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Abstract. Two novel adaptive nonlinear filter structures are proposed which are based on linear combinations of  order statistics. 

These adaptive schemes are modifications of the standard LMS algorithm and have the ability to incorporate constraints 

imposed on coefficients in order to permit location-invariant and unbiased estimation of a constant signal in the presence of 

additive white noise. The convergence in the mean and in the mean square of the proposed adaptive nonlinear filters is studied. 

The rate of  convergence is also considered. It is verified by simulations that the independence theory provides useful bounds 

on the rate of  convergence. The extreme eigenvalues of the matrix which controls the performance of the location-invariant 

adaptive LMS L-filter are related to the extreme eigenvalues of the correlation matrix of  the ordered noise samples which 

controls the performance of other adaptive LMS L-filters proposed elsewhere. The proposed filters can adapt well to a variety 

of noise probability distributions ranging from the short-tailed ones (e.g. uniform distribution) to long-tailed ones (e.g. 

Laplacian distribution). 

Zusammenfassung. Es werden zwei neue adaptive nichtlineare Filterstrukturen vorgeschlagen, die auf Linearkombinationen 

yon Order-Statistik beruhen. Diese adaptiven Strukturen sind Modifikationen des iiblichen LMS-Algorithmus und erlauben 

die Einbringung yon Bedingungen bezfiglich der Koeffizienten, um ortsinvariante und erwartungstreue Schfitzungen konstanter 

Signale unter additivem, weiBem Rauschen zu erm6glichen. Die Konvergenz bez/iglich des Mittelwertes und des quadratischen 

Mittelwertes wird fiir die vorgeschlagenen nichtlinearen Filter untersucht. Weiterhin wird die Konvergenzgeschwindigkeit 

betrachtet. Durch Simulationen wird gezeigt, dab die Independence-Theorie brauchbare Grenzen ffir die Konvergenzrate liefert. 

Die extremen Eigenwerte der Matrix, die das Verhalten des ortsinvarianten adaptiven LMS L-Filters bestimmt, werden den 

Eigenwerten der Korrelationsmatrix der geordneten Rauschabtastwerte gegeniibergestellt, die das Verhalten anderer adaptiver 

LMS L-Filter bestimmt. Die vorgeschlagenen Filter stellen sich sehr gut auf eine Vielzahl verschiedener Verteilungsdichten des 

Rauschens ein, angefangen von schmalen Verteilungen (z.B. Gleichverteilung) bis hin zu langsam abfallenden (z.B. Laplace). 

R6sum+. Nous proposons deux structures de filtre non-lin~aire originales, structures bastes sur des combinaisons lin6aires de 

statistiques d'ordre. Ces techniques adaptatives sont des modifications de I'algorithme LMS standard et ont la capacit6 

d'incorporer des contraintes impos+es sur les coefficients afin de permettre une estimation ne variant pas selon la localisation 

et non biais6e d 'un signal constant en pr6sence de bruit blanc additif. Nous 6tudions la convergence en moyenne et en moyenne 

quadratique des filtres non-lin6aires adaptatifs propos6s. Nous consid~rons 6galement le taux de convergence. Nous v+rifions 

par des simulations que l'hypoth+se d'ind6pendance fournit des bornes utiles sur le taux de convergence. Nous relions les 

valeurs propres extremes de la matrice qui contr61e les performances du L-filtre LMS adaptatif ne variant pas selon la 

localisation aux valeurs propres extremes de la matrice de correlation des 6chantillons de bruit ordonn+s qui contr61e les 

performances d'autres L-filtres LMS proposes ailleurs. Les filtres propos6s peuvent s 'adapter ais+ment 5. une vari6te de distribu- 

tions de densit6 de bruit allant de celles 5. queue courte (p.e. la distribution uniforme) 5. celles 5. queue longue (p.e. la distribution 

de Laplace). 

Keywords. Adaptive filters, nonlinear filters, order statistics, L-filters, LMS adaptation. 

1. Introduction 

Adaptive filters constitute an important part of statistical signal processing. They offer an attractive 

solution whenever there is a requirement to process signals that result from operation in an environment 
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of unknown statistics and they provide a significant improvement in performance over the use of non- 

adaptive filters designed by conventional methods (e.g. Wiener filter). They have been applied in a wide 

variety of problems, for example in system identification, adaptive equalization for data transmission, 

digital representation of speech, adaptive autoregressive spectrum analysis, adaptive detection of a signal 

in noise of unknown statistics, echo cancellation [2, 11]. 

Many algorithms for nonlinear filters have appeared in the literature for one-dimensional and two- 

dimensional signal filtering [22]: Volterra filters, memoryless nonlinearities followed by a linear combiner, 

order statistic filters (e.g. L-filters), filters that combine in a unique class the L-filters and the linear filters 

(L/-filters, median hybrid filters). Each estimator provides a reasonable solution only to specific filtering 

problems and often the choice of the filter is determined by experience. 

Numerous researchers have attempted to combine adaptive filtering and nonlinear filtering. Nonlinear 

adaptive Volterra filters have been proposed in the cases where the transmission channel is nonlinear for 

echo cancellation [1, 26]. Extensions of the LMS and RLS algorithms to the adaptation of L-filter and Ll- 

filter coefficients have been proposed in [18, 21, 23]. The backpropagation algorithm has been used in the 

adaptation of the coefficients of the hybrid linear order statistic filters, median hybrid filters and L/-filters 

in [16]. An adaptive computation of the coefficients of the recursive L/-filters has been proposed in [17]. 

The performance of the median LMS, average LMS and trimmed-mean LMS filters is analyzed in [10]. 

The use of the LMS algorithm for the adaptation of the coefficients of the weighted median is proposed in 

[24]. 

The main purpose of this paper is to extend the standard LMS algorithm by applying it to the adaptation 

of the L-filter coefficients in order to incorporate constraints imposed on the coefficients. L-filters are defined 

as linear combinations of the ordered data in the filter window. In [5, 19] it is proven that the optimal L- 

filter for the estimation of a constant signal corrupted by zero mean additive white noise should be either 

location-invariant or unbiased. Thus, it is reasonable to incorporate the constraints underlying the location- 

invariant and unbiased estimation to the LMS adaptation algorithm. The use of an adaptive formula for 

the L-filter coefficients eliminates the need to compute the correlation matrix of the ordered noise samples. 

It also leads to a filter which easily adapts to an unknown noise probability density function. The LMS 

algorithm is chosen because of its simplicity and its low computational complexity. It will be seen later on 

that the incorporation of the above-mentioned constraints to the adaptation procedure eliminates the 

component with the slowest convergence rate and accelerates the convergence of the L-filter coefficients to 

the optimal ones. The design of an L-filter which minimizes the mean square error between some desired 

response and the actual filter output is reviewed. The case of a constant signal corrupted by zero mean 

additive white noise is considered. The constraints underlying the location-invariant and unbiased estima- 

tion are stated. Two novel adaptive schemes are derived by rewriting the normal equations in a form that 

takes into account the above-mentioned constraints and by using instantaneous values for the correlations 

of the ordered noise samples. The convergence in the mean of these algorithms to the optimal filter is proven. 

