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Abstract: The nonlinear constitutive equations and field equations o f  unsaturated soils were 

constructed on the basis of  mixture theory. The soils were treated as the mixture composed 

of  three constituents. First, from the researches of  soil mechanics, some basic assumptions 

about the unsaturated soil mixture were made, and the entropy inequality o f  unsaturated soil 

mixture was derived. Then, with the common method usually used to deal with the 

constitutive problems in mixture theory, the nonlinear constitutive equations were obtained 

Finally, putting the constitutive equations of  constituents into the balance equations of  

momentum, the nonlinear field equations of  constituents were set up. The balance equation 

of energy of  unsaturated soil was also given, and thus the complete equations for  solving the 

thermodynamic process o f  unsaturated soil was formed. 
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Introduction 

Soil is the most commonly used construction material in civil engineering and hydraulic 

engineering. The characteristics of soil have been i0vestigating for nearly one hundred years. But 

because of its complex structure, changeable environment and being sensitive to the outside 

conditions, the soil often shows varied properties [1' 23. The main difficulty to the development of 

geotechnical mechanics is how to set up constitutive equations which could satisfactorily account 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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for engineering properties of soil E3] . Many constitutive models have been formed in the long-time 

engineering practice, scientific research and theoretical investigation. These models [4] can be 
- . [6] roughly classified as nonlinear elastic models ~51 , plastic models , endochronlc models ~7] , and 

mixture models [8] . Up to now, the geotechnical mechanics is still in the state of semi-experience 

and semi-theory [93 , not only has no fast theory foundation, but also is far from complete 

theoretical system [1~ . The mixture theory El1' 12] possesses ability to deal with the constitutive 

problem of composite medium. Maybe, due to the tedious expression, no attentions from 

geotechnical engineering has been paid to the ability [13] of mixture theory, only a few experts 

analyzed the transport processes in soil with the theory [14] . Although Chen Zheng-han [9' 15, 16] 

proposed the axiom system of the mixture theory for geotechnical mechanics, there are still some 

principles which need more discussion. A . C .  Eringen [13] is the fn-st scientist who used the 

mixture theory to do research on the characteristics of unsaturated soil. His study only was the 

simplification of mixture theory of porous medium and the natures of the unsaturated soil were not 

involved. 

In the article, unsaturated soil is treated as saturated mixture composed of soil solid skeleton 

and liquid as well as gas in the pores of soil. By combination of material characteristics of three 

constituents and use of classical mixture theory, the nonlinear constitutive equations, the field 

equations and the balance equation of energy are derived. The complete equations for solving the 

thermodynamic process of unsaturated soil are given. Thus the foundation of mixture theory of 

constitutive relation for unsaturated soil is made. 

1 M i x t u r e  T h e o r y  

Mixing several pure materials with different properties (physical or chemical properties) 

forms mixture. The mixing maybe homogeneous locally and entirely ( e .  g. gas mixture and 

solution), or inhomogeneous locally but homogeneous entirely ( e .  g. suspension and porous 

medium).  The pure materials, which form mixture, are constituents of the mixture. There could 

be not only relative motion, but also interaction, even matter transformation ( e .  g. phase 

transformation and chemical reaction) between constituents. Mixture theory is a system that 

investigates the laws of motions, interactions and transformations of constituents, as well as 

relationships between the motions of mixture and the actions upon it from the outside. 

Mixture theory is based on thermodynamics. It is the development of the continuum 

theory[17, 18] of single medium and called interaction continuum theory. It is well self-consistent 

and systematic. In the theory, the mixture is visualized as the fold of continua that represent the 

constituents, one point in the mixture is occupied simultaneously by the material points of 

constituents and each constituent only has one material point at that point. TmesdellF~9~ (1957) 

developed the mathematical theory of mixture. The the,ory has three axioms: 1) All properties of 

the mixture must be mathematical consequences of properties of the constituents; 2) So as to 

describe the motion of a constituent, we may in imagination isolate it from the rest of the 

mixture, provided we allow properly for the actions of the other constituents on it; 3) The motion 

of the mixture is governed by the same equations as is a single body. In sixties to seventies of 

