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Abstract

This thesis presents constitutive theories for finite deformation of homogeneous, iso-

tropic thermoelastic solids in Lagrangian description using Gibbs potential. Since con-

servation of mass, balance of momenta and the energy equation are independent of the

constitution of the matter, the second law of thermodynamics, i.e. entropy inequality, must

form the basis for all constitutive theories of the deforming matter to ensure thermody-

namic equilibrium during the evolution [1, 2]. The entropy inequality expressed in terms

of Helmholtz free energy is recast in terms of Gibbs potential. The conditions resulting

from the entropy inequality expressed in terms of Gibbs potential permit the derivation of

constitutive theory for strain tensor in terms of conjugate stress tensor and the constitutive

theory for the heat vector. In the work presented here, it is shown that using the conditions

resulting from the entropy inequality, the constitutive theory for the strain tensor can be

derived using three different approaches: (i) assuming the Gibbs potential to be a function

of the invariants of the conjugate stress tensor and then using the conditions resulting from

the entropy inequality, (ii) using theory of generators and invariants, and (iii) expanding

Gibbs potential in conjugate stress tensor using Taylor series about a known configuration

and then using the conditions resulting from the entropy inequality. The constitutive the-

ories resulting from these three approaches are compared for equivalence between them
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as well as their merits and shortcomings. The constitutive theory for the heat vector can

also be derived either directly using the conditions resulting from the entropy inequality or

using the theory of generators and invariants. The derivation of constitutive theory for heat

vector using the theory of generators and invariants with complete set of argument tensors

yields a more comprehensive constitutive theory for heat vector. In the work we consider

both approaches.

Summaries of the constitutive theories using parallel approaches (as described above)

resulting from the entropy inequality expressed in terms of Helmholtz free energy den-

sity are also presented and compared for equivalence with the constitutive theories derived

using Gibbs potential.
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Chapter 1

Introduction

For homogeneous and isotropic thermoelastic solids experiencing finite deformation,

the constitutive theories in Lagrangian description are generally derived using the condi-

tions resulting from the entropy inequality expressed in terms of Helmholtz free energy

density. If we choose second Piola-Kirchoff stress σσσ[0] and Green’s strain tensor εεε as con-

jugate measures of stress and strain [1, 2, 8], then this approach yields constitutive theory

forσσσ[0] in whichσσσ[0] is a function of εεε and the invariants of εεε, and the material coefficients

are a function of temperature θ and the invariants of εεε in a chosen known configuration.

The simplified constitutive theory for heat vector qqq derived directly from entropy inequality

yields Fourier heat conduction law in which the thermal conductivities can only be a func-

tion of temperature θ. The constitutive theories for σσσ[0] and qqq that are derived using the

conditions resulting from the entropy inequality obviously satisfy the second law of ther-

modynamics. When these constitutive theories are used in the mathematical models derived

using conservation of mass, balance of momenta and the first law of thermodynamics, the

resulting mathematical model ensures thermodynamic equilibrium of the deforming solid
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during evolution.

An alternative to the entropy inequality expressed in terms of Helmholtz free energy

density is to recast the entropy inequality in terms of Gibbs potential and use this form of

the entropy inequality and the conditions resulting from it to derive the constitutive the-

ories for the deforming solid during evolution. Since Helmholtz free energy density and

Gibbs potential are related, the two forms of the entropy inequalities expressed in terms

of Helmholtz free energy density and Gibbs potential are precisely equivalent. However,

this equivalence may or may not be preserved in the constitutive theories derived using the

two forms of the entropy inequalities and the conditions resulting from these due to the

choices of argument tensors and further assumptions employed in the derivations. If we

use the condition resulting from the entropy inequality expressed in terms of Gibbs po-

tential, then the constitutive theories for thermoelastic solids result in strain tensor εεε as a

function of the stress tensorσσσ[0] and the invariants ofσσσ[0]. The material coefficients in this

constitutive theory are functions of invariants ofσσσ[0] and temperature θ in a known config-

uration. Derivation of the constitutive theories for homogeneous, isotropic thermoelastic

solids experiencing finite deformation using entropy inequality expressed in terms of Gibbs

potential is one of the areas of focus in the research presented in this thesis.

The second objective is to compare the constitutive theories derived here with those re-

sulting from the entropy inequality in terms of Helmholtz free energy density, in which case

the stress tensor is expressed as a function of the conjugate strain tensor. The work estab-

lishes the conditions that ensure equivalence between the constitutive theories derived using

Helmholtz free energy density and the Gibbs potential in the entropy inequality. The con-

ditions resulting from the entropy inequality that permit derivation of simple constitutive

theory for the heat vector remains unaffected regardless of whether the entropy inequality is

2



expressed in terms of Helmholtz free energy density or Gibbs potential. Thus, derivation of

the simple constitutive theory for heat vector (such as Fourier heat conduction law) strictly

using this condition will obviously yield the same constitutive theory for the heat vector

regardless of the choice of Helmholtz free energy density or Gibbs potential. However, the

constitutive theories for heat vector derived using the theory of generators and invariants

may differ due to the fact that the argument tensors in the two approaches are different. We

examine conditions under which these two approaches yield constitutive theories for heat

vector that have equivalence.

First, we present a brief literature review related to the constitutive theories that are

derived using Gibbs potential. In reference [24] the second law of thermodynamics ex-

pressed in Gibbs potential is used to derive constitutive theory for two-phase elastic solids

with mass transport for infinitesimal deformation strain tensor. The work in reference [25]

is related to application of thermodynamics to thermomechanical fracture and birefringent

phenomena in viscoelastic media. For large part this work only considers the second law

of thermodynamics expressed in terms of Helmholtz free energy density, but reference

is made to the fact that to work with such systems under stressed reference state use of

Gibbs free energy is necessary. In reference [26], the authors discuss and present detailed

derivations related to chemical equilibrium compositions using Gibbs free energy function.

In reference [27] equations of state and constitutive equations are presented for chemical

compositions using stress and deformation as conjugate variables in Gibbs free energy.

Mechanics and thermodynamics of multiphase flows in porous media including interphase

boundaries is presented in reference [28] using entropy inequality expressed in terms of

Helmholtz free energy density. The paper presents various relations using Gibbs potential

but these are not utilized in the derivations of the constitutive theories. In reference [29]
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Gibbs free energy is used to describe energy balance concepts in the physics of fracture.

Using Helmholtz free energy density, the thermodynamic constitutive equations for mate-

rials with memory on a material time scale are presented in reference [30]. A formulation

for continuum damage mechanics (CDM) for composite materials using Helmholtz free

energy density is given in reference [31]. The corresponding form is also presented using

Gibbs potential. In reference [32], entropy inequality in terms of Helmholtz free energy

density is used to develop constitutive forms and thermodynamic relations for macroscale

continuum mechanics for multiphase porous media flows including phase interfaces. Anal-

ogous relations using Gibbs potential are not given. Constitutive relations for linear elastic

rods using Gibbs potential are given in reference [33].

Authors in reference [34] use entropy inequality in Gibbs potential to derive constitu-

tive theory for strain tensor as a function of second Piola-Kirchoff stress tensor for trans-

formation induced plasticity. Illustrative examples are given using specific forms of Gibbs

potential. Constitutive theories for rate dependent dissipative materials using Gibbs poten-

tial are given in reference [35]. Stress tensor and temperature are used as argument tensors

of the strain tensor. Rate dependent plasticity models are derived from the Gibbs potential

in reference [36]. Thermodynamic potentials in linear thermoelasticity are discussed in ref-

erence [37]. Entropy inequality is not used explicitly in the derivations of these relations.

Thermomechanical formulations for strain gradient plasticity for geomaterials using Gibbs

potential are presented in reference [38]. A Gibbs-potential-based formulation for obtain-

ing the response function for a class of viscoelastic materials is presented in reference [39].

From the brief literature review presented here and other works reviewed, we make

the following observations regarding the published works. (i) Types of description, i.e.

Lagrangian or Eulerian, are not clearly stated in many of the derivations. (ii) Explicit forms
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of the second law of thermodynamics using Gibbs potential in Lagrangian and Eulerian

descriptions that form the basic foundation of the derivations of the constitutive theories

are rarely given. (iii) For specific applications discussed in the published works related

to constitutive theories, choices of dependent variables and their argument tensors and the

conditions resulting from the entropy inequality in Gibbs potential that form the basis for

deriving constitutive theories are mostly not discussed. (iv) For solid matter almost all

constitutive theories are primarily concerned with strain-stress or stress-strain relationships.

Compatible constitutive theories for heat vector are never discussed, instead Fourier heat

conduction law is almost exclusively used as a constitutive theory for heat vector. (v)

Derivations of many constitutive theories (such as [39, 40]) use conditions resulting from

the entropy inequality, but the constitutive theories are derived using explicit forms of the

Gibbs potential without regards to how this form is arrived at.

Scope of Work

The work presented in this thesis considers derivations of constitutive theories in La-

grangian description for homogeneous, isotropic thermoelastic solids undergoing finite de-

formations based on the second law of thermodynamics expressed in terms of Gibbs po-

tential. The entropy inequality is derived in Lagrangian description using Gibbs potential

and conjugate stress and strain measures, Second Piola-Kirchoff stress tensor and Green’s

strain tensor, and is used to determine the possible choice of dependent variables in the

constitutive theories. For thermoelastic solids (finite deformation), the possible argument

tensors of the Gibbs potential are established. Using Gibbs potential in the entropy in-

equality, conditions are established from which: (i) final choice of dependent variables and

their argument tensors is made and (ii) the condition that permit derivations of constitutive
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theories are identified. Using these conditions, constitutive theories for strain tensor εεε are

derived in which εεε is a function ofσσσ[0] and θ. This is done using three different approaches:

(i) assuming the Gibbs potential to be a function of the invariants of the conjugate stress

tensor and then using the conditions resulting from the entropy inequality, (ii) using the-

ory of generators and invariants [1–22], and (iii) expanding Gibbs potential in conjugate

stress tensor using Taylor series about a known configuration and then using the condi-

tions resulting from the entropy inequality. The constitutive theories resulting from these

three approaches are compared for equivalence between them as well as their merits and

shortcomings. The constitutive theory for the heat vector is also derived directly using the

conditions resulting from the entropy inequality and using the theory of generators and in-

variants. The derivation of constitutive theory for heat vector using the theory of generators

and invariants yields a more comprehensive constitutive theory for heat vector. In the work

we consider both approaches.

Summaries of the constitutive theories using parallel approaches (as described above)

resulting from the entropy inequality expressed in terms of Helmholtz free energy density

[1, 23] are also presented and compared for equivalence with those derived using Gibbs

potential.

