test whether  the suppressor muta t ions  were dom- 

inant or r ecess ive ,  MATc~/MATa dip lo ids  t h a t  w e r e  he t -  

e r o z y g o u s  for  t h e  s u p p r e s s o r  m u t a t i o n  w e r e  c r e a t e d  by  

p r o t o p l a s t  fus ion .  S e v e n  of t h e  s u p p r e s s o r  m u t a t i o n s  

c o n f e r r e d  g r o w t h  i n  t h e  a b s e n c e  of h i s t i d i n e  and  w e r e  

t h e r e f o r e  d o m i n a n t .  T w o  supp re s so r s  (25 a n d  27) w e r e  

H i s -  a n d  t h e r e f o r e  r eces s ive .  

Suppressors include dominan t  alleles of STE11 

The mutan t s  were isolated as suppressors of the tran- 

scription and mat ing defects caused by a deletion in the 

STE4 gene. To discover whether  the suppressors required 

t h e  a c t i v i t y  of o t h e r  r e s p o n s e  p a t h w a y  genes ,  t h e  STE5, 

STE7, STE11, or STE12 gene  w a s  d e l e t e d  i n  e a c h  suppres -  

sor  m u t a n t  a n d  t h e  r e s u l t a n t  s t r a in  w a s  t e s t e d  for  i ts  

ab i l i t y  to  g r o w  w i t h o u t  e x o g e n o u s  h i s t i d i n e .  By th i s  cri- 

t e r ion ,  all  n i n e  m u t a n t s  c o u l d  s u p p r e s s  a d e l e t i o n  i n  

STE5 b u t  n o t  d e l e t i o n  of STE7, STEl l ,  or STE12 (Table  

2). 
To t e s t  t h e  p o s s i b i l i t y  t h a t  t h e  s u p p r e s s o r  m u t a t i o n s  

w e r e  a l t e r a t i o n s  of STE7, STE11, or STE12, w e  u s e d  g e n e  

d i s r u p t i o n  c a s s e t t e s  to  k n o c k  o u t  e a c h  of t h e  c a n d i d a t e  

STE genes ,  r e a s o n i n g  t h a t  a d o m i n a n t  a l l e l e  w o u l d  be  

d e s t r o y e d  by a g e n e  d i s r u p t i o n .  In  pa r t i cu l a r ,  w e  u s e d  t h e  

ste7, s tel  1, and  s te l2  d e l e t i o n  s t r a in s  c o n s t r u c t e d  a b o v e  

a n d  as sessed  t h e  H i s  p h e n o t y p e  f o l l o w i n g  i n t r o d u c t i o n  

of a p l a s m i d - b o r n e  v e r s i o n  of t h e  r e l e v a n t  w i l d - t y p e  STE 

STE + 

STE11-1 

S TE 11-4 

b.: ~ to 

o~ to o3 

o3 
o3 

to 
O3 

Figure 1. a-factor production in suppressor 

strains. STE + and suppressor strdins (desig- 

nated STE11-1 and STEI 1-4, as explained later 

in the text} were  spotted onto a lawn of su- 

persensitive XMB4-12b (MATa sstl) cells. 

Where indicated, the strains carried ste4, ste5, 

fus3, fus3 and kssl, or ste12 mutat ions .  The 

plates were  incubated at room temperature  

for 24 hr. The diameter  of the zone of growth 

inhibi t ion (halo) surrounding the spotted 

strains reflects the amount  of a-factor se- 

creted. 
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Table 2. Genetic requirements for suppressor activity 

ste7A 
Suppressor 
strain ste5A - pSTE7 + pSTE7 

stel 1A stel2A 

- pSTE11 + pSTE11 - pSTE12 + pSTE12 

1 + - + 
4 + - + 

12 + - + 
13 + - + 

14 + - + 
25 + - + 
26 + - + 
27 + - + 
29 + - + 

All strains are isogenic to SY1491 (MAT~x ste4A::LEU2 FUSI::HIS3) except as indicated. 
( + ) His + phenotype; ( - ) His- phenotype. 

gene (see Materials and methods). If the suppressor mu- 

tation was ablated by a ste gene disruption, then the 

plasmid-borne STE gene would not restore the His + phe- 

notype to the ste4A::LEU2 suppressor strain. Con- 

versely, if the suppressor muta t ion  was not affected by 

the disruption, then the plasmid-borne STE gene would 

restore the original phenotype. By this criterion, the two 

recessive muta t ions  (25 and 27) were not alleles of STE7, 

STEl l ,  or STE12 (Table 2). On the other hand, all seven 

of the dominant  muta t ions  appeared to be STE11 alleles. 

This  possibil i ty was confirmed by rescuing the STEl l  

allele from each of the mutan ts  by gap repair (Rothstein 

1991; see Materials and methods). Upon introduction 

into a naive ste4::LEU2 strain, the repaired plasmids iso- 

lated from these seven mutan ts  (1, 4, 12, 13, 14, 26, and 

29) conferred the original suppressor phenotype: The 

cells were His + and produced high levels of pheromone. 