20 th century, the mixture theory was studied intensively. Many scientists had made contributions 

to its development. References [ 11 ~ and [ 121 discussed the important works in the period. The 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Constitutive Relation of Unsaturated Soil ( T. ) 125 

mixture theories for complex media with special structure were also proposed, for example, the 

mixture theory of materials with microstracture, the mixture theory of immiscible and structured 

mixture and the mixture theory of composite material etc. Bedford and Drumheller [~3 summed up 

lots of applications of mixture theory. 

To make preparation for the following deduction, here we give a brief introduction to the 

classical mixture theory. 

1.1 K i n e m a t i c s  of m i x t u r e  

Consider a mixture composed of N continuous media B ~ ( a = 1, 2,  " " ,  N ) .  Each medium 

or constituent is assigned a reference configuration. The position of the particle of the a th 

constituent in its reference configuration is X~ (material coordination). The motions of particles 

of constituents make up of the motion or deformation of the mixture. The motion equation of ath 

constituent is 

xo = x o ( X o , t ) ,  (1) 
where t is time, x~ (spatial coordination) is the spatial position occupied at time t by the particle 

labeled X~. Eq. ( 1 )  is also called deformation function of a th constituent. Assume that the 

constituents satisfy the axiom of continuity, then a unique inverse of Eq. ( 1 ) exists, at least in a 

neighborhood of x , .  The inverse of Eq. (1)  is 

X.  = X ~ ( x a , t ) .  (2) 

The axiom of continuity means the indestructibility and impenetrability of matter, The velocity 

and acceleration of X~ are defined, respectively, by 

8 
vo = x'~ -- ~ x o ( X o , t )  = a, x o ( X o , t ) ,  (3)  

- ( X a , t )  3 ~ x . ( X . , t ) ,  (4) aa = x :  O t 2 x a  = 

where ( )~ denotes material derivative with respect to the motion of ath constituent. Given 

Eq. ( 2 ) ,  the velocity and acceleration can be regarded as functions of (X~,  t )  

v, = v a ( x ~ , t ) ,  a~ = a , ( x ~ , t ) .  ( 5 , 6 )  

They represent the velocity and acceleration, respectively, of particle of a th constituent which is 

at the spatial position x ,  at time t .  

The deformation gradient at (X  a , t ) is a linear transformation def'med by 

Fa = G R A D ~ x ~ ( X ~ , t ) ,  detFa ~> 0. (7 ,8 )  

The linear transformation inverse to F~ is 

F/~ 1 = grad~ X a ( x ~ ,  t)  (9) 

and 

where GRAD~ 

position x~,  I is unit tensor. The second deformation gradient at X~ is given by 

G~ = GRAD~ F~.  

The velocity gradient for the a th constituent at (x~ ,  t ) is defined by 

FaFZ 1 = F: IFa  = I ,  (10) 

means differentiation with respect to the material coordination X~, grada the spatial 

(11) 
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L~ = g~ad .v . (x~  (12) 

and, by the chain rule, 

L. = F'~F: 1. (13) 

L.  can also be expressed in the form of deformation rate tensor da and spin tensor w. as 

L .  = d~ + wa ,  ( 1 4 )  

in which 

1 T 1 a .  = ~ - ( L a  + L a ) ,  w. = ~ - ( L .  = L T ) .  (15 ,16)  

They are symmetric part and antisymmetric part of tensor L . ,  respectively, ( ) T signifies 

transpose of tensor or matrix. 