Notations

We use an over bar to express quantities in the current configuration in Eulerian de-

scription, i.e. all quantities with overbars are functions of deformed coordinates x̄i and

time t. Quantities without an over bar imply Lagrangian description of the quantities in the

current configuration, i.e. these are functions of undeformed coordinates xi and time t. We

use the configuration at time t = t0 = 0, commencement of evolution, to be the reference
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configuration. Thus, xi; i = 1, 2, 3 and x̄i; i = 1, 2, 3 are coordinates of a material point in

the reference and current configurations, respectively, both measured in a fixed Cartesian

x-frame. The present work only considers Lagrangian description, hence all measures are

expressed in terms of coordinates of the material points in the undeformed configuration

(same as reference configuration in the present work) xi; i = 1, 2, 3 and time t. We use

[J ] = [∂{x̄}
∂{x} ] to be the Jacobian of deformation. We denote ρ

0
to be the density of the

solid matter in the reference configuration, hence it is constant. Φ, θ, η, and Ψ denote the

Helmholtz free energy density, temperature, entropy density and Gibbs potential respec-

tively. σσσ[0] is the second Piola-Kirchoff stress tensor. Superscript ‘0’ is used to signify that

it is rate of order zero and the upper case brackets distinguish it from the Cauchy stress

tensor σσσ(0) (in contravariant basis). εεε represents Green’s strain tensor, a measure of finite

strain. σσσ[0] and εεε are a constitutive conjugate pair [1, 2, 8]. Dot on all quantities refers to

material derivative.
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Chapter 2

Entropy inequality expressed in terms of

Gibbs potential

We begin with the entropy inequality in Lagrangian description (for finite deformation)

expressed in terms of Helmholtz free energy density [1].

ρ
0
(

.
Φ + η

.
θ) +

|J |{q}T{g}
θ

− tr([σ[0]][
.
ε]) ≤ 0 (2.1)

Dot (·) refers to material derivative, which for Lagrangian description is partial derivative

with respect to time. We recall that Φ and Ψ are related [1, 2, 8] through

Ψ = Φ− 1

ρ
0

tr([σ[0]][ε]) = Φ− 1

ρ
0

σ
[0]
ki εik (2.2)

Hence
.

Φ =
.

Ψ +
1

ρ
0

.
σ

[0]

ki εik +
1

ρ
0

σ
[0]
ki

.
εik (2.3)

Substituting from (2.3) into (2.1)

ρ
0

( .
Ψ +

1

ρ
0

.
σ

[0]

ki εik +
1

ρ
0

σ
[0]
ki

.
εik + η

.
θ
)

+
|J |{q}T{g}

θ
− σ[0]

ki

.
εik ≤ 0 (2.4)
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or

ρ
0

.
Ψ +

.
σ

[0]

ki εik + ρ
0
η

.
θ +
|J | qi gi

θ
≤ 0 (2.5)

Equation (2.5) is the most fundamental form of the entropy inequality expressed in terms

of Gibbs potential Ψ and conjugate measures σσσ[0] and εεε. An alternate form of (2.5) in σσσ[0]

andCCC, Cauchy strain tensor, is sometimes useful and can be derived using

εεε =
1

2
(CCC − III) or εik =

1

2
(Cik − δik) ; [C] = [J ]T [J ] (2.6)

Thus
.
εεε =

1

2

.
CCC (2.7)

Substituting from (2.7) into (2.1) we obtain

ρ
0
(

.
Φ + η

.
θ) +

|J |{q}T{g}
θ

− 1

2
tr([σ[0]][

.
C]) ≤ 0 (2.8)

Using (2.2) and (2.6)

Ψ = Φ− 1

ρ
0

tr
(

[σ[0]]
1

2
([C]− [I])

)
or Φ = Ψ +

1

2ρ
0

(
tr([σ[0]][C])− tr([σ[0]])

)
or Φ = Ψ +

1

2ρ
0

(σ
[0]
kiCik − δikσ

[0]
ki ) (2.9)

∴
.

Φ =
.

Ψ +
1

2ρ
0

(
.
σ

[0]

kiCik + σ
[0]
ki

.
Cik − δik

.
σ[0]

ki) (2.10)

Substituting from (2.10) in (2.8) and rearranging the terms yields

ρ
0

.
Ψ +

1

2
(Cik − δik)

.
σ

[0]

ki + ρ
0
η

.
θ +
|J | qi gi

θ
≤ 0 (2.11)

Equation (2.11) is also a fundamental form of the entropy inequality expressed in terms

of Gibbs potential, σσσ[0] and CCC with σσσ[0] and εεε as conjugate pair. (2.5) and (2.11) are

equivalent. We could have also derived (2.11) using (2.5) and (2.6).

9



2.1 Conditions resulting from entropy inequality (2.5) for

thermoelastic solids, dependent variables in the con-

stitutive theories and their argument tensors

2.1.1 Entropy inequality utilizingσσσ[0] and εεε as a conjugate pair

We assume that the argument tensors of the Gibbs potential Ψ areσσσ[0], θ, andggg. Density

in the current configuration is not an argument tensor of the dependent variables due to the

fact that ρ is deterministic from |J | and ρ
0

through the continuity equation.

Ψ = Ψ(σσσ[0], θ,ggg) (2.12)

Using (2.12) we can obtain a more explicit form of
.

Ψ using chain rule of differentiation.

.
Ψ =

∂Ψ

∂σ
[0]
ki

.
σ

[0]

ki +
∂Ψ

∂gi

.
gi +

∂Ψ

∂θ

.
θ (2.13)

Substituting from (2.13) in (2.5) and regrouping terms(
ρ
0

∂Ψ

∂σ
[0]
ki

+ εik

) .
σ

[0]

ki + ρ
0

∂Ψ

∂gi

.
gi + ρ

0

(∂Ψ

∂θ
+ η
) .
θ +
|J | qi gi

θ
≤ 0 (2.14)

Inequality (2.14) is a polynomial of degree one in
.
σσσ

[0]
,

.
ggg and

.
θ. Since (2.14) must hold

for all arbitrary but admissible choices of
.
σσσ

[0]
,

.
ggg and

.
θ, this is possible if the following

conditions hold: (
ρ
0

∂Ψ

∂σ
[0]
ki

+ εik

)
= 0

ρ
0

∂Ψ

∂g
= 0

ρ
0

(∂Ψ

∂θ
+ η
)

= 0

|J | qi gi
θ

≤ 0

(2.15)
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Since ρ
0
> 0 , |J | > 0 and θ > 0, we can write (2.15) as

ρ
0

∂Ψ

∂σ
[0]
ki

+ εik = 0

∂Ψ

∂gi
= 0

∂Ψ

∂θ
+ η = 0

qi gi ≤ 0

(2.16)

Remarks:

From (2.16) we can conclude the following:

1. ∂Ψ
∂gi

= 0 implies that Ψ is not a function of ggg.

2. η = −∂Ψ
∂θ

implies that η can be derived from Ψ if Ψ is known as a function of

temperature, hence η cannot be a dependent variable in the constitutive theory.

3. εik = −ρ
0

∂Ψ

∂σ
[0]
ki

implies that εεε can be determined from this relationship if Ψ is known

as a function ofσσσ[0].

4. Since Ψ is not a function of ggg, it implies that εεε and η do not depend upon ggg either.

Blank Space

Based on remarks 1 - 4, we can conclude that εεε, Ψ and qqq are the only dependent variables

in the constitutive theory for solid matter under consideration and their argument tensors

are as follows:

Ψ = Ψ
(
σσσ[0](xi, t), θ(xi, t)

)
εεε = εεε

(
σσσ[0](xi, t), θ(xi, t)

)
qqq = qqq

(
σσσ[0](xi, t), θ(xi, t),ggg(xi, t)

) (2.17)
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At this stage σσσ[0] is an argument tensor of qqq, but can be ruled out later if so warranted by

other considerations. From the first equation in (2.16) and the remarks, we have

εik = −ρ
0

∂Ψ

∂σ
[0]
ki

(2.18)

Equation (2.18) forms the basis for deriving constitutive theories in which εεε is a function

ofσσσ[0]. Additionally, qi gi ≤ 0 can be used to derive the constitutive theory for heat vector.

The constitutive theory so derived using (2.12), the last inequality in (2.16) and (2.18) will

naturally satisfy the second law of thermodynamics.

2.1.2 Usingσσσ[0] and εεε as conjugate measures but the entropy inequal-

ity inσσσ[0] andCCC

We assume that the argument tensors of Gibbs potential Ψ are σσσ[0], θ and ggg (same

as (2.12)) from which we obtain
.

Ψ using chain rule of differentiation resulting in (2.13).

Substituting (2.13) into (2.11) and rearranging terms we obtain

(
ρ
0

∂Ψ

∂σ
[0]
ki

+
1

2
(Cik − δik)

) .
σ

[0]

ki +
∂Ψ

∂gi

.
gi + ρ

0

(∂Ψ

∂θ
+ η
) .
θ +
|J | qi gi

θ
≤ 0 (2.19)

Following details presented in section 2.1.1, from (2.19) we can conclude that

Cik = −2ρ
0

∂Ψ

∂σ
[0]
ki

+ δik (2.20)

Blankspace

Ψ = Ψ
(
σσσ[0](xi, t), θ(xi, t)

)
CCC =CCC

(
σσσ[0](xi, t), θ(xi, t)

)
(2.21)

qqq = qqq
(
σσσ[0](xi, t), θ(xi, t),ggg(xi, t)

)
12



We remark that (2.20) and (2.21) are equivalent to (2.18) and (2.17). It is a matter of choice

between the two forms. In all subsequent derivations, we consider (2.18) and (2.17).
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Chapter 3

Constitutive theories for strain tensor εεε

and heat vector qqq using Gibbs potential

In this chapter we present derivations of the constitutive theories for εεε and qqq using

(2.17) and (2.18) based on the entropy inequality using Gibbs potential Ψ and conjugate

measuresσσσ[0] and εεε.

3.1 Constitutive theory for strain tensor εεε

The constitutive theory for strain tensor [ε] can be derived based on

εik = −ρ
0

∂Ψ

∂σ
[0]
ki

(3.1)

or εεε = εεε(σσσ[0], θ) (3.2)

There are three possible approaches one could take: (i) assuming Ψ to be a function of the

invariants of σσσ[0] and θ and using (3.1), (ii) using (3.2) in conjunction with the theory of

generators and invariants [1–22] and (iii) using Taylor series expansion of Ψ in σσσ[0] about
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a known configuration, and then using (3.1). In the work presented here, we derive con-

stitutive theories using all three approaches and examine the resulting constitutive theories

from these three approaches to determine when there is equivalence between the resulting

theories. Details are presented in the following.