The convergence in the mean square is also studied. The extreme eigenvalues of the matrix controlling the 

adaptation in the location-invariant adaptive LMS L-filter are related to the extreme eigenvalues of the 

correlation matrix of the ordered noise samples. It is verified by simulations that the slowest rate of 

convergence of the location-invariant adaptive LMS L-filter is smaller than the corresponding one of the 

adaptive LMS L-filters proposed in [18, 21,23] which are based on the correlation matrix of the ordered 

noise samples. It is proven that the proposed adaptive filter structures can adapt well in a variety of noise 

probability distributions ranging from short-tailed ones (e.g. uniform distribution) to long-tailed ones (e.g. 

Laplacian distribution). 

The outline of this paper is as follows. The description of L-filters and the location-invariant and unbiased 

estimation are given in Section 2. The mathematical derivation of the proposed adaptive L-filters is analyzed 
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in Section 3. Their convergence properties and theoretical bounds on the convergence rate are described in 

Section 4. Simulation examples of  the performance of the proposed adaptive nonlinear filters are included 

in Section 5. Conclusions are drawn in Section 6. 

2. Optimal L-filter for a constant signal in white noise 

A constant signal s corrupted by zero-mean additive white noise is considered. The input samples are 

given by 

x i = s + n i ,  (1) 

where ni are independent, identically distributed random variables satisfying E[n~] = 0. We shall assume that 

the noise distribution is symmetric about zero. Let x(k)  denote the M × 1 input vector at time instant k, 

i.e., 

x(k)  = [x~, x~ . . . . .  x~t] v=  [Xk-IM ,1'2 . . . . .  Xk . . . . .  Xk+~M 11.21 v, (2) 

where M is assumed to be odd. If the data are arranged in ascending order according to their magnitude, 

the order statistics result: 

k ~<x~:)~<. • .-< k x~l~ -,~X~M~, (3) 

where x~) is the i-th largest observation data (i-th order statistic). Thus, the ordered tap-input vector at 

time instant k is 

xr(k)=[X~ll,  ~ x,2) . . . . .  X~M)] T. (4) 

The output of the L-filter at time k is given by 

y(k)  =aVXr(k), (5) 

where a = [a~ . . . . .  aM] T denotes the vector of the L-filter coefficients. 

Two methods for estimating the constant signal s from the ordered tap-input vector have been proposed 

in the literature [5, 19]: 

(a) location-invariant estimation, 

(b) unbiased estimation. 

In the following the conditions for each type of estimation are summarized because they will be used in 

the derivation of the adaptation formulae. Let eM denote the M x 1 unitary vector, i.e. eM = [1, 1 . . . . .  1] v. 

L E M M A  1. The necessary and sufficient condition for a location-invariant L-filter which is used in the 

estimation of  a constant signal in white noise is 

e t a  = 1. (6) 

L E M M A  2. The sufficient conditions Jor an unbiased L-filter which is used in the estimation o f  a constant 

signal in white noise are 

e ~ a = l ,  aj=aM j+l, j = l  . . . . .  ( M - l ) / 2 .  (7) 

The noise distribution shouM be symmetric about zero. 
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The coefficients of the L-filter are chosen so that the mean square error (MSE) 

J =  E[(y(k) - s) 21 

is minimized. The location-invariant/unbiased L-filter a is given by [5, 19] 

(8) 

R - l e  M 

a = e T  R le M, (9) 

where R is the correlation matrix of the ordered noise samples with ( i , j )  element ro=E[n~on~j)], i , j  = 

1 . . . . .  M. An order-recursive algorithm for the calculation of  the elements of R can be derived by exploiting 

recurrence relations on the moments of  the order statistics [4, 6, 9, 25, 27]. 

3. Constrained L M S  adaptive L-filters 

3.1. Location-invariant L M S  adaptive L-filter 

Let nr denote the vector of  the ordered noise samples, i.e., 

t /r  = [n¢l), n¢2) . . . .  , t t (M)]  T, (10) 

where the time index k is dropped out for notation simplicity. The MSE J, given in (8), is rewritten as 

J = E[aTn,nTa] = aTRa. (11) 

Let e denote the ( M - 1 ) / 2  x 1 unitary vector e~M-~)/z. The coefficient vector a can be rewritten in the 

following form by using (6): 

a = [aT] 1 -- eTa, -- eta2 l aT] T, (12) 

where al,  a2 are ( M -  1)/2 x 1 vectors given by 

al  = [al . . . . .  a(M- 1)/2] T, a2 ---- [a{M+ 3)/2 . . . . .  aM] T. (13)  

Similarly, the vector of the ordered noise samples can also be partitioned: 

n T1T n,= [n,T [ (~M+I)/2) nr2l  , (14) 

where 

n,, = In(,) . . . . .  n((M-1)/2)] T, nr2 = [n((M+3)/2), • • • , ?/(M)] T. 

The correlation matrix R is partitioned as follows: 

where 

IRl  el ] R2 

R= g r d ,  

LR3 r2 R4._] 

R1 = T T T E[nr,n,,], R2 = E[nrlnr2], R3 = E[n,znrl], 

r,=E[n((M+J)/2)n,l], r2=E[n(¢M+l)/2)n,2] and 
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R4 - E[nr2nr2], 

r = E[n~M+ ,)/2)]. 

(15) 

(16) 

(17) 



It is recognized that 

RI=R~, R4=R~, 

The MSE (11) is rewritten as 

J = r - 2alp' + ~TR'~, 

where 
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R 3 = R ~ .  (18) 

(19) 

~= [a~laff] v, p ' =  [reX--rTlreT--rT]T, (20) 

IR,  + reeV-- 2rle v R2 + reeT-- 2rleT 1 

R' = R3 + ree v - 2r2e f R4 + ree v - 2r2eVJ" 

Therefore, the initial minimization problem of the MSE under the constraint (6) has been reworded to 

the minimization of J given by (19) with respect to the M - 1  coefficients ci. The main advantage of this 

version of the MSE is that it incorporates the constraint (6) and does not use any heuristic technique in 

order to impose location-invariance. Such a technique is the normalization of the coefficients that would 

be derived by a direct application of the LMS algorithm to the minimization of the MSE given in (11) 

[23]. In (12) (20) we have used a special treatment of the coefficient aIM+ 112 corresponding to the median 

sample of the tap-input vector for two reasons: 

(a) For symmetrical noise pdfs, the adaptation of this particular coefficient does not affect the expected 

value of the output of the L-filter, since E[nI~M+ i).21] = 0. Indeed, 

( M  1~ 2 

E [ y ( k ) ] = s + a V E [ n , ( k ) ] = s +  Y~ ( a i - a , - i + l ) E [ n , 1 ] .  (21) 
i I 

(b) It is the most natural choice because of the symmetry of the problem conditions and the resulting 

mathematical tractability. 