Because the segment of D N A  cloned by gap repair cor- 

responded closely to the STE11 locus and because over- 

expression of wild-type STE11 does not lead to activation 

of FUSI::HIS3 (B. Stevenson and G. Sprague, unpubl.), 

we reasoned that the muta t ions  were l ikely wi th in  the 

STE1/-coding sequence. In fact, DNA sequence analysis 

of suppressor 1 revealed a C --* T transit ion at nucleotide 

950 [following the D N A  sequence number ing  of Rhodes 

et al. (1990)], which  substi tutes serine for proline at 

amino acid residue 279 (Fig. 2). This allele was desig- 

nated STEll -1 .  The altered residue is wi th in  the large 

amino- terminal  domain  which, by analogy wi th  o t h e r  

protein kinases, may  have a regulatory function (Taylor 

et al. 1990). A transi t ion muta t ion  (C ---, T) at nucleotide 

position 1902 was present in the six remaining mutants ,  

leading to the replacement  of threonine 596 by isoleu- 

cine. This allele was designated STEll-4 .  The altered 

residue is adjacent to the invariant  Asp-Phe-Gly (DFG) 

triplet in subdomain VII according to the classification of 

Hanks et al. (1988) and lies at the heart of the proposed 

kinase catalytic site. 

STE11-1 and STE11-4 exhibi t  similar, 

but distinct, phenotypes  

The variabil i ty of phenotypes exhibited by the original 

isolates carrying the STE11-4 mutation,  and the possibil- 

i ty that secondary mutat ions  wi th in  the strains could 

alter the suppressor phenotype, prompted us to re-exam- 

ine both STE11 alleles in defined isogenic backgrounds. 

In this isogenic setting, we investigated the effect of the 

STE11 alleles in strains that could respond to pheromone 

(STE4 +) or in strains that carried deletions in known 

components of the response pathway. 

The wild-type STEI1 gene in strain SY1390 (relevant 

genotype: M A T s  STE + FUSI::HIS3) was replaced by ei- 

ther the STE11-1 or the STE11-4 allele by two-step gene 

replacement (see Materials and methods). As expected, 

both alleles conferred a His + phenotype and high basal 

expression of FUSI - lacZ  in an otherwise wild-type ge- 

netic background (Table 3). However, by several criteria, 

the STEI 1-4 allele conferred a stronger phenotype than 

the STEll-1 allele. First, the expression of FUSI - lacZ  

was higher in STEl l -4  strains than in STEll-1 strains. 

Second, although both alleles suppressed the mat ing de- 

fect caused by loss of the a-factor receptor (ste3A) or of 

G~ (ste4a), strains carrying the STE11-4 allele exhibited 

a mat ing efficiency about two orders of magni tude 

greater than STEll-1  strains. Third, cells carrying the 

STEl l -4  allele in an otherwise wild-type background 

grew noticeably slower than either isogenic STEll -1  or 

P 279-+ S 

413 717 

/" ". 

K I TDFG 

I 
T 596--> I 

STEII-I STEII-4 

Figure 2. Location of the amino acid substitutions caused by 
the STE11-1 and STE11-4 mutations. The long rectangle repre- 
sents the STEll protein kinase; the region of protein kinase 
homology is shaded. Numbering of amino acids is from Rhodes 
et al. {1990). Conserved catalytic subdomain VII is shown, with 
invariant amino acid residues in boldface type (Hanks et al. 
1988). 
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Table 3. Transcription and ma t ing  activities of STE11-1  and 

S T E 1 1 - 4  in  various genetic backgrounds 

A T  

r e s i s t a n c e  F U S I - l a c Z  M a t i n g  

Strain a (mM) b expression ¢ efficiency a 

STEll -1  40 233.8  0 .90 

STEll -1  ste3A 40 207.5  1.3 x 10 -5  

STEl l -1  ste4A 40 160.4 2.9 x 10 - 5  

STEII-1 ste5A 1 4.8 < 4  x 10 -8  

STEl l -1  ste7A H i s -  0.1 < 7  x 10 - 8  

STEl l -1  s te l2A H i s -  0.1 < 4  x 10 - 8  

STEl l -1  fus3A 40 147.7 1.7 x 10 - 2  

STEl l -1  fus3A k s s l A  H i s -  N D  e < 4  x 10 - 8  

STE11-4 40 341 .9  0.93 

STEl l -4  ste3A 40 258 .4  7.1 x 10 - 4  

STEl l -4  ste4A 40 300 .6  2.0 x 10 - 3  

STEl l -4  ste5A 30 49 .4  < 4  x 10 -8  

STEl l -4  ste7A H i s -  0.1 < 9  x 10 -8  

STEl l -4  s te l2A H i s -  0.1 < 6  x 10 -8  

STEl l -4  fus3zi 40 321.5  2.2 x 10 - 2  

STEl l -4  fus3A k s s l A  H i s -  N D  e < 3  x 10 - 8  

STE + 1 17.4 0.81 

ste3A 1 16.8 < 4  x 10 - 8  

ste4A H i s -  0.3 < 5  x 10 - 8  

s te5a H i s -  0.3 < 2  x 10 - 8  

s te l2A H i s -  0.1 < 5  x 10 - 8  

STE + fus3A 5 29.3 1.0 x 10 - 2  

STE + fus3za k s s l A  H i s -  N D  ¢ < 3  x 10 - 8  

aAll  s t r a i n s  a re  i s o g e n i c  to  SY1390  (MATa STE + FUSI::HIS3) 

e x c e p t  as  i n d i c a t e d .  

b H i g h e s t  c o n c e n t r a t i o n  of  A T  t e s t e d  t h a t  a l l o w e d  g r o w t h  o n  

S D - H i s  p la t e s .  