If  p. denotes the density of ath constituent, then the density of  mixture is defined by 

N 

p . (x , t )  = ~_~ap,(x,t) .  (17) 
a = l  

Physically p ,  represents the mass of the ath constituent per unit volume of mixture. The quantity 

is sometimes called bulk density as opposed to the true density. The t r u e  density for a th 

constituent is denoted by 7,  and equates the mass of the a th constituent per unit volume of the 

constituent. The quantity given by 

~ , ( x , t )  = p , ( x , t ) / 7 , ( x , t )  (18) 

is the volume fraction of the a th constituent. Physically ~a represents the volume of the a th 

constituent per unit volume of the mixture. 4, ( a = 1 ,2 ,  " '",  N)  are a rough description of local 

structure of  the mixture. If  
N 

~ ] ~ a  = 1, (19) 
a = l  

the mixture is saturated. There is no void between the constituents in saturated mixture. If  
N 

~ < 1, (20) 
a = l  

the mixture is unsaturated. Voids may exist between the constituents of  unsaturated mixture. 

The velocity of the mixture at ( x ,  t )  is defined by 

1 
v ( x , t )  = p ~ p . ( x , t ) v a ( x , t ) .  (21) 

The diffusion velocity or baryee~tric velocity of the ath constituent u .  is the difference of v~ and v 

u a ( x , t )  = v , ( x , t )  - v ( x , t ) .  (22) 

It follows from E q s . ( 1 7 ) ,  (21) and (22) that 

~ p , u ,  = 0. (23) 
a 

1.2 The balance equations and Clausius-Duhem inequality of mixture  

The local balance equations of mass,  linear momentum, moment of momentum and energy 

for the ath constituent are 

p'. + padivv a = c a or ( p .  I detFa I ) '  = I de tFa  1 % ,  (24a ,b )  
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pav'~ + cav, = divt~ + pab~ + p a ,  (25) 

ta - t ]  = M , ,  (26) 

( ' , )  oo e2 + ca eo - y , , =  = t r ( t ~ L . )  - divqa + Par. + ~. - P a ' V a ,  (27) 

where ca is the growth of mass of the ath constituent, ta is the partial stress tensor, Pa is the 

momentum supply, it is also call local body force or inner body force, ba is the'partial external 

body force density, Ma or rn a is the growth of moment of momentum and reflects the couple 

stress acting on the a th constituent. The relationship between skew-symmetric tensor M~ and 

vector ma is 

M ~ x 0  = m s  x x 0 ,  ( 28 )  

where x0 is arbitrary vector. The components of Ma are 

{ M~11 = M~22 = Ma33 = O ,  Ma23 = - M~32 = m~l ,  
(29a d) 

Ma31 = _  Mal 3 --- maZ, Mal2 = -  Ma21 = ma3, 

e~ is the inner energy density, qa is the partial heat flux vector, r~ is the heat supply density of 

and e~ is the energy supply. 

The balance equations of mass,  linear momentum, moment of momentum and energy for the 

mixture are 

9, p + d iv (pv )  = 0 or X~-a% = 0 ,  (30a ,b )  
a 

pa = d iv t  + pb or ,..~pa = 0,  (31a ,b )  
a 

t = t r or ~-~M~ = O, (32a ,b )  
a 

de 
p ~  = t r ( t r L )  - divq + pr or ~ e a  = 0,  (33a ,b )  

a 

where 

t = ~ ( t  a - paUa | U a) (34) 
a 

is the stress tensor for the mixture, @ denotes tensor production. The stress tensor t of the 

mixture defined by Eq. (34) satisfies the relation 

t - pv | v = ~ ( t o  - paVa | Va)-  (35 )  
a 

The inner part of the stress tensor of  the mixture is 

/ I  = ~ / a "  (36) 
o 

The relationship between external body force b of the mixture and external body force ba of the 

a th constituent is 

pb = ~ p ~ b ~ .  (37) 
a 

The energy density of the mixture e is defined by 

= 1 1 , 
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and satisfies 

The inner part of e is expressed as 

I = - -  ~ g a  ~ a  " 

P 
Here q is the heat flux vector of the mixture, defined by 

1 2 p ~ u ~ u "  q = q o + ~  
a 

and 

Here q meets the equation 

q - tTp + t9( 

The quantity 

(39) 

(40) 

(41) 