The filter coefficient for the median sample x,M+.)2) is obtained by using 

a~M+jl,~= 1 - [eTleT]~. (22) 

The steepest descent algorithm for the minimization of the MSE in (19) is formulated as follows: 

a(k + 1 ) = a(k) + ~p [-VJ(k)], (23) 

where p is the adaptation step and VJ(k) is the gradient of MSE with respect to fi(k) given by 

VJ(k) = - 2p'+ ( R ' +  R 'T)fi(k) = -- 2p'+ 2R ~fi(k). (24) 

R's denotes the symmetric part of matrix R':  

[RI  +ree f - - ( r l e  T+erT) R2+reeT-- (r ,e  x+e ,~)  1 
R: = LR~ + ree T -  (r2e T + er~) R4 + ree T - (r2e T + erV2)J" (25) 

By substituting (24) into (23) the following location-invariant steepest descent algorithm is obtained: 

fi(k + 1 ) = ~i(k) + p [p' - R 'sfi(k)]. (26) 

In the following, we shall drop the primes from p' and R's without loss of generality. The simplest way to 

develop an estimate of the gradient VJ(k) is to use instantaneous estimates for p and R~. Let fir denote the 
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following ( M -  1 ) × 1 vector:  

, i ,  = [ . ~  I , ,~ ]  T. 

p and Rs can be rewritten as follows: 

p = E[n((M+ i)/2)(n((~+ i)/2)e~- 1 - ti,)], 

Rs=E[(h, .-nww+l)/e)eM-l)(~, .-nww+a)/2)eM I)T]. 

Thus the estimates of  p and Rs are given by 

/~ (k )=  ~ k n(~M+ 1)/2)(n((M+ I)/2)eM 1 - -  h,(k)),  

k~(k) = ( n ( k )  k k T 
- n((M+ I ) / 2 ) e M - l ) ( t i r ( k )  - n((M+ 1 ) / 2 ) e M - 1 )  • 

The unbiased estimate for the gradient vector  is the following: 

VJ(k)  = - 2p(k) + 2ks(k)fi(k) 

=-2((n~(M+ 1)/2)eM-1-~,.(k))V~(k)-n~(M+l)/2))(kr(k) k - -  FI((M + l ) / 2 ) e M  - 1) ,  

where 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(35) 

(36) 

j ¢ : ( M  + 1)/2 j ¢ ( M  + 1)/2 

= s - y ( k )  = e ( k ) .  

Therefore  the adaptat ion of  all coefficients except a(M+l)/2 is described by 

f i (k+ 1) =fi(k)  +l~e (k ) ( i , ( k )  - -  X ( ( M +  l ) / 2 ) e M - -  1 ) ,  

Signal Processing 

aj(k)n~. = F/ ( (M+ I )/2) 

j = l  j = l  

fi(k) = [al(k) . . . . .  a(M-1)/2(k), a(M+3)/2(k) . . . . .  aM (k)] T. (33) 

By using (30)-(33),  the LMS adapta t ion formula  is written as follows: 

~(k + 1) = a(k) + ~ [ -VJ (k ) ]  

= fi(k) + p (hr(k) ~ k __ ti,(k))Vfi(k) k - n((M+ l)/2)eM- O((n((M+ O/2)eM- 1 - -  n~(M+ 1)/2)). (34) 

It can easily be recognized that  the last term inside parentheses is the estimation error  at time instant k. 

Indeed, 

(n~¢M+ 1 )/2)eM- 1 - ~ l r ( k ) ) T a ( k )  k --/"/((M+ 1)/2) 
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ordered input samples 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I(M-I)x(M-1} I 
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e~v /_  1 

1, + ' +  a (k) 

Fig. I. Signal-flow graph representation of the location-mvariant LMS L-filter algorithm. Single lines denote scalar multiplic- 
ations. Double lines denote vector/matrix multiplications, z ~I~M ~ M  ,~ is the transmittance matrix of a unit-delay branch. 
For v ~ ( M  + 1)/2: ~(k)=[at(k)  . . . . .  av ~(k), ao+ ~(k) . . . . .  aM(k)] "r, av(k): L-filter coefficients; .~,(k)=[x~l~ . . . . .  x~, 17, 

x~,,~, . . . . . . .  ~'~M~]T X ~ :  ordered input samples; y(k): L-filter output; s: desired constant signal to be estimated. 

where $ , ( k ) = [ x l l ~ ( k )  . . . . .  X , M  i ) ,2) (k) ,  X( iM+3) ,2) (k)  . . . . .  XtM)(k)] y and X,M+I~_~ is the median input 

sample. The coefficient for the median sample is given by 

a~M+ 1)2(k) = 1 --erM_ ifi(k). (37) 

The signal-flow graph representation of the location-invariant LMS adaptive L-filter algorithm is shown 

in Fig. 1. This graph is multidimensional in the sense that the nodes of the graph consist of  vectors and 

that the transmittance of  each branch of the graph is a scalar or a square matrix. The above-mentioned 

adaptation procedure uses the estimation error e ( k ) .  Therefore, the knowledge of a constant reference 

signal s ( k )  = s is needed for coefficient adaptation, as it is the case for any adaptive filter. If this reference 

signal is not available it can be estimated from the past input samples xi in a window k - L ~< i ~< k by using 

a convenient estimator (e.g. the arithmetic mean). An efficient computational scheme for (35) (37) uses 

2M + 2 local variables, i.e. M variables for x r ( k ) ,  M variables for the coefficients, one variable for p and 

another one for the estimation error e ( k ) .  It requires 2M multiplications per output sample, i.e., M 

multiplications for the estimated output and M multiplications for the adaptation of the coefficients except 

the one for the median sample. The number of the required additions per output sample is 4 ( M - 1 ) ,  i.e. 

3 ( M -  1) additions for the adaptation of the filter coefficients and M -  1 additions for the estimated output. 

In addition to the total amount of multiplications and additions required the extra cost due to the sorting 

of M numbers has to be evaluated. However, this computational load is not large if special running ordering 

algorithms or structures are used. Such a simple running sorting algorithm based on the fact that at each 

time k the number xk-i-~a4 ~j2 is discarded from the ordered input vector x r ( k - 1 )  and the number 
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Xk+(M-1)/2 is inserted in such a position in the ordered input vector, so that xr(k) to be produced has been 

proposed in [20]. The number of comparisons required is 2 ( M -  1 ) -  log2 M, i.e. a linear function of M. 

3.2. Unbiased L M S  adaptive L-filter 

If the noise pdf is symmetrical about zero and the conditions (7) are fulfilled, the L-filter output is an 

unbiased estimation of the desired constant signal. Let L be the ( M -  1)/2 × ( M -  1)/2 exchange matrix: [00 
0 0 . . .  1 

L = . . (38) 

1 0 . . .  0 

If the filter length M is odd, by using (7) the coefficient vector a can take the following form : 

a = [aT la~M+ ,~/2 l aTL] r. (39) 

The coefficient a(M+ 1)/2 is given by 

aiM+ i)/2 -- 1 - 2era~. (40) 

The correlation matrix is partitioned as in (16). The following form of the error function can be obtained: 

J =  r -  2[al T ] aT] I r e -  r~ 1 
Ere - Lr2J 

_ v  T [ R i + r e e T - - 2 r i e  T R 2 L + r e e V - 2 r i e  T 1 [  a ' ]  

+ [a~ ]a~ ] LLR3 + ree T -  2Lrze v LR4L + ree v -  2Lr2eTJ _ _a~" 
(41) 

Since the noise distribution is symmetrical about zero, the correlation matrix of the ordered noise samples 

exhibits a double symmetry which is expressed by the following equations: 

re=Lr l ,  R 3 = R ~ ,  R1 =LR4L,  R z L = L R 3 .  (42) 

By employing (42) in (41), the MSE takes the form 

J = r - 4a~v + 2aTRa~, (43) 

where 

v = [re - rl] = E[n~(M + l)/2)(n((M + i)/2)e - n,l)], (44) 

R = Ri + R2L + 2(ree T -  2rle T). (45) 

Thus, the initial minimization problem of the MSE under the constraint (7) is equivalent to the minimiza- 

tion of (43) with respect to the ( M -  1)/2 coefficients al. The main advantage of this version of the MSE 

is that it exploits the symmetry of the noise distribution and its leads to an adaptive filter whose performance 

characteristics (stability and convergence rate) are controlled by a matrix of dimensions ( M - 1 ) / 2  × 

( M -  1)/2 which has a smaller eigenvalue spread than the correlation matrix of the ordered noise samples 

R and the matrix R's of the location-invariant LMS adaptive L-filter, as it will be seen in the subsequent 

sections. 