¢[~-Galactosidase activity was determined as described in Mate- 
rials and methods. The values reported are the average of assays 
of at least three independent transformants. 
dAbsolute mating efficiencies are presented, determined as de- 
scribed in Materials and methods. 
¢(ND) Not determined. 

STE11 strains. Microscopic examination of exponential 

phase STE11-4 cells revealed a significant proportion of 

large cells wi th  projections or other aberrant morpholo- 

gies, which were not present in the isogenic STE11 cul- 

ture (Fig. 3). STE11-4 ste4zl strains also exhibited projec- 

tion formation (Fig. 3), as did STEl l -4  ste3zl (data not 

shown), but STE11-4 stel2za strains exhibited wild-type 

morphology (Fig. 3). These findings are again consistent 

with the idea that the pathway is activated at a step 

downstream of G~ but before STE12. 

To complete the epistasis analysis in these isogenic 

strains, we constructed ste5, ste7, and s te l2  derivatives 

of the STEII-1 and STEl l -4  mutants.  Both alleles con- 

ferred a His + phenotype in ste5A strains but not in ste7A 

or s te l2A strains (Table 3), confirming the results ob- 

tained with the original suppressor mutants. However, 

quantitative mating analysis and transcription assays re- 

vealed that ste5A was suppressed only partially (Table 3). 

Moreover, the growth and morphological defects of the 

STE11-4 allele were not seen in the ste5a strain (data not 

shown). These results imply that the phenotype of the 

STEl l  mutant  strains is a composite of the signal gen- 

erated by the mutant  kinases and of a STE5-dependent 

signal. 
Recently, two additional genes required for the activ- 

ity of the response pathway have been identified. These 

genes, FUS3 (Elion et al. 1990) and KSS1 (Courchesne et 

al. 1989), are partially redundant in function and appear 

to encode related protein kinases. Deletion of FUS3 

alone has little effect on transcription induction but 

blocks cell cycle arrest in response to pheromone. Dele- 

tion of both genes blocks transcription induction and 

cell cycle arrest (Elion et al. 1991; G. Ammerer, A. 

Amon, and K. Nasmyth, pers. comm.). As shown in Ta- 

ble 3, deletion of both genes abolished both the transcrip- 

tion and mating phenotypes of the STEl l -1  and S T E l l - 4  

strains, suggesting that FUS3/KSS1 functions at a step 

after STE11 in the pathway. Although these genetic data 

do not exclude more complicated relationships, bio- 

chemical data from Gartner et al. (this issue) support this 

simple relationship (see Discussion). 

STE11 controls the phosphorylation state 

of the STE7 protein k inase  

The STE7 protein kinase is hyperphosphorylated in cells 

treated with pheromone (Z.-Q. Zhou and B. Errede, un- 

publ.). To determine whether STE11 activity affects the 

phosphorylation state of STE7, we examined the STE7 

protein in strains expressing either the STEl l -1  or 

STE11-4 allele. It is not possible to detect wild-type lev- 

els of STE7; hence, STE7 was overproduced to permit 

immunodetection. Because overproduction of STE7 does 

not influence pheromone response in otherwise wild- 

type cells, these experiments are likely to give an accu- 

rate representation of the post-translational changes in 

STE7 during response. Treatment of wild-type cells with 

pheromone increased the intensity of the slower migrat- 

ing forms of STE7, which are characteristic of hyper- 

phosphorylation (Fig. 4, lane 3; Z.-Q. Zhou and B. Errede, 

unpubl.}. In the absence of pheromone, expression of the 

STE11-1 or STE11-4 allele led to an increase in the pro- 

portion of slower migrating forms of STE7 (Fig. 4, cf. 

lanes 7 and 8 with lane 4). This result suggested that 

STE11 affects the phosphorylation state of STE7 and re- 

inforced the idea that STE11 acts before STE7 in the 

pathway. 

The phenotypes conferred by the dominant STE11 al- 

leles require a functional FUS3/KSS1 activity (Table 3). 

In concert with this physiological relationship between 

STE11 and FUS3/KSS1, the hyperphosphorylated forms 

of STE7 were depleted in STEl l -1  (or S T E l l - 4 ) f u s 3 z i  

k s s l  A strains. The extent of STE7 hyperphosphorylation 

was indistiguishable from that seen in an untreated 

STE + fus3A k s s l A  strain (Fig. 4, cf. lanes 10 and 11 with 

lane 9). These findings indicate that FUS3/KSS 1 activity 

is required for STE7 modification by the constitutive 

STE11 kinases. 