1 
r = - - ~ , p ~ ( r ~  + b a ' u . )  (44) 

P 

is the heat supply density for the mixture and it has following relationship with r, 

p ( r  + b ' v )  = ~ p ~ ( r  a + b ~ ' v a ) .  (45) 
a 

L,  the velocity gradient for the mixture, is defined by 

L = g r a d v ( x , t ) .  (46) 

It can also be expressed as 

= I ~ , ( p ~ L ~  + us | L gradpa). (47) 
P "7" 

The axiom of dissipation, i . e . ,  Clausius-Duhem inequality or entropy inequality of the 

mixture system, is 

2 [ p,~?', + c,7]. + ~  div(q~) P"r"lo~ J >~ 0 (48a) 

or P d_~ + p.rl.u . - ~ >1 O, (48b) ~ d l v  w- + 
dt , t~ 

where ~ ( x , t )  and O ~ ( x , t )  are entropy density and temperature of the ath constituent, 

respectively. The entropy density of the mixture ~ is 

1 ,~s  r/.. (49) 

Substituting Eq.(27) into Eq.(48a) and eliminating the term p,r~, the reduced entropy 

inequality of the mixture is obtained 

. e~176 oo + 

e + ~ v -  v = ~ q. - t . v .  + p. e. + ~v-~ v. 
a 

qo : ~ ( q .  - t~Ua + p~ e .Ua) .  (42) 
a 
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The partial Helmhotz free energy density for the a th constituent ~b~ is defined by 

~o = ~a - 0 o r  o ,  ( 5 1 )  

Equation (50) is rewritten as 

1 [ q,0',) + t r ( tTLa)  - 
qa "grad0a 

a 

, o . v o  _ + o _  y =)l 0 

When each constituent is constrained to have the same temperature as every other 

constituents, i . e . ,  

O a ( x , t )  = O ( x , t )  ( a  = 1 , 2 , ' " , N ) ,  (53) 

the material derivative of 0 ( x ,  t ) with respect to the motion of the ath constituent is 

(0)'~ = dO/dt + g .  Ua, (54) 

where 

g = g r a d 0 ( x , t ) .  (55) 

The entropy inequality (52) is simplified as 

dO + tr[ ~_a~ ( t : L a ) l  ~-. ~,..~a ( q,  + P,~I, Oua) -  eor - aT i 7  
a a a 

1 , 
~ p a ' v a  - 2 c a (  ~ba - ~ v - ~ ) ~  O. (56) 

a a 

The research deals with the mixture of single temperature and no mass transformation exists 

between constituents, i . e . ,  c a = 0 ( a  = 1 , 2 , ' " , N ) .  In the case, the reduced entropy 

inequality (56) is rewritten as 

~ [ -  ~'~ - pars - t r ( p a K ~ L ~ ) -  ~ - ' ( q~  + p,,rl,,Ov,,) - p . ' v , , ]  >I O, (57) 
a 

where 

~ ,  = p , ~ , ,  p~Ka = ~ , ! -  t T,  (58,59)  

a/t a is the free energy of the a th constituent per unit volume of the mixture and Ka is the chemical 

potential tensor. 

2 B a s i c  A s s u m p t i o n s  A b o u t  U n s a t u r a t e d  So i l  M i x t u r e  

In order to simplify the discussion, on the basis of soil mechanics [21] , the following 

assumptions about unsaturated soil mixture are made: 

1) The unsaturated soil is saturated mixture composed of solid constituent (sol id  

skeleton made up of soil particles ) s ,  liquid constituent (wa te r ,  water solution or other 

liquid in the pores of soil skeleton ) i and gas constituent ( air ,  water vapor or mixed gas in 

the pores of soil skeleton ) g ;  

2~ Nc~ transformation of constituent's matter exists in the unsaturated soil mixture, i . e . ,  
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c a =0  ( a  = s , l , g ) ;  

3) At one spatial point, the three constituents of unsaturated soil mixture have same 

temperature; 

4) The materials of solid constituent(soil particle) and material of liquid constituent are 

incompressible, and their true densities )'b (b = s,  l )  are constants. The gas constituent is 

compressible, and its true density )'g is variable. 