Signal Processing 
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Again a steepest descent a lgor i thm can be writ ten: 

f , ( k +  l ) =  f , ( k )  + ~ p [ - V J ( k ) ] .  

The  gradient  o f  the MSE with respect to the coefficients f j (k) i s  given by the following relation: 

VJ(k)  = - 4 v + 2 ( R + R r ) f l ( k ) = - 4 v + 4 R ~ f l ( k ) ,  

where R~ is the symmetr ic  par t  o f  matr ix  R given by 

R~ = Ri  + L R 2  + 2 ( r e e  x - r t e  v - er tV) .  

Let u be the following ( M -  1),/2 × 1 vector:  

u = [n~j)+n~M), n~2)+n(M-l ) ,  • • . ,  n ~ M  I) 2)-~-F/((M+3)/2)] T. 

R~ can be rewritten in the form 

R = E[n.luX + 2n~M+ ll..2)(n(~M+ l ) ,2 )e_n~t )eV_  2 n ,  M+ lt..~)en~l].T 

By substi tut ing (47) in (46) we get 

f , ( k  + 1 ) = fit(k) + 2 p [ v -  R~fl(k)]. 

The  ins tantaneous  estimates for v and R~ are derived as follows: 

k k 
t}(k ) = r/l~ M + I ). 2)(n((M + I),2)e -- nrl (k)),  

k ~ ( k ) = n ~ j ( k ) u ~ ( k )  + k k v V 2 n , M  + j ~.21(n, M + 1~/2~e - n~l ( k ) )e - 2n~ ~ + 1 ~..2~en~l (k  ). 

The unbiased est imate for the gradient  vector  is given by 

V J ( k )  = - 4~(k) + 4ks(k)fil (k) = - 4 {n~M+, ,/2~( 1 - 2e~fi, (k))(n)(M+, ~/2~e- n~, (k)) 

_[_ k T 
2n(( M + j~.2~enrl ( k ) a j ( k )  - n~l (k)uV(k) f i l  ( k )  }, 

where 

fi,(k) = [al(k) . . . . .  a(M-l~/2(k)] r. 

Let £ , ( k ) =  2 s e +  u (k ) .  The est imat ion error  at t ime instant k is given by 

s ( k ) = s - y ( k ) = s  - { ( 1 -  v~ k -T ^ 2e al (k))x(~M+ ,~,2~ + xu  ( k ) a l ( k )  }. 

Let w ( k )  be the following ( M -  1)/2 x 1 vector:  

k k k k k __X k "I T 
w ( k ) = [ X ( I ) - - X ( M ) ,  X ( 2 ) - - X ( M - I )  . . . .  , X ( ( M - - I ) / 2 )  ( 1 M + 3 ) ' 2 ) /  

and v ( k )  be the following scalar:  

v(k)  = ~ ( k ) w ( k ) .  

343 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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X r l ( ] ¢  ) - -  27~v)e  

ordered input samples 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. 

I(,-1)×(,-1) 

t z_l t a (k) 

l .. 2 e t 

1@ 
Fig. 2. Signal-flow graph representation of the unbiased LMS L-filter algorithm. Single lines denote scalar transmittances. Double 
lines indicate vectorial transmittances. For v = (M + 1)/2: ,i~(k)= [at (k) . . . . .  a~v ~(k)] T, a~(k) : distinct L-filter coefficients; xr~ (k)= 

k k T k [xlll . . . . .  x~v i~] , xlol, xr2(k)= L[x~v+ I~ . . . . .  x~MI]r: ordered input samples; .~(k)=x~l(k)+ x~2(k), w (k )=x ,dk ) -  x,2(k); y(k): L- 
filter output; s: desired constant signal to be estimated. 

Then the i-th element of  the gradient vector, [VJ(k)]~ is given by 

[ V J ( k ) ] g = _ 4 { e ( k ) ( x ~ , ) _  k x . M +  - v ( k ) ( s  - x . M + ,  ~/2~) } .  ( 5 9 )  

Therefore the LMS unbiased adaptation formula is described by 

fi, (k  + 1 ) = fi, (k )  + 21t { e ( k ) ( x r ,  (k )  - x~(M+ , ~j2)e) - v(k  )(s  - x~(M+ ,,/2)e}, (60) 

where xr, (k) = [x,)(k)  . . . . .  x.M i)/2)(k)] "r. The signal-flow graph for the proposed unbiased LMS adaptive 

L-filter is shown in Fig. 2. The remark made in the case of  the location-invariant LMS adaptive L-filter 

about the knowledge of the reference constant signal holds in this case, too. The unbiased LMS adaptive 

L-filter requires ( 3 M + 7 ) / 2  local variables, i.e. ( M +  1)/2 variables for the filter coefficients, M variables 

for the ordered samples, one variable for the adaptation step/2,  one for the estimation error e (k )  and 

another one for v(k ) .  Its computational demands are ( 5 M - 1 ) / 2  multiplications per output sample, i.e. 

( M +  1)/2 multiplications for the estimated output, ( M -  1)/2 multiplications for the computat ion of v (k )  

and ( 3 M - 1 ) / 2  multiplications for the adaptation of filter coefficients and 4 M - 5  additions per output 

sample, i.e. ( M -  ! ) /2  additions for the estimated output, M -  2 additions for the computat ion of v(k ) ,  and 

2 ( M -  1) additions for the adaptation of filter coefficients. The same amount  of  comparisons, as in the case 

of  the location-invariant LMS L-filter, is also required. 
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4. Convergence properties of the proposed constrained adaptive L-filters 

345 

There are two objectives in the analysis of the LMS algorithm [2, 11 ]. First, the convergence of the mean 

coefficient-error vector to zero as the iteration number k tends to infinity must be proven. This type of 

convergence is called convergence in the mean. Second, the convergence of the ensemble average mean 

square error E[ J(k)] over all samples of  input data processes to a steady-state value as k approaches infinity 

has to be considered. This steady-state value is equal to the minimum MSE plus the excess MSE because 

the LMS algorithm relies on a noisy estimate for the gradient vector VJ(k). This is the so-called convergence 

in the mean square. 