Discussion 

In the yeast pheromone response pathway, a signal is 
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Figure 3. Cellular morphology of STE11-1 and STE11-4 strains. Isogenic strains were grown in rich medium to exponential phase. A, 
STE+; D, ste4A; G, STE + after treatment with a-factor; B, STEll-1; E, STEll-1 ste4A; H, STEII-1 stel2A; C, STEll-4; F, STEll-4 
ste4A; I, STE11-4 stel2A. Cells were fixed and photographed as described in Materials and methods. 

transmitted from the cell surface to the nucleus, where a 

change in transcription of select genes occurs, leading 

ultimately to the characteristic physiological response. 

The events that take place at the cell surface and in the 

nucleus have been well studied, but the nature and order 

of events that constitute the signal that connects these 

two locales are poorly understood. To gain insight into 

this central portion of the pathway, we identified mu- 

tants with a constitutively active pathway. A number of 

these mutants harbor dominant mutations in STEll, 

which encodes a protein kinase required for activity of 

the pathway. Below, we discuss the implications of these 

findings for the organization of the pathway and for the 

regulation of kinase activity. 

Organization of the pheromone response pathway 

The majority of components that participate in the pher- 

omone response pathway have been identified by the iso- 

lation of mutants with a nonresponsive phenotype 

(MacKay and Manney 1974; Hartwell 1980). However, 

because the mutants exhibit an identical phenotype, the 

functional relationships among the gene products are 

largely unknown. Prior to this work, the relative posi- 

tions of two components had been established by genetic 

analyses. First, the G protein acts at an early, but pos- 

treceptor, step in the pathway. This conclusion came 

from the analysis of strains in which perturbations in the 

activity or quantity of STE4 (G~) led to constitutive ac- 

tivation of the pathway (Blinder et al. 1989; Cole et al. 

1990; Whiteway et al. 1990; Elion et al. 1991). The con- 

stitutive phenotype allowed strains lacking receptors to 

mate, but the phenotype was blocked by loss-of-function 

mutations in STE5, STE7, STEll,  STE12, and FUS3/ 

KSS1. These results place the G protein after the recep- 

tors, but its relationship to the STE and FUS3/KSS1 

products is uncertain. These products may function after 

the G protein, or they may be required for its activity. 

Second, a transcription factor, STE12, required for the 

transcription of genes whose products execute response, 

was placed at the end of the pathway. This placement 

follows from the finding that overexpression of STE12 
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Figure 4. Post-translational modification of 
the STE7 protein kinase. STE7 protein was 
detected in protein extracts by western anal- 
ysis as described in Materials and methods. 
STE7 exists in two forms; the slower migrat- 
ing species is hyperphosphorylated (Z.-Q. 
Zhou and B. Errede, unpubl.). The level of 
MCM1 protein served as a control for the 
amount of protein extract loaded in each lane. 
{Lane 1) STE + no pNC279; (lane 2) MATa 

STE+; (lane 3) MATa STE + treated with 5 mM 
c~-factor for 3 hr (lane 4) STE+; (lanes 5,7) 
STEll-1; (lanes 6,8) STEll-4; (lane 9) STE + 

fus3-6::LEU2 kssl A::URA3; (lane 10) 

STEll-1 fus3-6::LEU2 ksslA::URA3; (lane 
11) STEll-4 fus3-6::LEU2 kssl A::URA3. All 

strains are MAT~ and contained pNC279 
(CYC1-STE7), unless otherwise stated. Over- 
expression of STE7 in STEll-1 and STEll-4 

strains that are otherwise wild type for the 
signal transduction pathway leads to a growth 
defect. Because plasmid loss provides a means 

to overcome the detrimental effect of STE7, only -30% of the cells in cultures of these strains contain the STE7 plasmid, compared 
with -80% of the cells in cultures of the other strains (data not shown). Consequently, there is less STE7 protein in the extracts loaded 
in lanes 5 and 6 than in other lanes. To facilitate comparison with other lanes, three times more protein from these extracts was loaded 
in lanes 7 and 8. 

led to a consti tut ive phenotype even in strains lacking 

the STE and FUS3/KSS1 products (Dolan and Fields 

1990; Elion et al. 1991). 

The isolation of STE11 alleles that confer a constitu- 

tive phenotype has allowed us to infer the relationships 

among additional pathway components.  First, we con- 

clude that STE11 functions after STE4. The dominant  

STE11 alleles suppress all defects associated wi th  loss of 

STE4 activity. Second, we conclude that STEl l  func- 

tions after at least some STE5 activities because the 

dominant  S T E l l  mutat ions  suppress the lack of tran- 

scription of FUS1 and other genes seen in ste5z~ strains. 

However, the STE11 alleles do not suppress the mating 

defect of ste5z~ strains. Two models can be proposed to 

explain the quanti tat ive difference in suppression of 

ste4A and ste5ZL The simpler  model  supposes that STE4, 

STE5, and STE11 exhibit  a l inear relat ionship and sup- 

poses further that STE5 is required for optimal activity of 

the STE11 kinase. The second model  supposes that the 

pheromone response pathway branches at the STE4 or 

STE5 step, creating two independent  signals, one of 

which  operates through STE11. Together, these signals 

influence the activity of STE12 and perhaps other pro- 

teins involved in mating. 