3.1.1 Constitutive theory for εεε using (3.1) and assuming Ψ to be a

function of the invariants ofσσσ[0]

In this approach we consider Ψ to be a function of the invariants Iσ[0] , IIσ[0] and IIIσ[0]

(based on characteristic equation for σσσ[0]) of σσσ[0] and θ in the current configuration and

then use (3.1) to determine the constitutive theory for strain tensor εεε.

Ψ = Ψ(Iσ[0] , IIσ[0] , IIIσ[0] , θ) (3.3)

in which

Iσ[0] = σ
[0]
ii = tr(σσσ[0]) (3.4)

IIσ[0] =
1

2
(−σ[0]

kl σ
[0]
lk + σ

[0]
ll σ

[0]
kk) (3.5)

IIIσ[0] = det[σ[0]] (3.6)

Using (3.3) and (3.1)

[ε] = −ρ
0

( ∂Ψ

∂Iσ[0]

∂Iσ[0]

∂[σ[0]]
+

∂Ψ

∂IIσ[0]

∂IIσ[0]

∂[σ[0]]
+

∂Ψ

∂IIIσ[0]

∂IIIσ[0]

∂[σ[0]]

)
(3.7)
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Using (3.4) - (3.6), it is straightforward to obtain the following

∂Iσ[0]

∂[σ[0]]
= [I] or

∂Iσ[0]

∂σ
[0]
ij

= δij (3.8)

∂IIσ[0]

∂[σ[0]]
= −[σ[0]] + Iσ[0] [I] (3.9)

∂IIIσ[0]

∂[σ[0]]
= IIIσ[0] [σ[0]]−1 (3.10)

Substituting from (3.8) - (3.10) into (3.7)

[ε] = −ρ
0

( ∂Ψ

∂Iσ[0]

[I] +
∂Ψ

∂IIσ[0]

(−[σ[0]] + Iσ[0] [I]) +
∂Ψ

∂IIIσ[0]

IIIσ[0] [σ[0]]−1
)

(3.11)

Collecting coefficients of [I], [σ[0]] and [σ[0]]−1 in (3.11)

[ε] = ρ
0

(
− ∂Ψ

∂Iσ[0]

− ∂Ψ

∂IIσ[0]

Iσ[0]

)
[I]+

(
ρ
0

∂Ψ

∂IIσ[0]

)
[σ[0]]+

(
−ρ

0

∂Ψ

∂IIIσ[0]

IIIσ[0]

)
[σ[0]]−1 (3.12)

Let

εα0 = ρ
0

(
− ∂Ψ

∂Iσ[0]

− ∂Ψ

∂IIσ[0]

Iσ[0]

)
εα1 = ρ

0

∂Ψ

∂IIσ[0]

εα2 = −ρ
0

∂Ψ

∂IIIσ[0]

IIIσ[0]

(3.13)

Then

[ε] = εα0[I] + εα1[σ[0]] + εα2[σ[0]]−1 (3.14)

[σ[0]]−1 in (3.14) can be substituted in terms of [I], [σ[0]], [σ[0]]2 and the invariants of [σ[0]]

using the Hamilton Cayley theorem [1] to obtain

[ε] = εα̃0[I] + εα̃1[σ[0]] + εα̃2[σ[0]]2 (3.15)

in which εα̃i; i = 0, 1, 2 are functions of εαi; i = 0, 1, 2 and the invariants Iσ[0] , IIσ[0] and

IIIσ[0] and temperature θ. Thus, the coefficients εα̃i = εα̃i(Iσ[0] , IIσ[0] , IIIσ[0] , θ); i = 0, 1, 2.
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We note that ρ
0

is in the reference configuration (hence, fixed or constant) but Iσ[0] , IIσ[0] ,

IIIσ[0] and θ are in the current configuration. The constitutive theory (3.15) is not usable

yet due to the fact that εα̃i; i = 0, 1, 2 are functions of unknown deformation in the current

configuration, hence not deterministic. We postpone further details of determining material

coefficients using (3.15) until a later section. However, (3.15) is the fundamental form of

the constitutive theory for [ε] as a function of [σ[0]].

3.1.2 Constitutive theory for εεε using (3.2) and the theory of generators

and invariants [1–22]

Consider (3.2), i.e.

[ε] = [ε([σ[0]], θ)] (3.16)

[ε] is a symmetric tensor of rank two whose argument tensors are [σ[0]], a symmetric tensor

of rank two, and θ, a tensor of rank zero. Based on the theory of generators and invariants,

[ε] can be expressed as a linear combination of [I] and the combined generators of its

argument tensors which in this case are the generators of [ε] that are symmetric tensors

of rank two. Between the argument tensors [σ[0]] and θ, the combined generators that are

symmetric tensors of rank two are [σ[0]] and [σ[0]]2. Hence, [ε] can be expressed as a linear

combination of [I], [σ[0]] and [σ[0]]2. Using the same coefficients in the linear combination

as appear in (3.14) we can write

[ε] = εα̃0[I] + εα̃1[σ[0]] + εα̃2[σ[0]]2 (3.17)
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in which the coefficients εα̃i; i = 0, 1, 2 are functions of the combined invariants of argu-

ment tensors and θ in the current configuration.

εα̃i = εα̃i(Iσ[0] , IIσ[0] , IIIσ[0] , θ) ; i = 0, 1, 2 (3.18)

We note that (3.17) is same as (3.15) from the first approach in section 3.1.1 with the same

definitions of the coefficients. Thus, the remarks made regarding the coefficients in section

3.1.1 hold here as well. When using the theory of generators and invariants it is easier to

use principal invariants iσ[0] , iiσ[0] and iiiσ[0] instead of Iσ[0] , IIσ[0] and IIIσ[0] in (3.18). Since

the two sets of invariants are related [1], the final outcome remains the same as in section

3.1.1.

3.1.3 Constitutive theory for strain tensor εεε by expanding Ψ in Taylor

series inσσσ[0] about a known configuration and then using (3.1)

We consider Ψ = Ψ(σσσ[0], θ) and expand Ψ in σσσ[0] using Taylor series about a known

configuration Ω

Ψ =Ψ
∣∣
Ω

+
∂Ψ

∂σ
[0]
ij

∣∣∣∣
Ω

(
σ

[0]
ij − (σ

[0]
ij )Ω

)
+

1

2!

∂2Ψ

∂σ
[0]
ij ∂σ

[0]
kl

∣∣∣∣
Ω

(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)
+

1

3!

∂3Ψ

∂σ
[0]
ij ∂σ

[0]
kl ∂σ

[0]
pq

∣∣∣∣
Ω

(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)(
σ[0]
pq − (σ[0]

pq )Ω
)

+ . . .

(3.19)
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Let

Ψ
∣∣
Ω

= C

∂Ψ

∂σ
[0]
ij

∣∣∣∣
Ω

= Cij

∂2Ψ

∂σ
[0]
ij ∂σ

[0]
kl

∣∣∣∣
Ω

= Ĉijkl

∂3Ψ

∂σ
[0]
ij ∂σ

[0]
kl ∂σ

[0]
pq

∣∣∣∣
Ω

= C̃ijklpq

(3.20)

The coefficients in (3.20) are defined in a known configuration Ω. Using (3.20) in (3.19)

Ψ =C + Cij
(
σ

[0]
ij − (σ

[0]
ij )Ω

)
+

1

2!
Ĉijkl

(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)
+

1

3!
C̃ijklpq

(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)(
σ[0]
pq − (σ[0]

pq )Ω
)

+ . . .

(3.21)

Differentiating Ψ with respect to σσσ[0] and using (3.1) and noting that partial derivatives of

the coefficients in (3.20) with respect toσσσ[0] are zero and

∂

∂σ
[0]
mn

(
σ

[0]
ij − (σ

[0]
ij )Ω

)
=

∂σ
[0]
ij

∂σ
[0]
mn

= δimδjn (3.22)

∂

∂σ
[0]
mn

((
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

))
(3.23)

= δimδjn
(
σ

[0]
kl − (σ

[0]
kl )Ω

)
+ δkmδln

(
σ

[0]
ij − (σ

[0]
ij )Ω

)
(3.24)

∂

∂σ
[0]
mn

((
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)(
σ[0]
pq − (σ[0]

pq )Ω
))

= δimδjn
(
σ

[0]
kl − (σ

[0]
kl )Ω

)(
σ[0]
pq − (σ[0]

pq )Ω
)
+

= .δkmδln
(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ[0]
pq − (σ[0]

pq )Ω
)
+

= .δpmδqn
(
σ

[0]
ij − (σ

[0]
ij )Ω

)(
σ

[0]
kl − (σ

[0]
kl )Ω

)
(3.25)

We obtain (3.26) if we substitute from (3.22) - (3.25) in (3.1). In doing so (i) we collect all

terms in configuration Ω, (ii) we define the coefficients of [σ[0]] and [σ[0]]2 (those that are

defined in configuration Ω) in the current configuration and (iii) we use symmetry of the
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coefficients, i.e. Ĉmnij = Ĉijmn, etc.

εmn = (ε0
mn)Ω + (C

mnij
)Ωσ

[0]
ij + (C̃

mnijkl
)Ωσ

[0]
ij σ

[0]
kl + . . . (3.26)

Remarks:

1. We note that (3.26) and (3.15), (3.17) are similar in the sense that all these three

forms contain exactly the same tensors on the left and right side of the equality that

are in the current configuration.

2. In (3.15) and (3.17) the coefficients εα̃i; i = 0, 1, 2 are in the current configuration,

whereas in (3.26) the coefficients are in the known configuration Ω. Hence, consti-

tutive theory (3.26) is quite different compared to (3.15) or (3.17).

3. Based on the derivations given in sections 3.1.1 and 3.1.2, it is clear that the Taylor

series expansion in (3.19) must be limited up to the cubic terms in σσσ[0]. Inclusion

of further higher degree terms in σσσ[0] is non-physical as it is not supported by the

derivations in sections 3.1.1 and 3.1.2 that are strictly based on the entropy inequality.

4. From Taylor series expansion it is clear that the coefficients in (3.26) are functions

of σσσ[0] and θ in a known configuration Ω, whereas the coefficients εα̃i in (3.15) and

(3.17) are functions of invariants of [σ[0]] and θ in the current configuration. The

coefficients in (3.26) are in fact material coefficients whereas the coefficients in (3.15)

and (3.17) are yet to be defined using εα̃i; i = 01, 2.

5. The issue of whether (3.26) is superior over (3.15) or (3.17) and vice versa can only

be addressed after we determine the material coefficients using εα̃i; i = 0, 1, 2. We

present details in the following section.
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6. For homogeneous isotropic solid matter the coefficients in (3.26) can be simplified

[1].