3 The Entropy Inequality of Unsaturated Soil 

Saturated mixture is different from usual mixture and unsaturated soil mixture is also different 

with saturated mixture. In this section, the entropy inequalities for saturated mixture and 

unsaturated soil mixture are given. 

3,1 T h e  e n t r o p y  i n e q u a l i t y  of s a t u r a t e d  m i x t u r e  

The unsaturated soil is saturated mixture composed of solid constituent, liquid constituent 

and gas constituent. The word "unsaturated" in phrase "unsaturated soil" means that gas exists in 
the pores of soil skeleton and the pores are not completely occupied by liquid constituent. 

However, the word "saturated" in phrase "saturated mixture" means that the constituent volume 

fractions ~, ( a = s ,  1, g ) of the mixture satisfy saturate condition (1 9 ) ,  i . e . ,  

~, + ~ + ~g = 1. (60) 

Its time partial derivative and spatial gradient are 

,_~3,~, = 0, ~_~grad~, = 0. (61,62)  
a a 

Using material derivative, Eq. (61) can be written as 

( ~  - g r a d ~ -  v , )  = 0. (63) 
a 

Because of Eq. (63 ) ,  the inequality (57) is expressed as 

- - p v a , 0 -   tr(poKoto)- + Po o0Vo)- 
a a a 

2 (P-  - P g r a d ~ ) -  v~ - P 2 ~  I> 0, (64) 
a a 

where P is Lagrange' s multiplier. Eq. (64) indicates that the interaction between constituents in 

saturated mixture has one more term ( - P g r ad ~  ) than that in mixture which is not constrained 

by saturate condition, and the increasing rate of entropy density of saturated mixture is affected by 

material derivatives of  constituent volume fractions ~'=. 

Free energy of the a th constituent per unit volume of mixture is the function of the 

independent constitutive variables describing the recoverable energy of mixture system[13 ] , i . e . ,  

~ .  = ~ . ( O , C , , p t , p , , ~ t , ~ , ) ,  (65) 

�9 = F , F ,  is right Cauchy-Green strain tensor of the solid constituent. Computing the where C, T 

material derivative of Eq. (65) and summing over constituents, we obtain 

s , e o  t 
a a 
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~ t r (  T ~_~k~.v. ~ O*I  , t..Lo) + + ~s,  
a a 

(66) 

where 

(a% , ~ a .  s 
kf  = gradaFf - ~-pf graapf + grad~f + ~f f -g]  ( f  = l , g ) ,  

9~, 
O~1[gradC, ] + k, = - ~ k s  -- srad*, - ~ ~ ) ,  

1" 
( ~ I  ( ~X/FI/W ) ( ~ )  

t ,B = F , ~ f f ~ -  + ~ ]  F T = 2F, , F T, 

(67) 

(68) 

(69) 

3 a~ii 
tfa = -  pf ~ ( f  = l , g ) .  

UFI = ~.~p a/t . Given Eq. (66), Eq. (64) becomes 
a 

( a*1 /  
-- ~1] + ~ 0 - ] 0 , 0  -- 2 t r [ ( p a K a  + tTR)La] -- ~ ' q I  -- 

a 

(70) 

~_a~[po Pgrad#~ ka + (paTl~ 9 ~  ] - + + -TT)gl. vo - P ~  - 

a 

~( 0 " i /  
P + - ~ f  ]#f ~ O. (71) 

. . . .  [,,] 
Axiom of frame mmnerence - needs the velocities of constituents v~ ( a = s, l ,  g )  appear in the 

forms v/ - v, ( f  = l ,  g ) .  Then the summation of term in the bracket in Eq. (71)  over 

constituents equals zero, i . e . ,  

( a~o/ 1 
po - Pgrad~, + ko + Pa~7, + - f r 0 : / g ] =  0. 