Finally, we conclude that STE11 acts before STE7 and 

FUS3/KSS1. The genetic data establish that STE7 and 

FUS3/KSS1 are required for the STEl l  mutan t  pheno- 

type but do not establish their relat ionship in the path- 

way. However, b iochemical  analysis of wild-type and 

mutan t  strains reveals that STE11 influences the phos- 

phorylat ion state and presumably the activity of STE7 

and FUS3/KSS1. When wild-type cells are treated wi th  

pheromone, STE7 protein is phosphorylated rapidly in a 

STEl l -dependent  manner.  The increased phosphoryla- 

tion of STE7 apparently increases its kinase act ivi ty (Z.- 

Q. Zhou and B. Errede, unpubl.), a l though the possibil i ty 

that the phosphorylat ion represents an adaptive response 

to pheromone has not yet been excluded. Hyperphospho- 

rylation of STE7 is also observed in the STEl l -1  and 

S T E l l - 4  consti tutive mutants ,  even in the absence of 

added pheromone. In a parallel effort, Gartner et al. (this 

issue) have shown that FUS3 rapidly becomes phospho- 

rylated after pheromone treatment.  As is thought  to be 

the case for STE7, the phosphorylated form of FUS3 ap- 

pears to be the active kinase. Phosphorylat ion of FUS3 

requires STEl l  funct ion and occurs in S T E l l - 1  and 

S T E l l - 4  strains even in the absence of pheromone.  

These data therefore place STE7 and FUS3 after STE11 in 

the pheromone response pathway. 

What is the relat ionship between STE7 and FUS3? In 

this case, evidence suggests an interdependent  rather 

than linear relationship. Phosphorylat ion of STE7, either 

on pheromone s t imula t ion  or in the S T E l l  m u t a n t  

strains, requires FUS3/KSS1 (this work; Zhou  and Errede 

1992), and likewise, phosphorylat ion of FUS3 under ei- 

ther condit ion requires STE7 (Gartner et al., this issue). 

Thus, we suggest that STE7 and FUS3/KSS1 require each 

other to become active. Perhaps they carry out mu tua l  

phosphorylat ion or form a complex. This  model  rational- 

izes the properties of a presumptive gain-of-function mu- 

tation in FUS3. The phenotype conferred by this allele is 

abolished by deletion of STE7 or S T E l l  (J. Brill, E. Elion, 

and G. Fink, pets. comm.), not because STE7 and STE11 

funct ion after FUS3 but  because STE11 and STE7 mus t  

operate to generate phosphorylated FUS3, wh ich  appears 

to be the active form of the protein. 

The genetic requirements  for phosphorylat ion of STE7 

and FUS3 are the same whether  mediated by pheromone 
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or by STE11 mutation, implying that the two conditions 

are equivalent mechanistically. Thus, we suggest that in 

the normal course of pheromone response the activity of 

STE11 increases, which leads to increased phosphoryla- 

tion of STE7 and FUS3 and an attendant increase in the 

activity of those kinases. Whether STE 11 acts directly on 

STE7 and FUS3 or acts through an intermediary protein 

or proteins is not known. Targets of STE7 and FUS3 may 

include STE12, which is believed to exhibit increased 

ability to activate transcription on phosphorylation 

(Song et al. 1991). Our results therefore imply the pres- 

ence of a protein kinase cascade at the center of the pher- 

omone response pathway. This insight, coupled with the 

results of others (Dietzel and Kurjan 1987; Miyajima et 

al. 1987; Nakayama et al. 1988; Blinder et al. 1989; Do- 

lan and Fields 1990), suggests that most of the pathway 

components function in a linear sequence. Thus far, the 

only exception is the relationship between STE7 and 

FUS3. As discussed above, there may be a branchpoint at 

the STE5 step, but in the absence of direct evidence for 

this possibility, we will assume the simpler, linear rela- 

tionship (Fig. 5). 

Regulation of the kinase activity of STE11 

Protein kinases typically consist of a catalytic domain 

and a regulatory domain, which is either part of the same 

polypeptide or is present on a second subunit (Taylor et 

al. 1990). The protein kinase encoded by STE11 is a large 

protein comprised of 717 residues. The kinase catalytic 

domain occupies the carboxy-terminal half of the protein 

(Fig. 3; Rhodes et al. 1990). The function of the large 

amino-terminal portion of the protein is unknown, but 

by analogy with other protein kinases this domain may 

have a role in regulating the activity of the catalytic do- 

main. The position and nature of the amino acid substi- 

tutions in the constitutive STE11 mutants  suggest how 

the activity of STE11 may be regulated. 

The STE 11-1 mutant  protein has serine substituted for 

proline in the middle of the amino-terminal putative reg- 

ulatory domain. Although in principle this domain could 

have either a positive or negative regulatory role, we fa- 

vor the latter possibility for several reasons. In this view, 

the negative regulatory function has been inactivated by 

the amino acid substitution, which leads to increased 

activity of the catalytic domain as revealed by phospho- 

rylation of STE7. Consistent with this proposed negative 

role is the finding that overproduction of the amino-ter- 

minal domain of STE11 makes cells resistant to or-factor- 

induced cell-cycle arrest (N. Rhodes and B. Errede, un- 

publ.). A similar result has been obtained for byr2, a pu- 

tative protein kinase from Schizosaccharomyces pombe 

(Wang et al. 1991), which is 42% identical to STEll  (B. 