3.1.4 Definitions of material coefficients using εα̃i; i = 0, 1, 2 in (3.15)

or (3.17)

Consider

[ε] = εα̃0[I] + εα̃1[σ[0]] + εα̃2[σ[0]]2 (3.27)

We consider εα̃i to be functions of Iσ[0] , IIσ[0] and IIIσ[0] (as opposed to principal invariants)

and θ.

εα̃i = εα̃i(Iσ[0] , IIσ[0] , IIIσ[0] , θ) (3.28)

We can expand each εα̃i in Taylor series in Iσ[0] , IIσ[0] , IIIσ[0] and θ about a known configura-

tion Ω. We retain only up to linear terms in the invariants of [σ[0]] and θ in the Taylor series

expansion. To make the derivation compact we define

εI˜1 = Iσ[0] ; εI˜2 = IIσ[0] ; εI˜3 = IIIσ[0] (3.29)

Using the notation in (3.29), we can write

εα̃i = εα̃i
∣∣
Ω

+
3∑
j=1

∂ εα̃i

∂ εI˜j
∣∣∣∣
Ω

(
εI˜j − (εI˜j)Ω)+

∂ εα̃i

∂θ

∣∣∣∣
Ω

(θ − θΩ) ; i = 0, 1, 2 (3.30)

Substituting from (3.30) into (3.27)

[ε] =
(
εα̃0
∣∣
Ω

+
3∑
j=1

∂ εα̃0

∂ εI˜j
∣∣∣∣
Ω

(
εI˜j − (εI˜j)Ω)+

∂ εα̃0

∂θ

∣∣∣∣
Ω

(θ − θΩ)
)

[I]+

(
εα̃1
∣∣
Ω

+
3∑
j=1

∂ εα̃1

∂ εI˜j
∣∣∣∣
Ω

(
εI˜j − (εI˜j)Ω)+

∂ εα̃1

∂θ

∣∣∣∣
Ω

(θ − θΩ)
)

[σ[0]]+

(
εα̃2
∣∣
Ω

+
3∑
j=1

∂ εα̃2

∂ εI˜j
∣∣∣∣
Ω

(
εI˜j − (εI˜j)Ω)+

∂ εα̃2

∂θ

∣∣∣∣
Ω

(θ − θΩ)
)

[σ[0]]2

(3.31)
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Collecting coefficients (those defined in configuration Ω) of [I], [σ[0]], [σ[0]]2, εI˜j[I]; j =

1, 2, 3, εI˜j[σ[0]]; j = 1, 2, 3, εI˜j[σ[0]]2; j = 1, 2, 3, (θ − θΩ)[I], (θ − θΩ)[σ[0]], and (θ −

θΩ)[σ[0]]2, we can write the following using (3.31).

[ε] =
(
εα̃0
∣∣
Ω
−

3∑
j=1

∂ εα̃0

∂ εI˜j
∣∣∣∣
Ω

(εI˜j)Ω
)

[I]+

(
εα̃1
∣∣
Ω
−

3∑
j=1

∂ εα̃1

∂ εI˜j
∣∣∣∣
Ω

(εI˜j)Ω
)

[σ[0]]+

(
εα̃2
∣∣
Ω
−

3∑
j=1

∂ εα̃2

∂ εI˜j
∣∣∣∣
Ω

(εI˜j)Ω
)

[σ[0]]2+

3∑
j=1

∂ εα̃0

∂ εI˜j (εI˜j[I]) +
3∑
j=1

∂ εα̃1

∂ εI˜j (εI˜j[σ[0]]) +
3∑
j=1

∂ εα̃2

∂ εI˜j (εI˜j[σ[0]]2)+

∂ εα̃0

∂θ

∣∣∣∣
Ω

(
(θ − θΩ)[I]

)
+
∂ εα̃1

∂θ

∣∣∣∣
Ω

(
(θ − θΩ)[σ[0]]

)
+
∂ εα̃2

∂θ

∣∣∣∣
Ω

(
(θ − θΩ)[σ[0]]2

)

(3.32)

Let us define

ε0
∣∣
Ω

= εα̃0
∣∣
Ω
−

3∑
j=1

∂ εα̃0

∂ εI˜j
∣∣∣∣
Ω

(εI˜j)Ω
εa˜j =

∂ εα̃0

∂ εI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

εb˜i = εα̃i
∣∣
Ω
−

3∑
j=1

∂ εα̃i

∂ εI˜j
∣∣∣∣
Ω

; i = 1, 2

εc˜1j =
∂ εα̃1

∂ εI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

εc˜2j =
∂ εα̃2

∂ εI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

εd˜1 =
∂ εα̃1

∂θ

∣∣∣∣
Ω

εd˜2 =
∂ εα̃2

∂θ

∣∣∣∣
Ω

(αtm)Ω = −∂
εα̃0

∂θ

∣∣∣∣
Ω

(3.33)
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Substituting from (3.33) into (3.32)

[ε] =ε0
∣∣
Ω
[I] + εb˜1[σ[0]] + εb˜2[σ[0]]2+

3∑
j=1

εa˜j(εI˜j[I]) +
3∑
j=1

εc˜1j(
εI˜j[σ[0]]) +

3∑
j=1

εc˜2j(
εI˜j[σ[0]]2)+

εd˜1(θ − θΩ)[σ[0]] + εd˜2(θ − θΩ)[σ[0]]2 − (αtm)Ω(θ − θΩ)[I]

(3.34)

ε0
∣∣
Ω

is the initial strain in the known configuration Ω. This constitutive theory requires the

determination of 14 material coefficients, εa˜j; j = 1, 2, 3, εb˜i; i = 1, 2, εc˜1j,
εc˜2j; j = 1, 2, 3,

εd˜j; j = 1, 2 and αtm, all evaluated in a known configuration Ω. (3.34) is the most general

constitutive theory for [ε] as a function of [σ[0]] and θ resulting from the entropy inequality

in Gibbs potential when we use either the approach given in section 3.1.1 or the approach

in section 3.1.2. This theory is based on integrity and hence complete, but contains too

many material coefficients to be determined experimentally or otherwise.

Further simplifications

The constitutive theory (3.34) requires the determination of too many material coeffi-

cients to be of practical use. If we only consider a constitutive theory for [ε] that is linear in

the components of [σ[0]] and further neglect the (θ − θΩ)[σ[0]] term, then (3.34) reduces to

[ε] = ε0
∣∣
Ω
[I] + εb˜1[σ[0]] + εa˜1tr[σ[0]][I] + (αtm)Ω(θ − θΩ)[I] (3.35)

This constitutive theory only requires three material coefficients, εa˜1, εb˜1, and αtm in a

known configuration Ω.

Remarks:

1. It is perhaps meaningful to compare the constitutive theory (3.26) resulting from

the Taylor series expansion of Ψ and the constitutive theory (3.34) from the entropy
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inequality or from the theory of generators and invariants as the material coefficients

in the two are now defined (in a known configuration Ω).

2. We observe that not all terms containingσσσ[0] in the current configuration on the right

hand side of (3.26) and (3.34) are the same.

3. Furthermore, the material coefficients in (3.26) are functions ofσσσ[0]
∣∣
Ω

and θ
∣∣
Ω

, whereas

the material coefficients in (3.34) are functions of the invariants of σσσ[0] and θ in the

known configuration Ω, hence in general the two sets of material coefficients are

different.

4. Based on remarks (2) and (3) it is straightforward to conclude that the constitutive

theories (3.26) and (3.34) are different. This raises the question regarding the supe-

riority of one over the other. The constitutive theories in sections 3.1.1 and 3.1.2 are

strictly based on the entropy inequality and integrity and hence are in precise agree-

ment with the axioms and principles of continuum mechanics. The Taylor series

expansion is based on axioms of smooth neighborhood, but it ignores the fundamen-

tal axiom that the coefficients in the constitutive theories must be functions of the

combined invariants of the argument tensors.

5. Henceforth, in all further discussions and the determination of equivalence between

the constitutive theories resulting from Gibbs potential and Helmholtz free energy

density, we only consider the constitutive theory for [ε] presented in sections 3.1.1 or

3.1.2 (as the two are identical in all aspects).
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3.2 Constitutive theory for heat vector qqq

The conditions resulting from the entropy inequality require that

qigi ≤ 0 (3.36)

be satisfied by the constitutive theories for qqq regardless of how they are derived. We can

take two approaches to derive constitutive theory for qqq. In the first approach, we strictly use

(3.36) to derive constitutive theory for qqq. Such constitutive theory for qqq will naturally sat-

isfy the entropy inequality as it is derived using conditions resulting from it. In the second

approach we determine the argument tensors of qqq and then use the theory of generators and

invariants to derive the constitutive theories for qqq. The constitutive theories for qqq derived

using this approach must ensure that (3.36) is satisfied in order for the deforming matter

to be in thermodynamic equilibrium during evolution. We present the derivation of the

constitutive theories for qqq using both approaches and present comparisons of the resulting

constitutive theories and make some remarks regarding their merits and shortcomings.

3.2.1 Constitutive theory for qqq using entropy inequality [1, 2, 8]

This derivation based on (3.36) is fundamental and can be found in any textbook on

continuum mechanics. We present details in the following to point out assumptions used

in the derivation as it plays significant role when comparing this constitutive theory with

the theories resulting from the theory of generators and invariants. Following references

[1, 2, 8], we begin with (3.36). Equation (3.36) implies

{q}T{g} = β ≤ 0 (3.37)
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Using equality, we obtain

∂β

∂{g}
= {q} or

∂β

∂gi
= qi (3.38)

Hence

{q}ggg=0 =
∂β

∂{g}

∣∣∣∣
ggg=0

= 0 (3.39)

That is, heat flux vanishes in the absence of temperature gradient. Thus, the constitutive

theory for qqq must be a function of ggg. At this stage many possibilities exist, the simplest of

course is assuming that qqq is proportional to ggg, i.e. qqq is a linear function of ggg.

qi(ggg) = −kij(θ)gj ; or {q} = −[k(θ)]{g} (3.40)

from which we define
∂qi
∂gj

= −kij(θ) (3.41)

Also, from (3.38)
∂2β

∂gj∂gi
=
∂qi
∂gj

= −kij(θ) ≤ 0 (3.42)

From (3.42) we conclude that [k] is positive semidefinite and all its three eigenvalues are

non-negative. Equation (3.40) is Fourier heat conduction law. The thermal conductivity

matrix [k] does not have to be symmetric but is often assumed to be. This derivation is

based on the assumption that qqq is a linear function of ggg. In general, in this theory the

coefficients of [k] can be functions of temperature θ.