a 

From Eqs. (31b), (62) and (68), the above equation is simplified as 

1 Oax~rI 
= p aO 

and entropy inequality (71) as 

(72) 

(73) 

- ~,~E(poXo + t ] . ) L o j -  ~ - . q , -  ~_/f.(,:- v,)- 

a ~ i ) . ,  
p ~ ; _  X~ p +  0, , .  -g~-~s ~s ~> (74) 

where 

a,sz~ 
f f  = p f  - P grad~f + kf  + pfrlf + - ~  Jg,  (75) 

f ,  = -  ~ f f  = p~ - Pgrad•, + k~ + p~r/~ +--~ff-)g.  / (76) 
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Equation (74) is the entropy inequality of saturated mixture. It illustrates that 8 ,0  makes no 

contribution to the increasing rate of entropy density of the mixture system. 

3.2  Entropy ineq~jality of unsaturated~soil  m i x t u r e  

Considering that the true densities of the solid constituent and liquid constituent are 

constants, from mass balance equation (24a) and c~ = 0 (b = s , 1 ) ,  we get 

(77) ~'~ = -  ~bdivvb = -  ~btrLb (b = s , l ) .  

Noting that Yt is constant and Pt is not longer independent constitutive variable, then 

kl = grada/rz - - -  raoe~ + 
8~)t g ~ - o - g  ) . 

8 ~ I  

Equation (74) becomes 

(78,79)  

~ t r ( t T D L ~ )  -- ~ - ' q ,  -- ~ _ J f ' ( V f  -- Vs) + ag~'g >. O, (80) 

where 

tTD = -- ( p . , g  s + t s a  - P # , I ) ,  

tTID = -- ( p t K t  + ttR - P # z l ) ,  

( 

(81) 

(82) 

(83 ,84)  

Here taD and tar are the dissipative part and the non-dissipative part of partial stress tensor ta ,  

respectively, ag is the equilibrated interaction force. It follows from Eqs. (81) to (83) and (59 ) ,  

that the partial stresses of constituents are 

t, = alt, l + t,a + tsD - Pc) , I ,  (85) 

tz = alttl + tza + riD - P ( h l ,  (86) 

t, = , e  d + % + % .  (87) 

Equation (80) can be rewritten as 

~ t r ( C D ) . , . ( d a ) . , .  + ~ - ~ , . ~ a ( M f D ) , , , . ( w f -  W,).,.  - "qI - 
a ,  ca ,  n ~ f , m , n  

- v , )  + o ,  ( 8 8 )  
f 

where 

1 T T 
t~D = ~ ( t a D  + taD), MaD = tad -- taD. (89 ,90)  

Here t~D is the symmetric part of taD. MaD is tWO times of the skew part of taD and meets the 

identity 

~ M a o  = 0. (91) 
a 

Equation (88) is the entropy inequality of unsaturated soil mixture. 
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4 

4.1 

Nonlinear Constitutive Equations and Field Equations of Unsaturated 
Soil Mixture 

Nonlinear constitutive equations and field equations of unsaturated soil 
mixture  

The independent variable in the entropy inequality (88) 

Yo = ( d a , w f  - w s , ~ , v  f - Vs,r ) (92) 

are called the thermodynamic force of mixture system, the dependent variables 

( 1 ) 
Jo = t~D, ~-MyD, - ql ,  - -  fs" ag 

are the thermodynamic fluxes of mixture system. Thus Eq. (88) is shortened as 

Yo "J0  >10. 