Stevenson, unpubl.) and is required for mating and sporu- 

lation by that organism. Overexpression of the byr2 

amino terminus reduces sporulation, indicative of a re- 

duction in signal strength in that pathway (Wang et al. 

1991). Finally, the amino-terminal segments of other 

serine/threonine kinases, for example, Raf-1 (Stanton 

1989), are known to have negative regulatory roles. 

a-factor 

STE3 

a-factor 

G protein / 
STE5 

STE11 

/ 

STE7 

sTE,2 STE'2. I 
/,rao  r, ,io0\ I 

MATING [ CELL CYCLE 

I ARREST 

e g FUS1 e.g. FAR1 

KAR3 FUS3 

Figure 5. A model for the pheromone response pathway. This 
schematic incorporates results from this work and elsewhere. In 

cells, the binding of a-factor to the receptor encoded by STE3 
(or ct-factor binding to STE2 in a cells) results in the exchange of 
GTP for GDP on the c~-subunit of the G protein [encoded by 
GPA1 (SCGll], and its dissociation from the B and ~/subunits 
[encoded by STE4 and STE181. G~ transmits the signal through 
STE5 and the protein kinases, causing a change in the modifi- 
cation state of the transcription factor STE12. STE12* repre- 
sents the phosphorylated form that appears to have transcrip- 
tional activity. As discussed in the text, STE7 and FUS3/KSS1 
may have an interdependent relationship. Examples of induc- 
ible genes involved in mating and cell cycle arrest are given. 
FUS1 is required for cell fusion and KAR3 for nuclear fusion. 
FAR1 and FUS3 cause cell cycle arrest by affecting G1 cyclin 
accumulation. Pheromone-mediated post-translational modifi- 
cation of FAR1 and FUS3, in addition to their increased abun- 
dance as a result of increased transcription, is likely essential to 
achieve cell cycle arrest. 

The STEll-4 mutant  protein has isoleucine substi- 

tuted for threonine in the catalytic domain, adjacent to 

the invariant Asp-Phe-Gly triplet, which is thought to be 

involved in ATP binding at the catalytic site (Hanks et 

al. 1988; Knighton et al. 19911. An intriguing possibility 

is that the threonine residue is a site of negative regula- 

tion by phosphorylation, which would interfere with 

ATP binding. Substitution by isoleucine would remove 

this regulatory site, resulting in a constitutively active 

kinase. It is noteworthy that the analogous position in 

byr2 is a serine residue (Wang et al. 19911. Another pos- 
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sibility is that the substitution enables STE11 to interact 

more efficiently with its substrate. In this view, the 

properties of the mutant kinase do not result from loss of 

a negative regulatory mechanism but from a gain in in- 

trinsic activity. 

Impl ica t ions  for signal t ransduc t ion  in other organisms 

Recent evidence indicates that the pheromone response 

pathway as deduced for the budding yeast S, cerev i s iae  is 

highly conserved in the fission yeast S. pombe .  Phero- 

mone  receptors homologous to those of budding yeast 

have been identified for fission yeast (Kitamura and Shi- 

moda 1991; M. Yamamoto,  pers. comm.), and those re- 

ceptors are coupled to G proteins (Obara et al. 1991). 

Equally noteworthy,  two putat ive protein kinases, byrl  

and byr2, which  are homologous to STE7 and STE11, are 

essential components  of the pa thway (Nadin-Davis and 

Nas im 1988; Wang et al. 1991; A. Ne iman  and I. Her- 

skowitz, pers. comm.; B. Stevenson, unpubl.). Moreover, 

genetic analysis reveals that  byr2 and byrl  funct ion in 

the same order as do their budding yeast counterparts. 

Recently, DNA sequences that  can encode a protein 

wi th  homology to STE7 have been isolated from Droso- 

phi la  me lanogas te r  (A. Neiman,  pers. comm.). As yet, no 

close relatives to STEl l ,  other than  byr2, have been 

identified in other species. However, given that  S. cere- 

visiae and S. p o m b e  have very similar signal transduc- 

t ion pathways despite the great evolut ionary distance 

that  separates them, it will  be interest ing to learn 

whether  STE11 and STE7 homologs are key components  

in signal t ransduct ion processes in mul t ice l lu lar  organ- 

isms. 

Materials and methods 

Strains, media, and microbiological techniques 

The majority of yeast strains used in this work are isogenic 

with SY1390 (MATe~ STE + FUSI::HIS3 lea2 ura3 trpl 

his3A2OO::ura3 pep4A::ura3 canl), which was derived from 

246-1-1 (MATc~ leu2 ura3 trpl his4-519 canl, provided by K. 