3.2.2 Constitutive theories forqqq using theory of generators and invari-

ants

In this approach the heat vector qqq, a tensor of rank one, is expressed as a linear combi-

nation of the combined generators (only tensors of rank one) of its argument tensors. The
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coefficients in the linear combination are assumed to be functions of the combined invari-

ants of the argument tensors of qqq and temperature θ. The material coefficients are derived

by expanding each coefficient in the linear combination in Taylor series about a known

configuration. In this approach it is obvious that the explicit form of the constitutive theory

for qqq depends upon the argument tensors of qqq and the terms retained in the Taylor series

expansion of the coefficients in the linear combination. We consider two possible obvious

choices and present derivations of the resulting constitutive theories for qqq in the following.

(a) Approach I

In this derivation we assume that

qqq = qqq(ggg, θ) (3.43)

qqq and ggg are tensors of rank one and θ is a tensor of rank zero. The only combined generator

of rank one of the argument tensors ggg and θ is ggg, hence based on the theory of generators

and invariants [1, 2, 8] we can write

qqq = −qαggg (3.44)

The coefficient qα is a function of the combined invariants of ggg, θ, i.e. ggg ·ggg and temperature

θ. Let us denote qI˜ = ggg ·ggg to simplify the details of further derivation. We note that (3.44)

holds in the current configuration in which deformation is not known. Hence qα = qα(qI˜, θ)
is not yet deterministic in (3.44). To determine material coefficients from (3.44), we expand

qα(qI˜, θ) in Taylor series about a known configuration Ω in qI˜ and θ and retain only up to

linear terms in qI˜ and θ.

qα = qα
∣∣
Ω

+
∂qα

∂qI˜
∣∣∣∣
Ω

(qI˜−q I˜∣∣Ω) +
∂qα

∂θ

∣∣∣∣
Ω

(θ − θ
∣∣
Ω
) (3.45)
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Substituting from (3.45) into (3.44)

qqq = −
(
qα
∣∣
Ω

+
∂qα

∂qI˜
∣∣∣∣
Ω

(qI˜−q I˜∣∣Ω) +
∂qα

∂θ

∣∣∣∣
Ω

(θ − θ
∣∣
Ω
)
)
ggg (3.46)

We note that qα
∣∣
Ω

, ∂qα
∂qI˜
∣∣
Ω

and ∂qα
∂θ

∣∣
Ω

are functions of qI˜∣∣Ω and θ
∣∣
Ω

whereas qα in (3.44) is a

function of qI˜, θ, both in the current configuration. From (3.46) we can write the following,

noting that qI˜ = ggg · ggg.

qqq = −qα
∣∣
Ω
ggg −

(∂qα
∂qI˜
∣∣∣∣
Ω

)
(ggg · ggg)ggg +

∂qα

∂qI˜
∣∣∣∣
Ω

(ggg · ggg)Ωggg −
∂qα

∂θ

∣∣∣∣
Ω

(θ − θΩ)ggg (3.47)

or

qqq = −
(
qα
∣∣
Ω
− ∂qα

∂qI˜
∣∣∣∣
Ω

(ggg · ggg)Ω

)
ggg −

(∂qα
∂qI˜
∣∣∣∣
Ω

)
(ggg · ggg)ggg − ∂qα

∂θ

∣∣∣∣
Ω

(θ − θΩ)ggg (3.48)

Let

k(θΩ,
q I˜
∣∣
Ω
) = qα

∣∣
Ω
− ∂qα

∂qI˜
∣∣∣∣
Ω

(ggg · ggg)Ω

k1(θΩ,
q I˜
∣∣
Ω
) =

∂qα

∂qI˜
∣∣∣∣
Ω

k2(θΩ,
q I˜
∣∣
Ω
) =

∂qα

∂θ

∣∣∣∣
Ω

(3.49)

Then

qqq = −k(θΩ,
q I˜∣∣Ω)ggg − k1(θΩ,

q I˜∣∣Ω)(ggg · ggg)ggg − k2(θΩ,
q I˜∣∣Ω)(θ − θΩ)ggg (3.50)

This is the simplest possible constitutive theory for qqq based on the theory of generators and

invariants. The only assumption in this theory is the truncation of the Taylor series in (3.45)

beyond linear terms in qI˜ and θ.

(b) Approach II

In this case, we consider

qqq = qqq(σσσ[0], θ,ggg) (3.51)
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As shown in (2.17), this is a more general case due to dependence of qqq on ggg, θ as well as

σσσ[0]. qqq is a tensor of rank one, whereas σσσ[0], ggg and θ are symmetric tensor of rank two,

tensor of rank one, and tensor of rank zero, respectively. Justification for retaining σσσ[0] as

an argument tensor of qqq will be discussed after we present details of the constitutive theory

for qqq based on (3.51) by using the theory of generators and invariants. The combined

generators of rank one of the argument tensorsσσσ[0], ggg and θ are

{qG˜ 1} = {g} ; {qG˜ 2} = [σ[0]]{g} ; {qG˜ 3} = [σ[0]]2{g} (3.52)

The combined invariants of the argument tensorsσσσ[0], ggg and θ are

qI˜1 = tr([σ[0]]) ; qI˜2 = tr([σ[0]]2) ; qI˜3 = tr([σ[0]]3)

qI˜4 = {g} · {g} ; qI˜5 = {g}T [σ[0]]{g} ; qI˜6 = {g}T [σ[0]]2{g}
(3.53)

We note that for qI˜j; j = 1, 2, 3 we could have also used Iσ[0] , IIσ[0] and IIIσ[0] . As the two

sets of invariants are related, the resulting constitutive theory remains unaffected. Using

(3.52), we can write

qqq = −
3∑
i=1

qαi{qG˜ i} (3.54)

The coefficients qαi; i = 1, 2, 3 are functions of invariants qI˜j; j = 1, 2, . . . , 6 and temper-

ature θ in the current configuration. To determine the material coefficients from qαi; i =

1, 2, 3 in (3.54), we consider Taylor series expansion of qαi; i = 1, 2, 3 in qI˜j; j = 1, 2, . . . , 6

and θ about a known configuration Ω and retain only up to linear terms in θ and the invari-

ants.

qαi = qαi
∣∣
Ω

+
6∑
j=1

∂qαi

∂qI˜j
∣∣∣∣
Ω

(
qI˜j − (qI˜j)Ω)+

∂qαi

∂θ

∣∣∣∣
Ω

(θ − θΩ) ; i = 1, 2, 3 (3.55)

qαi
∣∣
Ω

, ∂
qαi

∂qI˜j
∣∣
Ω
; j = 1, 2, . . . , 6 and ∂qαi

∂θ

∣∣
Ω
; i = 1, 2, 3 are functions of θ

∣∣
Ω

, qI˜j; j = 1, 2, . . . , 6

whereas qαi = qαi(θ
∣∣
Ω
, qI˜j∣∣Ω; j = 1, 2, . . . , 6, θ, qI˜j; j = 1, 2, . . . , 6). We substitute from

29



(3.55) into (3.54).

qqq = −
3∑
i=1

(
qαi
∣∣
Ω

+
6∑
j=1

∂qαi

∂qI˜j
∣∣∣∣
Ω

(
qI˜j − (qI˜j)Ω)+

∂qαi

∂θ

∣∣∣∣
Ω

(θ − θΩ)
)
{qG˜ i} (3.56)

Using (3.56), we collect coefficients (those defined in configurationΩ) of {qG˜ i}, qI˜j{qG˜ i},
(θ − θΩ){qG˜ i}; i = 1, 2, 3 and j = 1, 2, . . . , 6 and define

qai = qαi
∣∣
Ω
−

6∑
j=1

∂qαi

∂qI˜j
∣∣∣∣
Ω

(qI˜j)Ω ; i = 1, 2, 3

qbij =
∂qαi

∂qI˜j
∣∣∣∣
Ω

; i = 1, 2, 3 ; j = 1, 2, . . . , 6

qci =
∂qαi

∂θ

∣∣∣∣
Ω

; i = 1, 2, 3

(3.57)

Using (3.57) in (3.56) we can write the following for qqq.

qqq = −
3∑
i=1

qai{qG˜ i} − 3∑
i=1

6∑
j=1

qbij
qI˜j{qG˜ i} − 3∑

i=1

qci(θ − θΩ){qG˜ i} (3.58)

qai, qbij and qci are the material coefficients defined in the known configuration Ω. This

constitutive theory for qqq uses full set of argument tensors and integrity and hence is com-

plete. Unfortunately, it requires too many material coefficients (twenty four).

Remarks:

1. With some assumptions this constitutive theory for qqq can be simplified to yield an

approximate constitutive theory in which the material coefficients may not be as

many as in (3.58).This will undoubtedly limit the physics. If we limit the consti-

tutive theory to be linear in the components of σσσ[0], that is, we neglect generator

{qG˜ 3} = [σ[0]]2{g} and invariants qI˜2, qI˜3 and qI˜6, the constitutive theory for qqq in
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(3.58) reduces to

qqq =− qa1{g} − qa2[σ[0]]{g} − qb11(tr[σ[0]]){g} − qb14({g} · {g}){g}−

qb15({g}T [σ[0]]{g}){g} − qb21(tr[σ[0]])([σ[0]]{g})−

qb24({g} · {g})([σ[0]]{g})− qb25({g}T [σ[0]]{g})([σ[0]]{g})

− qc1(θ − θΩ){g} − qc2(θ − θΩ)([σ[0]]{g})

(3.59)

This constitutive theory still requires ten material coefficients. If we further assume

that the constitutive theory for qqq is linear in the components of [σ[0]], then the terms

containing material coefficients qb21 and qb25 can be removed from (3.59).

qqq =− qa1{g} − qa2[σ[0]]{g} − qb11(tr[σ[0]]){g} − qb14({g} · {g}){g}−

qb15({g}T [σ[0]]{g}){g} − qb24({g} · {g})([σ[0]]{g})−

qc1(θ − θΩ){g} − qc2(θ − θΩ)([σ[0]]{g})

(3.60)

This constitutive theory requires eight material coefficients.

2. If we remove dependence of qqq on [σ[0]] in (3.60), then

qqq = −qa1{g} − qb14({g} · {g}){g} − qc1(θ − θΩ){g} (3.61)

This constitutive theory for qqq is the same as derived earlier (equation (3.50)). The

coefficients in (3.61) are functions of θ
∣∣
Ω

and (ggg · ggg)Ω.