It is known [2, 11] that the convergence in the mean is determined by the largest eigenvalue of the 

correlation matrix whereas the rate of  convergence of the filter coefficients to the optimal ones is determined 

by its smallest eigenvalue when the eigenvalues of  the correlation matrix are widely spread. On the contrary, 

when the eigenvalues of  the correlation matrix are widely spread, the excess MSE produced by the LMS 

algorithm is primarily determined by the largest eigenvalues and the rate of convergence of E[J(k)] is not 

affected by the spread of the eigenvalues so much as the rate of  convergence of the filter coefficients. 

In this section, the convergence properties of  the proposed constrained adaptive LMS L-filters are studied. 

It is shown that the extreme eigenvalues of  the matrices Rs and Rs determine the convergence in the mean 

of the location-invarant and the unbiased LMS L-filter, respectively. The relation of the extreme eigenvalues 

of  the matrix Rs and its trace to the extreme eigenvalues and the trace of the correlation matrix of the 

ordered noise samples R are also studied. 

However, the proof  of  the above-described statements is not unconditional. In the derivation of the 

convergence in the mean each ordered sample noise vector n,.(k) is treated as statistically independent of  

all previous ordered noise sample vectors n r ( l ) , / = 0  . . . . .  k -  1, i.e., 

E[nr(k)nV~(l)]=O, l=0,  1 . . . . .  k - 1 .  (61) 

A similar assumption called fundamental assumption plays a central role in the analysis of the adaptive 

linear filters [11]. The following assumption will be used in the derivation of the convergence in the mean 

square: the ordered noise samples are mutually Gaussian-distributed random variables for all k. 

4.1. Location-invariant adaptive L M S  L-filter 

Let c(k) denote the coefficient-error vector: 

c(k) = ~(k) - &,, (62) 

where &o is the vector of  the optimal coefficients except the one for the median input sample. The coefficient- 

error for al.v+ j>.2(k) is given by 

ciM + j~,2(k) = - e T ic(k) (63) 

Thus it suffices to prove the convergence in the mean for c(k), i.e. that E[c(k)] tends to zero when k tends 

to infinity. 

If  the LMS algorithm is rewritten in terms of the coefficient-error vector c(k) and the independence of 

c(k) from hr(k) is exploited, by taking the expected values of  both sides and using (28) (29) we obtain 

E[c(k + 1)] = ( l - ~ R s ) E [ c ( k ) ]  +l.t(p - R~&,), (64) 
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where I is the identity matrix. It is easily recognized that the second term of the right-hand side of (64) 

equals zero. Consequently, 

E[c(k + 1)] = ( I -  pRs)E[c(k)]. (65) 

Therefore the mean of e(k) converges to zero as k approaches infinity when the following conditions are 

satisfied" 

Rs is positive definite, 0 < p < 2/,~ . . . .  (66) 

where Zmax is the largest eigenvalue of the matrix Rs. 

Let z(k) be the coefficient-error vector transformed to the principal coordinate system: 

z(k) = QVc(k), (67) 

where the columns of Q are the eigenvectors associated with the eigenvalues of the matrix Rs. Let also r~ 

denote the time constant for the i-th element of the expected value E[z(k)], i.e. the time required for the 

amplitude of the E[zi(k)] to decay to 1/e of its initial value zi(0). It is known [11] that the i-th time constant 

is given by 

-1  
ri - (68) 

In( 1 - p Zi) 

and the transient behavior of the i-th L-filter coefficient in the mean is described by 

M--1  

E[fii(k)]=6i.o+ ~ Qijzj(O)(1-p2~j) k, (69) 
i =  ! 

where Qo is the q-element of the matrix Q. Therefore, each coefficient except the one for the median input 

sample converges in the mean as a weighted sum of exponentials of the form ( 1 -  p Xj) k. The overall time 

constant ra for the expected value of any coefficient is bounded by 

-1  -1  

l n ( l  - ] - / ,~max) ~ r"~<ln(1 - -  ]A/~min) ' (70) 

w h e r e  ~,min is the smallest eigenvalue of the matrix Rs. 

The proof of the convergence in the mean square and the derivation of bounds for the adaptation step 

p is based on the existence of a recursive equation for the coefficient-error correlation matrix ~ (k )=  

E[e(k)eV(k)]. In the derivation of this equation fourth-order moments of the order statistics must be 

evaluated. Such a computation is possible only numerically. Accordingly, the decomposition of the fourth- 

order moments of the order statistics in terms of smaller-order moments and especially in second-order 

moments has to be pursued. This is only possible for mutually Gaussian random variables. Therefore we 

shall invoke the Gaussian assumption which has been used extensively in all attempts to analyze the 

convergence of the ensemble-average MSE [7, 8, 11]. It is possible to use analysis similar to that of [11] to 

prove that a necessary condition for E[J(k)] to be convergent is 

0 < p  < 2/tr[Rs], (71) 

where tr[ ] stands for the trace of the bracketed matrix. Use of (71) guarantees also the convergence in the 

mean. A tighter bound, three times smaller than that of (71), is proposed in [7]. 
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It is worthwhile to compare the performance of the location-invariant adaptive LMS L-filter with the 

one of the adaptive LMS L-filters proposed in [18, 21, 23]. To do so, the extreme eigenvalues of R~ have 

to be related to the extreme eigenvalues of R. Let us suppose that the eigenvalues of an M x M matrix A 

have been arranged according to their magnitude. We use the convention 

).~l~(A) ~ < ~ 2 ) ( A )  ~<" • • <~)~M)(A ), (72) 

i.e. ~t~(A) is the smallest eigenvalue of A, 2~M~(A) is the largest eigenvalue of A. We obtain the following 

proposition. 

Proposition. (a) The smallest eigenvalue of  Rs, /l¢j ~(Rs), is related to the second in magnitude eigenvalue of  

R, )L~2~(R), by the inequality 

)~ t ~( Rs) <~ )u~2~( R ) + 3E[n2], (73) 

where E[n 2] is the mean square value of  the noise. 

(b) The largest eigenvalue of  Rs, A,~M-I~(Rs), is related to the largest eigenvalue o f  R,/l~a4~(R) as follows: 

A,~M-l~(R~) ~</1,1M)(R) + 3E[n2]. (74) 

The proof of the above proposition is given in Appendix A. 

By using (73) the following lower bound on the slowest rate of convergence of the location-invariant 

adaptive LMS L-filter in terms of the second in magnitude eigenvalue of R can be derived: 

-1  -1  

rmax ln(1 -/tA,(l)(R~)) >~ln(l -/I(A,~21(R) + 3E[n2])) (75) 

The inequality (74) implies that the location-invariant LMS L-filter is convergent in the mean if the 

adaptation step is bounded by 

2 
0 </~ < (76) 

X~M)(R) + 3E[n2]" 

Since ~.~M~(R)<tr[R] = ME[/'/2] a more conservative bound would be 

2 
0 </1 < ( M +  _t)lz[ l ~ ' - ' n  2"" (77) 

It can easily be shown that the bound on the adaptation step (77) guarantees also convergence in the mean 

square. Indeed, 

M 

tr[R~] = tr[R] + ( M -  2)E[n~M+ 1~/2)] - 2 ~ E[n~i~n~a4+ 1~,2)]. (78) 
i = 1  

If the last term (i.e. the sum term) is non-negative, then 

tr[R~] ~< tr[R ] + (M - 2)E[n~M + ~)/2~] ~< tr[R ] + 3E[n 2] = (M + 3)E[n2]. (79) 

Therefore a smaller adaptation step than the one that would be used for an adaptive LMS L-filter based 

on the correlation matrix of the ordered noise samples R is appropriate. 
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4.2. Unbiased adaptive LMS L-filter 

Using the same reasoning it can be proven that the necessary and sufficient conditions for the mean 

coefficient vector E[~l(k)] to be convergent are 

the matrix Rs to be positive definite, 0</z < l/A, ... . .  (80) 

where A-m,x is the largest eigenvalue of the matrix Rs. A necessary condition for the ensemble average 

E[J(k)] to be convergent is 

0 </J < 1/tr[Rs]. (81) 

5. Numerical study and simulation examples 

The MSE is expressed as a quadratic form of the correlation matrix of ordered noise samples R in (11). 