Tatchell) by one-step gene replacement at the relevant loci 

{Rothstein 1991). This strain contains the FUS1 ::HIS3 gene fu- 

sion at the FUS1 locus and is phenotypically Fusl- .  A 

ste4a::LEU2 version of this strain (SY1491) and its lys2 deriv- 

ative (SY1436) were used for mutant isolation. In the genetic 

analysis of the mutants, ste deletion derivatives were produced 

by one-step gene replacement using ste5zl:: URA3, 

ste7A::URA3, stel la::URA3, and stel2A::URA3 DNA con- 

structs. Strains containing the STEll-1 (SY1865) or STEll-4 

(SY1866) alleles, in an otherwise wild-type background, were 

produced by integration of pSL1654 and pSL1655, respectively, 

at the STE11 locus in strain SY1390. Resolution of the tandem 

STE11 duplication was selected by resistance to 5-fluoro-orotic 

acid (Boeke et al. 1984), and Ura- colonies were screened phe- 

notypically for the presence of the mutant allele. Deletion de- 

rivatives of SY1390 (STE+), SY1865 (STEll-1), and SY1866 

{STEll-4) were produced by one-step gene replacement using 

ste3A::LEU2, ste4zl::LEU2, ste5A::LEU2, stel2A::LEU2, fus3- 

6::LEU2, and kssl  &: URA3 DNA constructs. Three additional 

strains were used: DC5 (MATa leu2-3, -112  his3 gal2 canl; 

provided by J. Strathern); 227 (MATa lysl cryl; provided by I. 

Herskowitz); XMB4-12b (MATa sstl-1 arg9 ilv3 ural his4; pro- 
vided by L. Blair). 

Yeast and bacterial strains were propagated using standard 

methods. YEPD and SD media have been described (Rose et al. 

1990). Yeast transformations were performed as described by 

Beggs (1978) or by electroporation (Becket and Guarente 1991), 

except that sonicated, denatured salmon sperm DNA was in- 

cluded as carrier. Bacterial transformations, bacterial DNA 

preparations, and plasmid constructions were performed by 

standard methods (Sambrook et al. 1989). 

Plasmids 

FUSI::HIS3 (pSL1497) contains the HIS3 open reading frame 

driven by the FUS1 promoter, flanked by sequences to direct 

integration of the gene fusion to the FUS1 locus. Appropriate 

sites in FUS1 and HIS3 for the fusion point were created by Bal 

31 digestion and SalI linker addition. The exact end points of 

the deletions used for the gene fusion were determined by DNA 

sequencing: for the FUS1 promoter, 3 bp upstream of the ATG; 

for the HIS3 open reading frame, 22 bp upstream of the ATG. 

The FUSI::HIS3 fusion was created by ligating the FUSI and 

HIS3 fragments in the pSPT18 vector (Pharmacia); subse- 

quently, a 1.2-kb HincII fragment containing downstream FUS1 

sequences was ligated into the Sinai site of the polylinker. Di- 

gestion with EcoRI releases a FUSI::HIS3 fragment that can 

recombine with and replace the native FUS1 locus. The FUS1- 

lacZ plasmid used to assay FUS1 expression has been described 

(pSL307; McCaffrey et al. 1987). 

A collection of plasmids was used to introduce deletions at 

the chromosomal STE loci: ste4zl::LEU2 (p121; Whiteway et al. 

1989); ste5A::URA3 (pSURE1, provided by J. Thorner); 

ste5A::LEU2 (pSL1180; this work); ste7zl:: URA3 (pSL1077; this 

work); ste7zl3::LEU2 (pNC113; Company and Errede 1988); 

stel 1A:: URA3 (pSL1094; this work); stel2A:: URA3 (pSL1311; 

this work); stel2A::LEU2 (pSUL-16; Fields and Herskowitz 

1987); fus3-6::LEU2 (pYEE98; Elion et al. 1990); and 

kssl  A:: URA3 (pGA1850, provided by G. Ammerer). 

CEN-ARS plasmids with a selectable TRP1 marker were used 

to introduce STE genes into ste deletion strains: pSL1363, 

STEll on a 5.6-kb SalI-BamHI fragment in pRS314 (Sikorski 

and Hieter 1989); pSL1364, STE12 on a 5.4-kb ClaI fragment in 

pRS314; pSTE7 +, STE7 on a 5-kb SacI fragment in pNC160 

(Rhodes et al. 1990). pSL1506, used to clone the STEll  alleles, 

was constructed by replacing the BamHI-SalI fragment of 

YCp50 (Rose et al. 1987) with a 5.3-kb BamHI-SalI fragment 

from pSTE11.1 (Chaleff and Tatchell 1985) and deleting the 3.6- 

kb XbaI fragment that contains the entire STE11 gene. pSL1654 

and pSL1655 contain the STEII-1 and STEll-4 alleles, repec- 

tively, as 3.6-kb XbaI fragments in a modified pRS306 vector 

(Sikorski and Hieter 1989) lacking the KpnI site in the poly- 

linker, pNC279, a TRP1 CEN-ARS plasmid containing STE7 

driven by the CYC1 promoter (provided by Z. Zhou), was used 

to facilitate detection of STE7 in Western analysis. 