3. To demonstrate the influence of stress field on heat conduction, we reduce the con-

stitutive theory (3.60) to a most simplified possible theory by considering qqq to be a

linear function of the components of {g} as well as [σ[0]].

qqq =− qa1{g} − qa2[σ[0]]{g} − qb11(tr[σ[0]]){g}−

qc1(θ − θΩ){g} − qc2(θ − θΩ)([σ[0]]{g})
(3.62)
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If we neglect (θ − θΩ) terms in (3.62), then we obtain

qqq = −qa1{g} − qa2[σ[0]]{g} − qb11(tr[σ[0]]){g} (3.63)

The material coefficients in (3.63) are functions of (ggg·ggg)Ω, (tr[σ[0]])Ω, ({g}T [σ[0]]{g})Ω

and θΩ. This constitutive theory requires only three material coefficients. We can also

write (3.63) as

qqq = −qa1{g} −
(
qa2[σ[0]] + qb11(tr[σ[0]])[I]

)
{g} (3.64)

If we let qa1 = k, −qa2 = k1, qb11 = k2 where k, k1 and k2 are positive material

coefficients, then (3.64) can be written as

qqq = −(k[I]− k1[σ[0]]− k2(tr[σ[0]])[I]){g} = −[k˜]{g} (3.65)

in which [k˜]is the effective conductivity matrix in the presence of stress field. The

coefficient of {g} in the second term on the right side of (3.64) is the influence of

stress field on heat conduction (in the most simplified form of the constitutive theory

for qqq).

4. From (3.65) for 1-D case (i.e. in R1) we can write

qx1 = −(k − (k1 + k2)σx1x1)
∂θ

∂x1

= −k˜ ∂θ∂x1

(3.66)

From (3.66) we clearly see that compression (negative σx1x1) enhances heat conduc-

tion due to increased k˜. This of course is due to faster vibrational energy transfer at

the lower scale (mode of heat transfer) due to the reduced mean free path between the

molecules because of compression. On the other hand, tension (positive σx1x1) in-

creases mean free path between the molecules, hence the vibrational energy transfer
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between the molecules is reduced compared to the unstressed state. In tension, effec-

tive k˜ is obviously reduced. We remark that influence of stress field on heat transfer

is most significant under high compression or tension as it influences the mean free

path significantly. We remark that all matters in reality are compressible, but the

degree of compressibility may vary depending upon the matter and the application.
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Chapter 4

Entropy inequality in terms of

Helmholtz free energy density Φ using

conjugate pairσσσ[0] and εεε

In this chapter we consider the entropy inequality expressed in terms of Helmholtz free

energy density Φ. If we consider σσσ[0] and εεε as conjugate stress and strain pair for finite

deformation elasticity for isotropic, homogeneous solids, then we can derive the following

for the entropy inequality in terms of [1, 2, 8, 23].

ρ
0
(

.
Φ + η

.
θ) +

|J |qigi
θ
− σ[0]

ki

.
εik ≤ 0 (4.1)

Dot over quantities indicates material derivative. Based on (4.1), we can choose the follow-

ing dependent variables in the constitutive theory and their argument tensors (for the most
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general case):

Φ = Φ(εεε,ggg, θ)

η = η(εεε,ggg, θ)

σσσ[0] = σσσ[0](εεε,ggg, θ)

qqq = qqq(εεε,ggg, θ)

(4.2)

Using the first equation in (4.2), we can determine
.

Φ using the chain rule of differentiation.

.
Φ =

∂Φ

∂εik

.
εik +

∂Φ

∂gi

.
gi +

∂Φ

∂θ

.
θ (4.3)

Substituting
.

Φ from (4.3) into (4.1) and collecting coefficients of
.
εik and

.
θ we can write

(
ρ
0

∂Φ

∂εik
− σ[0]

ki

) .
εik + ρ

0

(∂Φ

∂θ
+ η
) .
θ +
|J |qigi
θ

+
∂Φ

∂gi

.
gi ≤ 0 (4.4)

Entropy inequality (4.4) must hold for all admissible choices of
.
εik,

.
θ and

.
gi. This is

possible if the following conditions hold

ρ
0

∂Φ

∂εik
− σ[0]

ki = 0

∂Φ

∂θ
+ η = 0

∂Φ

∂gi
= 0

and
|J |qigi
θ
≤ 0 or qigi ≤ 0

(4.5)

From (4.5) we conclude that η is not a dependent variable in the constitutive theory as η is

deterministic from −∂Φ
∂θ

and ggg is not an argument tensor of Φ as ∂Φ
∂gi

= 0 must hold. The

remaining two conditions in (4.5) are

σ
[0]
ki = ρ

0

∂Φ

∂εki
(4.6)

qigi ≤ 0 (4.7)
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Thus, constitutive theory for σσσ[0] is deterministic using (4.6) and the constitutive theory

for qqq must satisfy (4.7). Equations (4.6) and (4.7) are two fundamental relations resulting

from the entropy inequality expressed in terms of Φ that allow determination of constitutive

theory forσσσ[0] and qqq. Based on (4.5), (4.2) reduces to

Φ = Φ(εεε, θ)

σσσ[0] = σσσ[0](εεε, θ)

qqq = qqq(εεε, θ,ggg)

(4.8)

Expressions in (4.8) are also of fundamental importance in the derivation of the constitutive

theories. We note that using Helmholtz free energy density, the constitutive theory results

in σσσ[0] as a function of εεε and θ (from equation (4.6)) and the argument tensors of qqq could

possibly be εεε, θ, and ggg. However, when the entropy inequality is expressed in terms of

Gibbs potential (chapter 3) the constitutive theory expresses εεε as a function of σσσ[0] and θ

and the possible argument tensors of qqq in this case areσσσ[0], ggg and θ.
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Chapter 5

Constitutive theory for stress tensorσσσ[0]

and heat vector qqq using Helmholtz free

energy density

In this chapter we present basic steps of the derivations and compact summaries of the

constitutive theories for σσσ[0] and qqq that are possible using entropy inequailty expressed in

terms of Helmholtz free energy density. Details of the derivations can be found in [1, 23].

5.1 Constitutive theory for stress tensorσσσ[0]

The constitutive theory for σσσ[0] can be derived using (4.6) and (4.8). As in section

3, here also there are three possible approaches: (i) assuming Φ to be a function of the

invariants of εεε and θ and using (4.6), (ii) using the first equation in (4.2) in conjunction with

the theory of generators and invariants [1–22] and (iii) using Taylor series expansion of Φ

37



in εεε about a known configuration and then using (4.6). Here also we examine the resulting

constitutive theories from these three approaches to determine the conditions under which

there is equivalence between the resulting three forms of the constitutive theories.

5.1.1 Constitutive theory for σσσ[0] using (4.6) and assuming Φ to be a

function of the invariants of εεε [1, 2, 8, 23]

Consider

Φ = Φ(Iε, IIε, IIIε, θ) (5.1)

Following the procedure and details presented in section 3.1.1 (equations (3.4) - (3.15)), it

is straightforward to derive the following

[σ[0]] = σα0[I] + σα1[ε] + σα2[ε]2 (5.2)

in which the coefficients σαi; i = 0, 1, 2 are functions of the invariants of εεε and θ in the

current configuration. As in (3.15), this theory in the present form is not usable due to the

fact that σαi; i = 0, 1, 2 are functions of unknown deformations in the current configuration.

However, (5.2) is the fundamental form of the constitutive theory forσσσ[0] in this approach.

5.1.2 Constitutive theory forσσσ[0] using (4.8) and the theory of genera-

tors and invariants [1–23]

Consider

σσσ[0] = σσσ[0](εεε, θ) (5.3)
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Following the procedure and details given in 3.1.2 (equations (3.16) - (3.18)), we can easily

derive the following

[σ[0]] = σα0[I] + σα1[ε] + σα2[ε]2 (5.4)

in which the coefficients σαi; i = 0, 1, 2 are functions of the invariants of εεε and θ in the

current configuration. (5.4) is the same as (5.2). Remarks similar to those in section 3.1.2

apply here as well.

5.1.3 Constitutive theory for σσσ[0] by expanding Φ in Taylor series in εεε

about a known configuration and then using (4.6) [1, 2, 8, 23]

We consider Φ = Φ(εεε, θ) and expand Φ in εεε using Taylor series about a known con-

figuration Ω. The derivation follows exactly the same steps as in section 3.1.3 (employing

similar assumptions) and we obtain

σ[0]
mn = σ0

mn

∣∣
Ω

+ ¯̄Cmnij
∣∣
Ω
εij + ( ¯̄C˜mnijkl)∣∣Ωεijεkl + . . . (5.5)

Remarks:

The following remarks are similar to those at the end of section 3.1.3 but are presented

here for completeness.

1. We note that (5.5) and (5.4), (5.2) are similar in the sense that all these three forms

contain exactly the same tensors on the left and right side of the equality that are in

the current configuration.

2. In (5.2) and (5.4) the coefficients σαi are defined in the current configuration, whereas

in (5.5) the coefficients are in the known configuration Ω. Hence, constitutive theory
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(5.5) is quite different compared to (5.2) or (5.4).

3. Based on the derivations given in sections 3.1.1 and 3.1.2, it is clear that the Taylor

series expansion in Φ = Φ(εεε, θ) must be limited up to the cubic terms in εεε. Inclusion

of further higher degree terms in εεε is non-physical and it is not supported by the

derivations that are strictly based on the entropy inequality.

4. From Taylor series expansion it is clear that the coefficients in (5.5) are functions

of εεε and θ in the known configuration Ω, whereas the coefficients σαi; i = 0, 1, 2 in

(5.2) and (5.4) are functions of invariants of εεε in the current configuration.

5. The issue of whether (5.5) is superior over (5.2) or (5.4) can only be addressed after

we determine the material coefficients using σαi; i = 0, 1, 2. We present details in the

following section.

6. For homogeneous isotropic solid matter the coefficients in (5.5) can be simplified [1].

5.1.4 Determination of material coefficients using σαi; i = 0, 1, 2 in

(5.2) or (5.4) [1, 2, 8, 23]

Consider

σσσ[0] = σα0[I] + σα1[ε] + σα2[ε]2 (5.6)

in which

σαi = σαi(Iε, IIε, IIIε, θ) (5.7)

If we let σI1 = Iε, σI2 = IIε and σI3 = IIIε and follow the derivation in section 3.1.4

and define the coefficients as in (5.8), then we can obtain (5.9) as a constitutive theory for
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second Piola-Kirchoff stressσσσ[0].