Furthermore, an effort has been made to relate the extreme eigenvalues of the matrix which controls the 

adaptation procedure in the case of the location-invariant adaptive LMS L-filter to the eigenvalues of R. 

Thus it is helpful to compute the eigenvalue spread of the matrices R for several L-filter lengths M and for the 

uniform, Gaussian and Laplacian noise distributions. To do so, the Householder reduction to a symmetric 

tridiagonal matrix and the QR algorithm with implicit shifts have been applied to R [3, 28]. Several 

indicative values of the eigenvalue spread are given in Table 1. It is seen that the eigenvalue spread is 

increased with the increase of the L-filter length. For the same L-filter length the eigenvalue spread is 

increased as the noise distribution becomes more long-tailed. 

The validity of the assumptions (A. 14) and (A.22) can be deduced by inspection of Table 2 for the cases 

of the uniform and Gaussian noise when M = 5 and for the Laplacian noise when M =  9. 

The smallest eigenvalue of the matrices that have been involved in the derivation of the proposed adaptive 

filter structures has been evaluated for several M in the case of Gaussian noise. The results are given in 

Table 1 

Eigenvalue spread (2m,x/~o)  of the correlation matrix of the ordered 

noise samples 

M Uniform noise Gaussian noise Laplacian noise 
E[n z] = 1 E[n 2] = 1 E[n 2] = 1 

3 10.242639 10.560249 I 1.214899 

5 47.036057 57.845813 74.734245 

7 127.001450 172.546034 254.631378 

9 266.162070 384.774761 973.757474 

Table 2 

Second in order and largest eigenvalue of R and Ps,M 

Type of noise ,~2~(R) ~,~2~(Ps.M) 21M)(R) )-~MI(P~.M) 

Uniform ( M -  5) 0.113349 0.086904 3.600937 3.522601 

Gaussian ( M = 5 )  0.108597 0.108597 3.621358 3.621358 

Laplacian ( M = 9 )  0.022675 0.018969 7.140832 7.140832 
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Table 3 

Smallest eigenvalue of R, R~ and R~ for the Gaussian noise distribution 

M Correlation matrix Location-invariant Unbiased 

Z~u(R) ~2~(R) R~ R~ 

5 0.062604 0.108597 0.108597 0.146244 

7 0.031849 0.046911 0.046911 0.057162 

9 0.019249 0.025896 0.025896 0.029656 

11 0.012885 0.016381 0.016381 0.018092 

349 

Table 3. The second in magnitude eigenvalue of the correlation matrix of the ordered noise samples R has 

also been included in the same table for comparison purposes. The smallest eigenvalues of the matrices 

that control the adaptation procedure both in the location-invariant L-filter and the unbiased L-filter are 

larger than that of the matrix R. Furthermore, it is seen that the smallest eigenvalue of Rs equals Z~2~(R) 

for all L-filter lengths. It is obvious that inequality (73) is satisfied. 

A similar attempt has been made for the largest eigenvalue of these matrices. From the inspection of 

Table 4 it is observed that the largest eigenvalue of the matrix which affects the stability of the location- 

invariant adaptive LMS L-filter is the same with that of R, whereas the maximal eigenvalue of the matrix 

which affects the stability of the unbiased adaptive LMS L-filter is much smaller than that of the correlation 

matrix of ordered noise samples. Therefore, if the choice of the adaptation step is made by using (77), the 

stability of the proposed location-invariant adaptive LMS L-filter is guaranteed. It is readily verified that 

the inequality (74) is satisfied for all L-filter lengths. 

The time constants (68) for the elements of the mean transformed coefficient-error vector E[z(k)] are 

given in Table 5 when an L-filter of length 5 is used for the estimation of a constant signal corrupted by 

Gaussian additive white noise both for standard LMS and for location-invariant LMS. The adaptation 

step used is/z = 0.001. The smallest eigenvalue of Rs is larger than the smallest eigenvalue of R. Therefore, 

the upper bound for the rate of convergence is reduced. We can deduce that the overall time constant for 

Table 4 

Largest eigenvalue of R, R~ and R~ for the Gaussian noise distribution 

M Correlation Location-invariant Unbiased 

matrix R R~ R~ 

5 3.621358 3.621358 0.697468 

7 5.495397 5.495397 0.732! 33 

9 7.406547 7.406547 0.752009 

11 9.338802 9.338802 0.764901 

Table 5 

Time constants corresponding to the eigenvalues of  R and R~ 

L(R) r, L(R0 ri 

0.062604 15973 0.108597 9208 

0.108597 9208 0.109112 9165 

0.207441 4820 0.595101 1680 

1.0 1000 3.621358 276 

3.621358 276 ..... 
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the location-invariant adaptive L-filter coefficients is smaller than the corresponding overall time constant 

of the standard LMS adaptive L-filter coefficients. 

The proposed constrained adaptive LMS L-filters have been implemented by using C language and have 

been tested for one-dimensional signals for uniform, Gaussian and Laplacian distributions. It is known 

[22] that the optimal L-filter for the uniform noise is the midpoint: 

a l=aM=0.5 ,  a2 . . . . .  aM i=0,  (82) 

whereas for the Gaussian noise it is the arithmetic mean: 

1 
ai = ~ ,  i=  1 . . . . .  M. (83) 

M 

In the experiments with uniform and Gaussian noise we shall use an L-filter with 5 coefficients (i.e., M =  

5). The optimal L-filter for the Laplacian distribution is given by (9). We shall consider the optimal L- 

filter coefficients reported in [5] for M =  9: 

a l = a 9  = -0.01899, a 2  = a8 = 0.02904, a 3  = a 7  = 0.06965, a 4  = a 6  = 0.23795, a5 = 0.3646. (84) 

As measures for convergence, we shall consider either the coefficient estimation error A(a, k) evaluated 

over a single realization of an experiment, which is defined as follows: 

1 M 

A(a, k) = M ~ (aj(k) - a/.o) 2, (85) 
j = l  

where a/.o, j = 1 , . . . ,  M are the optimal coefficients or the ensemble average of the squared coefficient-error 

E[(a/(k)-  a/.o) 2] over 200 independent trials of an experiment for all j. A more detailed explanation on the 

need of ensemble averaging can be found in [11]. 