The dissipative part of constitutive equation turns to 

Jo = F ( Y o ; Y R o ; Y I o ) ,  

YRo = ( O , C , , p g , r 1 6 2  

YIo = ( G, , eg ,gradr ,gradCg ).  

where 

(93) 

(94) 

(95) 

(96) 
(97) 

Y10 could be treated as the inner variable of the mixture system. Edelen [23] had given the general 

solution of inequality (94), and it is 

F = V(ro) Oo(Yo;Yao;Y io )  + W ( Y o ; Y ~ o ; Y I o ) ,  (98) 

where W satisfies 

W. Yo = 0. (99) 

The dissipative potential function of mixture system O0 ( Y0 ; Ya 0 ; Yi o ) is given by 

O o ( Y o ; r R o ; Y i o )  = f 1 Y o ' F ( r Y o ; Y R o ; Y , o )  d---E-r. (100) 
30 T 

Using Eqs. (95) and (98),  the components of thermodynamic flux (93) are 

where 

300 
t~D - 3 d .  + W . ,  (101 

1 M ~  - 300 
3(w s -  w,) + WM$ ( f  = l , g ) ,  (102) 

300 
- qI - 3 ( g / O )  + Wq, (103) 

?O0 
- f S  - 3 ( v f -  v , )  + We  ( f  = l , g ) ,  (104) 

300 
ag - Or + W~g, (105) 

w = ( wo, wMs, w~, wg, w~ ). (lO6) 
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Although nonvanishing W provides the explanations for some phenomena, here we assume W = 0 

for simplification. Eqs.(101) to (105) are reduced to 

ao0 (a  = ~ , z , g ) ,  (107) 
t~D - 3 d o  

1 M ~  - 800 
3(w s -  w,) ( f  = l ' g ) '  (108) 

300 
- ql  = 3 ( g / O ) '  (109) 

8Oo 
- ~  - 3(v  s -  v,) ( f  = l , g ) ,  (110) 

900 (111) 

From the above derivation, the nonlinear constitutive equations of unsaturated soil are 
expressed, in the form of free energy functions ~ ( a  = s,  l ,  g)  and dissipative potential 

function O0, as 

1 3a/rl (73) 
r l - - p  9 0 '  

0 00 
q~ = - 3 ( g / 0 ) "  (109) 

3a/r I 300 
P = -  3~g - 3~----rg ' (112) 

3~i/ 900 
Pl = - grada/rz + P + ~-~t )grader - plr/tg - 3(vt  - v , ) '  (113) 

3 a/rl ~ ~.t Ox/r l  , 900 
pg = -  grada/Fg + P +  qJ~rao~3~g ] ~ ~ + --3pg graapg - Pgrl~g - 3(vg - v~) '  (114) 

3 ~ t  ,,,, 
P~ = - (Pl + Pg) = - g radgr, + P grad~ + - - [ g r a o c , ]  - 

300 
P"rhg + "-~ O(v 7 -  v , ) '  (115) 

(3"~'ri'T3(~~ s 3(Wf900-- t,  = (~IF _ p ~ , ) l  + 2 F ,  f f - ~ ) F  ~ + w , ) '  (116) 

[ ( 3"e,l,  l, aoo 900 
tt = a/~, _ p +  f f ~ - t j v t  | + ~ + 3 ( w t  - w , ) '  (117) 

3gr~l I 300 00o 
tg = ~Irg - Pg Tfi-~pg] + ~ + 3(wg - w , ) "  (118) 

Equation (113) is obtained from Eqs . (75) , (79)  and (110),  E q . ( l l 4 )  from Eqs. (75) ,  (67) 

and (110),  E q . ( l l 2 )  from Eqs.(84) and (111),  Eq.(115) from Eqs . (31) ,  (113) ,  (114),  

(62) and (73),  E q . ( l l 6 )  from Eqs.(85) ,  (69),  (107),  (108) and (112),  E q . ( l l 7 )  from 

Eqs.(86) ,  (78),  (107),  (108) and (112),  and Eq. (118) from Eqs. (87) ,  (70) ,  (107),  
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(108) and (112). 
Using the constitutive equations ofpa and t a Eqs. (113) to (115) and Eqs. (116) to (118) 

in the balance equations of momentum ( 2 5 ) ,  the field equations of three constituents of 

unsaturated soil are 

( 3 . i  / r3o0 3 0 0 ]  
p,v', -- - pgsraa j + a vl -dj ' + a ( w , -  + p,b, + 

9 lxT)" I / 9 e 0 
P + ~ - ~ / g r a d e ,  - & V , *  - 9 ( v ~  - v , ) '  ( 119)  