σ0

∣∣
Ω

= σα0
∣∣
Ω
−

3∑
j=1

∂ σα0

∂ σI˜j
∣∣∣∣
Ω

(σI˜j)Ω
σãj =

∂ σα0

∂ σI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

σ̃bi = σαi
∣∣
Ω
−

3∑
j=1

∂ σαi

∂ σI˜j
∣∣∣∣
Ω

; i = 1, 2

σc̃1j =
∂ σα1

∂ σI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

σc̃2j =
∂ σα2

∂ σI˜j
∣∣∣∣
Ω

; j = 1, 2, 3

σd̃1 =
∂ σα1

∂θ

∣∣∣∣
Ω

σd̃2 =
∂ σα2

∂θ

∣∣∣∣
Ω

(α̃tm)Ω = −∂
σα0

∂θ

∣∣∣∣
Ω

(5.8)

[σ[0]] =σ0

∣∣
Ω
[I] + σ̃b1[ε] + σ̃b2[ε]2+

3∑
j=1

σãj(
σI˜j[I]) +

3∑
j=1

σc̃1j(
σI˜j[ε]) +

3∑
j=1

σc̃2j(
σI˜j[ε]2)+

σd̃1(θ − θΩ)[ε] + σd̃2(θ − θΩ)[ε]2 − (α̃tm)Ω(θ − θΩ)[I]

(5.9)

σ0

∣∣
Ω

is the initial stress in the known configuration Ω. This constitutive theory requires

the determination of 14 material coefficients, σãj; j = 1, 2, 3,σ̃bi; i = 1, 2,σc̃1j ,σc̃2j; j =

1, 2, 3,σd̃j; j = 1, 2 and α̃tm, all evaluated in a known configuration Ω. (5.9) is the general

constitutive theory for [σ[0]] as a function of [ε] resulting from the entropy inequality in

Helmholtz free energy density Φ when we use either the approach given in section 5.1.1 or

the approach in section 5.1.2.
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Further simplifications

The constitutive theory (5.9) requires the determination of many material coefficients.

If we only consider a constitutive theory for [σ[0]] that is linear in the components of [ε] and

further neglect the (θ − θΩ)[ε] term, then (5.9) reduces to

[σ[0]] = σ0

∣∣
Ω
[I] + σ b̃1[ε] + σã1tr[ε][I] + (α̃tm)Ω(θ − θΩ)[I] (5.10)

This constitutive theory only requires three material coefficients, σã1, σ b̃1, and α̃tm in a

known configuration Ω.

Remarks:

1. It is perhaps meaningful to compare the constitutive theory (5.5) resulting from the

Taylor series expansion and the constitutive theory (5.9) resulting from the entropy

inequality or from the theory of generators and invariants as the material coefficients

in the two are now defined (in a known configuration Ω).

2. We observe that not all terms involving εεε in the current configuration on the right

hand side of (5.5) and (5.9) are the same.

3. Furthermore, the material coefficients in (5.5) are functions of εεε
∣∣
Ω

and θ
∣∣
Ω

. The

material coefficients in (5.9) are functions of the invariants of εεε and θ in the known

configuration Ω, hence in general the two sets of material coefficients are different.

4. Based on remarks (2) and (3) it is straightforward to conclude that the constitutive

theories (5.5) and (5.9) are not the same. This raises a question regarding the supe-

riority of one over the other. The constitutive theories in sections 5.1.1 and 5.1.2 are
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strictly based on the entropy inequality and integrity and hence are in precise agree-

ment with the axioms and principles of continuum mechanics. The Taylor series

expansion, though based on axioms of smooth neighborhood, ignores the fundamen-

tal axiom that the coefficients must be functions of the combined invariants of the

argument tensors.

5. Henceforth, in all further discussions and the determination of equivalence between

the constitutive theories resulting from Gibbs potential and Helmholtz free energy

density, we only consider the constitutive theory for [σ[0]] presented in sections 5.1.1

or 5.1.2 (as the two are identical in all aspects).

5.2 Constitutive theory for heat vector qqq

The conditions resulting from the entropy inequality require that

qigi ≤ 0 (5.11)

be satisfied by the constitutive theory for qqq regardless of how it is derived. This condition is

the same as in section 3.2, hence the constitutive theory for qqq derived in section 3.2.1 hold

here as well. In the following, we only present the final forms of the constitutive theories

for qqq.

5.2.1 Constitutive theory for qqq using entropy inequality [1, 2, 8]

Beginning with (5.11) and following the derivation in section 3.2.1, we obtain exactly

the same constitutive theory for qqq as in section 3.2.1.

qqq(ggg) = −kij(θ)ggg or {q} = −[k(θ)]{g} (5.12)
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5.2.2 Constitutive theory for qqq using the theory of generators and in-

variants [1, 2, 8, 23]

As in section 3.2.2, here also we can consider two approaches

(a) Approach I

Consider

qqq = qqq(ggg, θ) (5.13)

which is the same as (3.43), hence would result in the following constitutive theory for qqq

(see section 3.2.2, Approach I).

qqq = −k(θΩ,
q I˜∣∣Ω)ggg − k1(θΩ,

q I˜∣∣Ω)(ggg · ggg)ggg − k2(θΩ,
q I˜∣∣Ω)(θ − θΩ)ggg (5.14)

The constitutive theory for qqq is identical to (3.50).

(b) Approach II

Consider

qqq = qqq(εεε,ggg, θ) (5.15)

and define

{qG̃1} = {g} ; {qG̃2} = [ε]{g} ; {qG̃3} = {g}T [ε]{g} (5.16)

Then using the theory of generators and invariants we can write

qqq = −
3∑
i=1

qα̃i{qG̃i} (5.17)
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Following the derivation in section 3.2.2, Approach II, we can obtain the constitutive theory

for qqq as in (5.19). The coefficients in (5.19) are defined in (5.18).

qãi = qαi
∣∣
Ω
−

6∑
j=1

∂qα̃i

∂qĨj

∣∣∣∣
Ω

(q Ĩj)Ω ; i = 1, 2, 3

q b̃ij =
∂qα̃i

∂qĨj

∣∣∣∣
Ω

; i = 1, 2, 3 ; j = 1, 2, . . . , 6

q c̃i =
∂qα̃i

∂θ

∣∣∣∣
Ω

; i = 1, 2, 3

(5.18)

qqq = −
3∑
i=1

qãi{qG̃i}+
3∑
i=1

6∑
j=1

q b̃ij
qĨj{qG̃i} −

3∑
i=1

q c̃i(θ − θΩ){qG̃i} (5.19)

where qĨj; j = 1, 2, . . . , 6 are combined invariants of the argument tensors of qqq in (5.15).

qãi, q b̃ij and q c̃i are the material coefficients defined in the known configuration Ω. This

constitutive theory for qqq uses integrity and hence is complete. Unfortunately, it requires

too many material coefficients (twenty four).

Remarks:

1. With some assumptions this constitutive theory for qqq can be simplified to yield an ap-

proximate constitutive theory in which the material coefficients may not be as many

as in (5.19).This will undoubtedly limit the physics. If we limit the constitutive the-

ory to be linear in the components of εεε, that is, we neglect generator {qG̃3} = [ε]2{g}

and invariants qĨ2, qĨ3 and qĨ6, (similar to those in (3.53)) the constitutive theory for

qqq in (5.19) now reduces to

qqq =− qã1{g} − qã2[ε]{g} − q b̃11(tr[ε]){g} − q b̃14({g} · {g}){g}−

q b̃15({g}T [ε]{g}){g} − q b̃21(tr[ε])([σ[0]]{g})−

q b̃24({g} · {g})([ε]{g})− q b̃25({g}T [ε]{g})([ε]{g})−

q c̃1(θ − θΩ){g} − q c̃2(θ − θΩ)([ε]{g})

(5.20)
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This constitutive theory still requires ten material coefficients. If we further assume

that the constitutive theory for qqq is linear in the components of εεε, then the terms

containing material coefficients q b̃21 and q b̃25 can be removed from (5.20).

qqq =− qã1{g} − qã2[ε]{g} − q b̃11(tr[ε]){g} − q b̃14({g} · {g}){g}−

q b̃15({g}T [ε]{g}){g} − q b̃24({g} · {g})([ε]{g})−

q c̃1(θ − θΩ){g} − q c̃2(θ − θΩ)([ε]{g})

(5.21)

This constitutive theory requires eight material coefficients.

2. If we remove dependence of qqq on [ε] in (5.21), then

qqq = −qã1{g} − q b̃14({g} · {g}){g} − q c̃1(θ − θΩ){g} (5.22)

This constitutive theory for qqq is the same as derived earlier (equation (3.50)). The

coefficients in (5.22) are functions of θ
∣∣
Ω

and (ggg · ggg)Ω.

3. To demonstrate the significance of strain field on heat conduction, we reduce the

constitutive theory (5.21) to a most simplified possible theory by considering qqq to be

a linear function of the components of {g} as well as [ε].

qqq =− qã1{g} − qã2[ε]{g} − q b̃11(tr[ε]){g}−

q c̃1(θ − θΩ){g} − q c̃2(θ − θΩ)([ε]{g})
(5.23)

If we neglect (θ − θΩ) terms in (5.23) as done routinely, we obtain

qqq = −qã1{g} − qã2[ε]{g} − q b̃11(tr[ε]){g} (5.24)

The material coefficients in (5.24) are functions of (ggg · ggg)Ω, (tr[ε])Ω, ({g}T [ε]{g})Ω.

This constitutive theory requires only three material coefficients. We can also write

(5.24) as

qqq = −qã1{g} −
(
qã2[ε] + q b̃11(tr[ε])[I]

)
{g} (5.25)
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If we let qã1 = k̄,−qã2 = k̄1 and−q b̃11 = k̄2 where k̄, k̄1 and k̄2 are positive material

coefficients, then (5.25) can be written as

q = −(k̄[I]− k̄1[ε]− k̄2(tr[ε])[I]){g} = −[k̄˜]{g} (5.26)

in which [k̄˜] is the effective conductivity matrix in the presence of strain field. The

coefficient of {g} in the second term on the right side of (5.25) is the influence of

strain field on heat conduction (in the most simplified form of the constitutive theory

for qqq). From (5.26) for 1-D case (i.e. in R1) we can write

qx1 = −(k̄ − (k̄1 + k̄2)εx1x1)
∂θ

∂x1

= −k̄˜ ∂θ∂x1

(5.27)

This is similar to (3.66), hence the comments made in Remark 4 (following equation

(3.66)) hold here as well but are not repeated for the sake of brevity.
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Chapter 6

Comparison of the constitutive theories

resulting from the entropy inequality

expressed in terms of Gibbs potential Ψ

and Helmholtz free energy density Φ

In this chapter we compare the constitutive theories derived using Gibbs potential in

chapter 3 with the constitutive theories derived using Helmholtz free energy density Φ in

chapters 4 and 5 to determine when there is equivalence between these theories. We use

the notation G to indicate Gibbs potential and H for Helmholtz free energy density.
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6.1 Constitutive theories forσσσ[0] and εεε

6.1.1 Basic forms resulting from the entropy inequality

The most basic forms resulting from the entropy inequality or the theory of generators

and invariants are equations (3.15) or (3.17) and (5.2) or (5.4).