First of all, the noise reduction capability (i.e., the ratio of output noise power to input noise power) of 

the proposed constrained adaptive LMS L-filters is demonstrated in Table 6 for zero mean uniform, 

Gaussian and Laplacian noise distributions. The initial L-filter and the choice for the adaptation step in 

each case are described below. It is seen that the proposed adaptive nonlinear filters behave better for 

Laplacian additive white noise. 

In the following set of experiments the performance of the location-invariant adaptive LMS L-filter has 

been measured in a variety of input noise distributions. 

T a b l e  6 

No i se  r e d u c t i o n  capab i l i t y  o f  the  p r o p o s e d  c o n s t r a i n e d  a d a p t i v e  L M S  L-fi l ters  

L-fi l ter  type  N o i s e  V a r i a n c e  M Noi se  r e d u c t i o n  

d i s t r i bu t ion  (dB)  

L o c a t i o n  i n v a r i a n t  u n i f o r m  0.083 5 - 8 . 4 8 9  

G a u s s i a n  1.0 5 - 6.961 

L a p l a c i a n  2.0 9 - 11.573 

U n b i a s e d  L a p l a c i a n  2.0 9 - 10.971 
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Fig. 3a. Coefficient estimation error of the location-invariant adaptive LMS L-filter for uniform noise, when the initial filter is median 

(M=51.  

Next, the case of uniform white noise having zero mean and variance 0.083 is described. The initial L- 

filter is the median filter, i.e., the worst initial choice with respect to the optimal L-filter (i.e., midpoint) in 

order to test the convergence behavior of the proposed adaptive L-filter. The adaptation step is p = 0.1. 

The matrix Q which diagonalizes Rs is found by numerical methods. By replacing the eigenvalues ),i and 

the matrix Q it is obtained that the overall time constant for both E[a~(k)] and E[as(k)] is 23 iterations. 

The coefficient estimation error A(a, k) is shown in Fig. 3a and the plot of ensemble average of the squared 

coefficient-error for al is given in Fig. 3b. The plot of the filter coefficients is shown in Figs. 4a and 4b. The 

convergence of  the coefficients to the optimal ones is obvious. Although we have not imposed initially any 

symmetry on coefficients, we observe that the coefficients exhibit a symmetry about the median. 

E[(al(k)  . . . . .  )2] 

0 3 0 0  

0 250 

0 200 

O l S C  

0 0 0  

DOS0 

C I  C)  O 0  I . . . . . .  I I . . . .  . . . .  I ' ~  ' I ~ I I I ~  . . . .  ~ . . . .  ~ I I I 
i] FO00 4~C,C ~,1, ,  R J O ' ~  I"~0 ~'U 

Fig. 3b. Ensemble average of the squared coefficient-error for al ,  E[{a~(k)-0.5}2],  vs. the iteration index k of the location-invariant 

adaptive LMS L-filter for uniform noise, when the initial filter is median ( M =  5). 
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Fig. 4. Coefficient convergence of the location-invariant adaptive LMS L-filter for uniform noise, when the initial filter is median 
(M=5). (a) Coefficients a~, a2. (b) Coefficients a4, as. 
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Fig. 5a. Coefficient estimation error of the location-invariant adaptive LMS L-filter for Gaussian noise, when the initial filter is 
median (M = 5). 

When the input constant signal is corrupted by Gaussian white noise having zero mean and unit variance 

the initial filter choice is again the median filter. The adaptation step is chosen a s / l  =0.001.  From (69), 

the overall time constant for both E[a~(k)] and E[as(k)] is 1337 iterations and the overall time constant 

for both E[az(k)] and E[a4(k)] is 3369, respectively. It is verified by a single realization o f  the experiment 

that the overall time constant for aj and a5 is 1500 and for a2 and a4 is 2200 iterations, respectively, in this 

experiment. The overall time constant for a3 is found to be 1500 iterations. Although the independence 

assumption used in the theoretical analysis is rather strong, it can be seen that it provides reasonable 

bounds on the overall time constants. The coefficient estimation error A(a,  k) is plotted in Fig. 5a and the 

ensemble average of  the squared coefficient-error for a3 corresponding to median is shown in Fig. 5b. 

When the input constant signal is corrupted by Laplacian white noise having zero mean and variance 

2.0, the initial L-filter is chosen to be midpoint (82). The choice for the adaptation step is/2 = 0.003. The 

ensemble average o f  the e2(k) over 200 independent trials o f  the experiment is shown in Fig. 6. This curve 

is an approximation to the ensemble averaged learning curve of  the location-invariant adaptive LMS L- 

filter for the initial choices made for the L-filter coefficients and the adaptation step. From (69), the overall 
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Fig. 5b. Ensemble average of the squared coefficient-error for a3, E[{a3(k)-0.2}2], versus the iteration index k of the location- 

invariant adaptive LMS L-filter for Gaussian noise, when the initial filter is median ( M =  5). 
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Fig. 6. Ensemble average of the squared estimation error E2(k) versus the iteration index k of the location-invariant [,MS L-filter for 

Laplacian noise, when the initial filter is midpoint ( M =  9). 

time constant for both E[a~(k)] and E[a9(k)] is 276 iterations. It is found that the overall time constant for 

a~ and a9 is 100 iterations in this simulation. The coefficient estimation error A(a, k) is plotted in Fig. 7. It 

is seen that the coefficient estimation error converges to a small constant value close to zero after about 

6000 iterations. The slow convergence rate is explained by the fact that the eigenvalue spread for the 

correlation matrix o f  the ordered noise samples is increased as the noise distribution becomes more long- 

tailed and as the length of  the L-filter increases. 
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Fig. 7. Coefficient estimation error of the Iocation-invariant 
adaptive LMS L-filter for Laplacian noise, when the initial filter 

is midpoint (M=9). 
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Fig. 8. Coefficient convergence of the unbiased adaptive LMS 
L-filter for Laplacian noise, when the initial filter is arithmetic 

mean (M = 9). 

The performance of  the unbiased LMS L-filter has been measured in the case of white Laplacian noise. 

The initial L-filter is chosen to be arithmetic mean and p = 0.0001. The plot of  coefficients is shown in Fig. 

8. Although the adaptation step is 30 times smaller than the one used in the location-invariant adaptive 

LMS L-filter, a faster rate of convergence is observed. In general it has been observed that the unbiased 

adaptive LMS L-filter performs better when the noise distribution is more long-tailed. 

6. Conclusions 

Two novel nonlinear adaptive LMS L-filters are presented which have the ability to incorporate the 

constraints underlying the location-invariant and the unbiased estimation. The algorithms to update 

the filter coefficients have been derived. The convergence in the mean and in the mean square of the 

proposed adaptive LMS L-filters has been discussed under the independence assumption. Comparison 

of the rate of convergence between the proposed location-invariant adaptive LMS L-filter and the 

adaptive LMS L-filters which are based on the correlation matrix of the ordered noise samples has 

been made. It has been verified that the time constant corresponding to the smallest eigenvalue of  the 

matrix which controls the performance of the location-invariant adaptive LMS L-filter is smaller than 

the time constant corresponding to the smallest eigenvalue of  the correlation matrix of the ordered 

noise samples which controls the performance of the standard adaptive LMS L-filter. The proposed 

filters can easily adapt to the noise probability distribution. They can be used for filtering of both 

long-tailed and short-tailed distributions. It has been found that the independence theory can provide 

useful bounds on the rate of convergence of the L-filter coefficients. However, the role of the 

independence theory is an open question yet even in the case of linear adaptive filtering. An analysis 

similar to that presented in [12, 15] is subject of ongoing research. 