, ( 9 ~ l r l /  div( 900 9 0 o  
ptv~ = - #~grad 3-~-~z } + ~ + 9 ( w z  - w , ) ]  + p z b l  - 

3 O0 (120) 
~tgrad P - Pd l lg  - 3 ( v ,  - v , )  ' 

r [gXlFI~FT 9 0 o  900 }+ p,b., - 
p ,v;  = div i2F,  [ if-C-T) ' + 9d, ~ 9(wf  - w,) 

9 a/Fl r " 9 0 0  (121) 
~, srad P + ~CTLgrao C, ~ - P,v ,g  + ~ 9(v  s - vs)" s 

The summation of above three equations is 

~ p a v ' ~  = divh + pb, (122) 
a 

where 

( 3 a/r ' / l  %-~F (123) 9XxT'rI -- 4l  O~-~l J + 2F,  T + ~ 8@0 
tI = • I -  Pg 9p~-g , o 9 d ~ "  

Constitutive Eqs. (112) to (118),  field equations (119) to (121) ,  balance equations of 
mass (24)  and ( 77 ) ,  balance equation of energy ( 33 ) ,  saturate condition Eq, ( 60 ) and 
constitutive equation of entropy density (73) form complete equations for the thermodynamic 
system of unsaturated soil mixture. Combining with boundary conditions and initial conditions, 

the deformation functions x (X~, t ) ,  the partial stress tensors ta, the momentum supplies of 

constituents pa ,  the temperature distribution 0 ( x ,  t ) and the heat flux vector qi can be obtained. 

Thus the thermodynamic process of the mixture system is completely decided. 
4.2 The  ba lance  equa t ion  of energy  and  t h e r m o d y n a m i c  equi l ib r ium state  of 

uns a tu r a t ed  soil mix ture  
After using the constitutive equations of unsaturated soil mixture, the energy balance 

equation of the mixture system (33) is 

O[ 3 t ( p T ] )  + ~ a d i v ( p , d l , , V a ) ]  = 
a 

tr( t~D L , )  - divq, - ~_~par~ - ~ .~ f f  " ( v f  - v., ) + agr . ( 1 2 4 )  
a a f 

The distribution and change of temperature of the mixture 0 ( x ,  t ) could be decided from the 

balance equation of energy. 
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The entropy inequality (88)  shows that the thermodynamic equilibrium state of  the mixture 

system is 

d~ = O, Wy = w.,, g = O, vf  = v , ,  ~'g = 0 ( a  = s , l , g ;  f = l , g ) .  (125)  

In the sate, the entropy of  system does not change and thermodynamic flux (93)  equals zero It1] , 

i . e . ,  

J o ( Y o  = 0;  YR0; Yi0)  = 0 .  (126)  

Thus,  when know the free energy functions a / r  ( a = s ,  ! ,  g )  and the dissipative potential 

function O0 of  the unsaturated soil mixture,  the constitutive equations,  the field equations and the 

balance equation of  energy can be derived, and the complete equations for the the rmodynamic  

process of  the unsaturated soil mixture is formed.  The function ~F,~ ( a = s ,  l ,  g )  and @0 must 

meet constraints of  axiom of  frame indifference, and should be the  functions of  invariants of  

v e c t o r s  and tensors in independent constitutive variables Y0, YR 0 and YI 0 - 

5 C o n c l u s i o n  

The constitutive relation of  unsaturated soil is studied by use of  mixture theory. The 

nonlinear constitutive equation, the nonlinear field equations and the balance equation of  energy 

are given,  and the complete equations for the thermodynamic process of  unsaturated soil nfixture 

is constructed. The f ramework of  the mixture theory for unsaturated soil is set up preliminarily.  

The work provides some help for developing the constitutive theory of  unsaturated soil. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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