[ε] = εα̃0[I] + εα̃1[σ[0]] + εα̃2[σ[0]]2 : G (6.1)

[σ[0]] = σα̃0[I] + σα̃1[ε] + σα̃2[ε]2 : H (6.2)

in which

εα̃i = εα̃i(Iσ[0] , IIσ[0] , IIIσ[0] , θ) ; i = 0, 1, 2 (6.3)

σα̃i = σα̃i(Iε, IIε, IIIε, θ) ; i = 0, 1, 2 (6.4)

It is rather obvious that there is no equivalence between these two theories, i.e. σσσ[0] if

determined from (6.1) is not the same as σσσ[0] in (6.2). Likewise, [ε] if determined from

(6.1) is not the same as (6.2). [ε] in (6.1) is a quadratic function of [σ[0]] and [σ[0]] in (6.2)

is a quadratic function of [ε]. In these forms ((6.1) and (6.2)), the material coefficients are

not yet defined.

6.1.2 Constitutive theories for σσσ[0] and εεε from entropy inequalities

with material coefficients defined

(a) Based on integrity

In this section we compare the constitutive theories for (6.1) and (6.2) after Taylor

series expansion of the coefficients in (6.1) and (6.2) about a known configuration Ω, i.e.

49



we consider (3.34) and (5.9), the most general case based on integrity.

[ε] =ε0
∣∣
Ω
[I] + εb˜1[σ[0]] + εb˜2[σ[0]]2+

3∑
j=1

εa˜j(εI˜j[I]) +
3∑
j=1

εc˜1j(
εI˜j[σ[0]]) +

3∑
j=1

εc˜2j(
εI˜j[σ[0]]2)+

εd˜1(θ − θΩ)[σ[0]] + εd˜2(θ − θΩ)[σ[0]]2 − (αtm)Ω(θ − θΩ)[I]

(6.5)

[σ[0]] =σ0

∣∣
Ω
[I] + σ̃b1[ε] + σ̃b2[ε]2+

3∑
j=1

σãj(
σI˜j[I]) +

3∑
j=1

σc̃1j(
σI˜j[ε]) +

3∑
j=1

σc̃2j(
σI˜j[ε]2)+

σd̃1(θ − θΩ)[ε] + σd̃2(θ − θΩ)[ε]2 − (α̃tm)Ω(θ − θΩ)[I]

(6.6)

The material coefficients in (6.5) are functions of the combined invariants of σσσ[0], ggg and

θ whereas the material coefficients in (6.6) are functions of the combined invariants of εεε,

ggg and θ, all defined in a known configuration Ω. Lack of equivalence between these two

theories is rather obvious.

(b) Simplified form of the constitutive theories derived based on integrity

We consider the most simplified form of the constitutive theories forσσσ[0] and εεε resulting

from Ψ and Φ, i.e. we consider (3.35) and (5.10), which are linear in the components of

σσσ[0] and εεε, respectively.

[ε] = ε0
∣∣
Ω
[I] + ε g˜b1[σ[0]] + εg˜a1tr[σ[0]][I] + (αtm)Ω(θ − θΩ)[I] : G (6.7)

[σ[0]] = σ0

∣∣
Ω
[I] + σ b̃1[ε] + σã1tr[ε][I] + (α̃tm)Ω(θ − θΩ)[I] : H (6.8)

If we assume that the material coefficients in (6.7) and (6.8) are constant, i.e. not functions

of the invariants of σσσ[0] and εεε, respectively, then the two theories are equivalent, i.e. [σ[0]]

determined from (6.7) is the same as [σ[0]] in (6.8) and [ε] determined from (6.8) is the
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same as [ε] in (6.7). Thus, for linear elasticity between σσσ[0] and εεε, these two theories are

identical. We keep in mind that εεε is a measure of finite strain.

6.1.3 Constitutive theories for σσσ[0] and εεε from Taylor series expan-

sions of Ψ and Φ

In this case we first examine the most general form of the constitutive theories, i.e. we

consider (3.26) and (5.5).

εmn = ε0
mn

∣∣
Ω

+ C
mnij

∣∣
Ω
σ

[0]
ij + C̃

mnijkl

∣∣
Ω
σ

[0]
ij σ

[0]
kl + . . . : G (6.9)

σ[0]
mn = σ0

mn

∣∣
Ω

+ ¯̄Cmnij
∣∣
Ω
εij + ( ¯̄C˜mnijkl)

∣∣
Ω
εijεkl + . . . : H (6.10)

Material coefficients in (6.9) are functions of σ[0]
∣∣
Ω

and θ
∣∣
Ω

whereas the material coefficients

in (6.10) are functions of ε
∣∣
Ω

and θ
∣∣
Ω

. Furthermore, in (6.9) εεε is a quadratic function ofσσσ[0],

whereas in (6.10) σσσ[0] is a quadratic function of εεε. Thus, there is no equivalence between

these theories. In the most simplified case we assume εεε to be a linear function of σσσ[0] and

σσσ[0] to be a linear function of εεε, i.e. we consider

εmn = ε0
mn

∣∣
Ω

+ C
mnij

∣∣
Ω
σ

[0]
ij : G (6.11)

σ[0]
mn = σ0

mn

∣∣
Ω

+ ¯̄Cmnij
∣∣
Ω
εij : H (6.12)

In these theories the material coefficients in (6.11) are functions of σσσ[0] and θ and those

in (6.12) are functions of εεε and θ in the known configuration Ω. Thus, (6.11) and (6.12)

are not precisely equivalent. If we assume the material coefficients to be constant, i.e.

independent of deformation as in the case of linear elasticity, then (6.11) and (6.12) are

equivalent, keeping in mind that εεε is a strain measure for finite deformation.
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6.2 Constitutive theories for heat vector qqq

In this section we compare the constitutive theories for qqq derived using Ψ and Φ.

6.2.1 Derived directly using conditions resulting from the entropy in-

equality

Regardless of Ψ or Φ, the entropy inequality requires that the heat vector satisfy

qigi ≤ 0 (6.13)

Thus, the constitutive theory derived directly using (6.13)

qi = −kij(θ)gj = −[k(θ)]{g} (6.14)

is the same for Ψ as well as Φ.

6.2.2 Using the theory of generators and invariants

In this approach of deriving the constitutive theories for qqq we consider two approaches

(a) Approach I

In this case we choose the following

qqq = qqq(ggg, θ) : G (6.15)

qqq = qqq(ggg, θ) : H (6.16)

Since in (6.15) and (6.16) the generators and invariants of the argument tensors of qqq are

the same, the resulting constitutive theories from (6.15) and (6.16) are identical (Equations

(3.50) or (5.14))

52



(b) Approach II

Here we consider

qqq = qqq(σσσ[0],ggg, θ) : G (6.17)

qqq = qqq(εεε,ggg, θ) : H (6.18)

It is obvious that the combined generators and the invariants of the argument tensors of qqq

in (6.17) and (6.18) are different so the resulting constitutive theories for qqq from (6.17) and

(6.18) are different.

However, when there is equivalence (only for linear elasticity) between the constitutive

theories for [ε] and [σ[0]] resulting from Ψ and Φ then the two constitutive theories for qqq

resulting from (6.17) and (6.18) are equivalent.
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Chapter 7

Summary and conclusions

In this thesis we have presented constitutive theories for finite deformation of homoge-

neous, isotropic thermoelastic solids in Lagrangian description that are derived using the

conditions resulting from the entropy inequality expressed in terms of Gibbs potential Ψ.

The second Piola-Kirchoff stress tensor σσσ[0] and Green’s strain tensor εεε are used as conju-

gate pairs. The condition resulting from the entropy inequality in Ψ permit derivation of

constitutive theory for εεε in terms ofσσσ[0] and θ. In this thesis we have presented three differ-

ent approaches for deriving constitutive theories for εεε: (i) assuming the Gibbs potential to

be a function of the invariants of the conjugate stress tensor and then using the conditions

resulting from the entropy inequality, (ii) using theory of generators and invariants, and

(iii) expanding Gibbs potential in conjugate stress tensor using Taylor series about a known

configuration and then using the conditions resulting from the entropy inequality.

The constitutive theories for εεε resulting from these three approaches are compared

(3.1.3) for equivalence between them as well as their merits and shortcomings (3.1.4).

The constitutive theories for heat vector have been derived: (i) directly using the condi-
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tions resulting from the entropy inequality, (ii) using qqq = qqq(ggg, θ) in conjunction with the

theory of generators and invariants and (iii) using qqq = qqq(σσσ[0],ggg, θ) and the theory of gen-

erators and invariants. These theories are compared for equivalence, their merits, and their

shortcomings.

The constitutive theories derived using entropy inequality in Gibbs potential Ψ are com-

pared for equivalence with those resulting from the entropy inequality expressed in terms

of Helmholtz free energy Φ. Details are presented in chapter 6 and are not repeated again

for brevity. It is shown that even in the most simplified constitutive theory for qqq using

qqq = qqq(σσσ[0],ggg, θ) in conjunction with the theory of generators and invariants we demon-

strate that the stress field influences heat conduction. Compression results in enhanced heat

transfer whereas tension reduces effective heat transfer. In case of Helmholtz free energy

density Φ, a similar theory for qqq shows influence of the strain field on heat transfer in a

similar fashion.

It is worth noting that entropy inequality expressed either in terms of Ψ or Φ has no

assumptions or approximations, i.e. entropy inequality in Ψ is precisely equivalent to the

entropy inequality in Φ, yet the constitutive theories resulting from these two only show

equivalence for extremely simplified cases. The major cause of this of course are the as-

sumptions regarding arguments ofσσσ[0] in case of Φ and that of εεε in case of Ψ. For example,

we have εεε = εεε(Iσ[0] , IIσ[0] , IIIσ[0] , θ) in Ψ and σσσ[0] = σσσ[0](Iε, IIε, IIIε, θ) in Φ. Since there is

no equivalence between all invariants ofσσσ[0] and εεε, the equivalence in the resulting consti-

tutive theories is lost as well.

This work demonstrates two equally effective parallel approaches for deriving consti-

tutive theories for thermoelastic solids in Lagrangian description. In general, constitutive

theory for σσσ[0] in terms of εεε resulting from Φ permits elimination of σσσ[0] as a dependent
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variable from the mathematical models derived using conservation laws, thereby yielding a

more compact mathematical model due to reduced number of dependent variables. This is

beneficial in improving efficiency of numerical computations of the solutions of the evolu-

tions described by the mathematical models. On the other hand, in the constitutive theories

derived using Ψ, εεε is a function ofσσσ[0] and θ, hence in general these constitutive equations

may not permit elimination of σσσ[0] as dependent variables from the mathematical models.

Besides this argument, the usefulness and the effectiveness of one theory over the other is

dictated by the desired physics.
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