Appendix A 

We shall use similarity transformations to prove inequalities (73), (74). It is well known that the eigenval- 

ues remain unchanged under similarity transformations. A similarity transformation K - ' R K  of R is obtained 

Signal Processing 



C. Kotropoulos, 1. Pitas / Constrained adaptive L M S  L-filters 355 

by subtracting multiples of the i-th column of R from each of the other columns and then adding the same 

multiples of all other rows to the i-th row [28]. This similarity transformation is expressed mathematically 

by means of an M x M matrix K of the form 

K =  

I 0 . . .  0 0 0 . . .  0 

0 1 0 0 0 0 

0 0 1 0 0 0 

- k a  -ki2 - k i  , - i  1 - k i  i+l kiM 

0 0 0 0 1 0 

0 0 ' ' '  0 0 0 " "  1 

(A.1) 

The inverse of matrix K is obtained if the sign of the elements of the i-th row, k u, j ¢  ( M +  1)/2 is reversed. 

We are interested in the case 

k M + I  2 / = 2 ,  j ¢ ( M +  1)//2. (A.2) 

Let PI denote the result of the similarity transformation K - i R K :  

P I  = R +  

-2rio 

-2r2v 

- 2 r ,  i 

-2r~+l 

--2rM, 

• - - 2 r l ~  0 -2rl~ 

-2r2~ 0 -2r2v 

-2r~,_1~ 0 -2r~_1 

--2rM~ 0 --2rM~ 

-2rio 

-2r2v 

--2r~ l 

-2ro+l 

--2rvo 

(A.3) 

where v denotes the index ( M + l ) / 2  and • denotes 'don't  care' elements. It is known [28] that the 

interchange of rows i and j  and the corresponding columns i and j  of matrix P1 is a similarity transformation. 

The matrix K u of this transformation is equal to the identity matrix except in rows i and j, which are of 

the form 

col. i col. j 

r owi  [ 0  1 ] . (1.4) 

row j 1 0 

For the matrices K,j of the above form (A.4) we have K,~ I = K  u. Let us denote by A ~ : B  the relation of A 

and B by a similarity transformation. Then 

Pt ~c Kc~+ 1)/2,(M+3)/2P1K(M+ 1),2.(M+3) 2 

9CK(M+3)/2. M+5)/2K(M+I '2, M+3) 2PIK(M+ I),2 (M+3)/2/~(M+3)'2 M+5),2 

. . . .  3CKM 1.M' "" K(M+I):2,(M+3) 2PIK(M+I) 2(M+3),2 " "" K M - I , M = P 2 .  (A.5) 
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The resulting matrix P2 is given by 

I r~-2r~o 

r21 --. 2r2, 

P2 = L r •' --,2r Mv 

C Ko t ropou los ,  L P i ta s  / C o n s t r a i n e d  adap t i ve  L M S  L- f i l t ers  

• " r i M - - 2 r l v  

• " r2M-- 2r2v 

• " r M M - -  2 r M v  

• " r l  v - 1 - - 2 r l v  rl  v + l - - 2 r l v  

• • r2 v -1  - - 2 r z v  r2 v+l  - - 2 r 2 v  

• " rM v I -- 2rMv r M  v+ 1 -- 2rMv 

rio 7 

r, vJ 

Since matrices P2 and R are related by a similarity transformation, the following equation holds: 

rl2rlvr2v r r r l l  
r22 --  2 r 2 v  • " " r 2 M  - -  r2v - -  r M v  

• " " P M M - -  2 r M v  

Let Ps denote the symmetric part of P2. It is given by 

r~l -2r~o 

r12 -- Flu --  F2u 

p~= 

Lr lM--r l ,  v - - rMv r2M--r~v- -rMv 

Let us denote by P s . g  ~ the following matrix: 

P s , M  l = { P s i j } ,  i , j = l  . . . . .  M - 1 .  

Then the following inequalities hold [3]: 

) L ( 1 ) ( P s ) < < ~ ( l ) ( P s , M - i ) < ~ l ~ ( 2 ) ( P s ) ,  ~ ( M - 1 ) ( P s ) < ~ ( M - I ) ( P s , M  1) ~< )L(M)(Ps). 

It is easily recognized that the matrix Rs is related to Ps,M 1 as follows: 

Rs = Ps.M - i + E[n~(M + I )/2)]eM- le T -  i . 

The second matrix of the right-hand side of (A.11) is semidefinite with 
2 

'~(M 1)= ( M - 1 ) E [ n , M + I ) / 2 ) ] .  It is obvious that 

,~(l)(Rs) -N< ~-(1)(Ps,M- 1) + ( M -  1 )E[n~(M+ j)/2)]. 

By using (A.10) the following is obtained: 

A,(l )(Rs) ~< A,(z)(Ps,M) + ( M -  1 )E[n~(M+ 1 )/2)]. 

If the following inequality holds: 

/L(2)(Ps.M) ~< ~ ( 2 ) ( R ) ,  

then 

,~,0 )(Rs) ~</I.(2)(R ) + ( M -  1 )E[n~(M+ t)/z)]- 
Signal Processing 
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(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

Z(I ) . . . . .  ~ ( M - 2 )  = 0 and 

(A.12) 

(A.13) 

(A.14) 

(A.15) 
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The assumption (A.14) is valid in all simulations performed for any type of noise and for different filter 

lengths as can be seen in Section 5. The mean square value of the median for the uniform distribution is 

given by [6] 

3 
E[n~IM+ j) 21] = E[n2]. (A.16) 

M + 2  

For the Gaussian distribution an approximate formula is found in [13] 

E[n~IM + ~)21]- ~/2 E[n2], (A.I 7) 
M -  1 + 7z/2 

whereas for Laplacian distribution the following approximate formula is proposed in [14]: 

2 2/3 
E[n~.~ + I I, 2~] - E[n2]. (A. 18) 

M - 5 / 4  

Since 3 ( M -  5/4) > M + 2 > M - 1 + x/2 we obtain 

M - 1  
Z(~ ~(Rs) ~< ~21(R) q- 3E[n 2] ~< Z~=~(R) + 3E[n2], (A. 19) 

M -  1 + rt/2 

which is inequality (73). 

For the largest eigenvalue the following inequality holds: 

Z~,w I~(R~)<~Z~M-I)(Ps,M I ) + ( M -  I)E[n~IM+I) 2)]. (A.20) 

By using (A. 10) the following is obtained: 

ZI M- i )(Rs) ~< Z~ a4)(P,~.M) + (M - 1 )E[n~(M + i) 2)]. (A.21) 

If the following inequality holds: 

ZI,w ~(P~,,w) ~< Z~M)(R), (A.22) 

then 

M - 1  
Z~t I)(R~) ~< Z~M)(R) + ( M -  1)E[n~M+ 1),=)] ~< Z~M)(R) -~ 3E[n=] 

M -  1 + x/2 (A.23) 

~< Z~M)(R) + 3E[n2]. 

The assumption (A.22) was valid in all simulations performed, as can be seen in Section 5. 
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