Isolation and analysis of ste4A suppressor mutants  

Mutations that restore expression of FUSI::HIS3 to a 

s te4zl:: LE U2 strain arise spontaneously at a frequency of ~ 10 - s 

of cells plated on SD-His. In one experiment, aliquots of eight 

different cultures of strain SY1436 (relevant genotype MATc~ 

ste4A::LEU2 FUSI::HIS3 ura3 lys2) containing pSL307, a 

URA3 2-~m FUSI-lacZ reporter plasmid, were plated on SD- 

His-Ura. Only 1 colony of the 96 tested restored mating ability 

to the ste4~l strain. This isolate (mutant 1) also produced more 
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a-factor than the isogenic STE + parent (SY1390). To isolate 

more mutants with these phenotypes a culture of SY1491 

(MATo~ ste4A::LEU2 FUS1 ::HIS3) was mutagenized with ethyl- 

methanesulfonate (70% survival; Moir et al. 1982), and cells 

that expressed FUS1 ::HIS3 were selected on SD-His plates. The 

frequency of colony formation was 1.5 x 10 -4. Eight mutants 

(4, 12, 13, 14, 25, 26, 27, and 29) were selected for further study 

on the basis of secondary screens for pheromone production and 

mating competence. 

The dominant or recessive nature of the suppressor muta- 

tions was determined by testing the expression of FUSI::HIS3 

in MATodMATa diploids, formed by protoplast fusion (Schnell 

et al. 1989) of the ste4zl suppressor mutants with the parental 

ste4A strain. A His-  phenotype indicated that the mutation was 

recessive, whereas a His + phenotype indicated that the muta- 

tion was dominant. MATa/MA ToL diploids heterozygous for the 

mutation in suppressor mutant 1 grew poorly on SD-His and 

produced a level of a-factor intermediate between the original 

mutant and the parental ste4A strain, suggesting that the mu- 

tation was incompletely dominant (codominant). 

The ability of each ste4A suppressor mutant to suppress de- 

letions in other STE genes was determined by replacing the 

chromosomal copy of the relevant STE gene with a deletion 

allele marked by a URA3 gene (Rothstein 1991). Following con- 

firmation of the genotype by Southern analysis, the His and 

pheromone production phenotypes of the deletion mutants 

were evaluated. In cases where the mutation did not suppress a 

particular ste deletion, the possibility that the suppressor mu- 

tation was allelic to the STE gene was determined by introduc- 

ing a plasmid-bome copy of the STE gene. Failure to express 

FUS1 ::HIS3 or to produce more cx-factor in the presence of the 

STE gene suggested that the suppressor was allelic to that gene. 

This result was confirmed by cloning the suppressor allele and 

testing its effect on the expression of FUSI::HIS3 in a naive 

ste4A::LEU2 strain. 

Cloning and sequencing of the STE11 alleles 

The STEll alleles were cloned by the gap repair method 

(Rothstein 1991). Strains suspected of carrying a mutant STEll 

allele were transformed to uracil prototrophy with pSL 1506 lin- 

earized at the unique XbaI site. The 3.6-kb XbaI fragment res- 

cued from each suppressor mutant was subcloned into 

M13mpl8 for sequencing (Sanger et al. 1977), using synthetic 

primers complementary to the STEII sequence. The DNA se- 

quence of the entire STEI/-coding region was determined for 

the STE11 alleles rescued from mutants 1 and 4, and from the 

wild-type isogenic strain (SY1491). A single nucleotide differ- 

ence was detected between wild type and each of the mutants. 

Only the sequence spanning the change in STE11-4 was deter- 

mined for alleles rescued from mutants 12, 14, 26, and 29. These 

alleles contain the same mutation present in STEI 1-4. 

fl-Galactosidase, mating, and halo assays 

For [3-galactosidase assays, strains carrying pSL307 were grown 

to mid-log phase at 30°C in selective medium. Cells were pre- 

pared and assayed as described previously (Jarvis et al. 1988). 

Quantitative mating assays were performed by a filter mating 

assay as described (Clark and Sprague 1989). Qualitative mating 

and pheromone production assays (halo assays) were performed 

according to Sprague (1991). 

Preparation of yeast protein extracts and detection of STE7 

STEll-1, STEll-4, and STE + strains harboring pNC279 were 

grown to saturation in SD-Trp and used to innoculate 250 ml of 

1302 GENES & DEVELOPMENT 

S broth-Trp medium containing 1% sucrose as the carbon 

source (to induce CYC1-STE7 expression). Cultures were har- 

vested at a density of - 2  x 10 z cells/ml, and protein extracts 

were prepared as described (Company et al. 1988). Aliquots of 

protein (25 ~g/lane, from 40% ammonium sulfate fractions) 

were fractionated on an 8% SDS-polyacrylamide gel (Laemmli 

1970) and transferred to nitrocellulose. Rabbit anti-STE7 poly- 

clonal antibodies were used to detect STE7 protein. Mouse anti- 

MCM1 polyclonal antibodies (a gift of G. Ammerer) were used 

to detect MCM1 protein. The Promega Protoblot system with 

goat anti-rabbit or goat anti-mouse IgG conjugated to alkaline 

phosphatase was used to detect the primary antibody by color- 

imetric methods. 

Microscopy 

Cells were fixed in 3.7% formaldehyde/0.15 M NaC1 and soni- 

cated briefly before mounting. Micrographs were taken on a 

Zeiss Axioplan photomicroscope with Nomarski optics, using a 

100x objective. 
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