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Constrained aeroacoustic shape optimization using
the surrogate management framework

By Alison L. Marsden, Meng Wang, and John E. Dennis, Jr.

1. Motivation and objectives

Reduction of noise generated by turbulent flow past the trailing-edge of a lifting surface
is a challenge in many aeronautical and naval applications. Numerical predictions of
trailing-edge noise necessitate the use of advanced simulation techniques such as large-
eddy simulation (LES) in order to capture a wide range of turbulence scales which are
the source of broadband noise. Aeroacoustic calculations of the flow over a model airfoil
trailing edge using LES and aeroacoustic theory have been presented in Wang & Moin
(2000) and were shown to agree favorably with experiments. The goal of the present work
is to apply shape optimization to the trailing edge flow previously studied, in order to
control aerodynamic noise.

There are several considerations in choosing a tractable optimization method for the
trailing-edge problem. The primary concern is the computational expense of the function
evaluations, and additional considerations include availability of gradient information and
robustness of the optimization method. Although adjoint solvers have been successfully
applied for gradient-based optimization in aeronautics problems (for example in Jameson
et al. (1998)), they present difficulties with implementation, portability, and data storage
for unsteady problems. Approximation modeling was used for trailing-edge optimization
in Marsden et al. (2002), and results showed significant reduction in acoustic power
with reasonable computational cost. In these methods, optimization is performed not on
the expensive actual function, but on a surrogate function, which is cheap to evaluate.
Although the approximation method presented in Marsden et al. (2002) was effective, it
lacks rigorous convergence properties.

The surrogate management framework (SMF), developed by Booker et al. (1999),
incorporates the use of surrogate functions into a pattern search framework, hence pro-
viding a theoretical basis for convergence. The convergence of pattern search methods
has been studied extensively by Audet & Dennis (2003, 2000). Use of the SMF method
has been demonstrated, among others, by Booker et al. (1999), where the method was
successfully applied to a helicopter rotor blade design problem with 31 design variables.

The SMF method provides a robust and efficient alternative to traditional gradient-
based optimization methods. In this work, the SMF method is applied for trailing-edge
optimization in a time-dependent laminar flow problem with and without constraints
on lift and drag. Several interesting optimal shapes have been identified, all of which
result in significant reduction of trailing-edge noise. In particular, the development of a
trailing-edge bump in the constrained case is an unexpected result which illustrates the
trade-off between noise reduction and loss of lift.
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FIGURE 1. Blake airfoil used in model problem. Right half section of upper surface is allowed
to deform

2. Problem formulation and cost function

The general optimization problem may be formulated with bound constraints as follows

minimize J(x)

subject to x E Q2. (2.1)

In the above problem statement, J : R' -- R is the cost function, and x is the vec-
tor of design parameters. The bounds on the parameter space are defined by 9 =
{x E R-ll 5 x < u} where 1 E R' is a vector of lower bounds on x and u E Rn is a
vector of upper bounds on x.

In this work, the surrogate management framework is implemented and validated for
optimization of a time-dependent flow problem. The airfoil geometry for the model prob-
lem is shown in Figure 1 and is a shortened version of the airfoil used in experiments of
Blake (1975). The airfoil chord is 10 times its thickness, and the right half of the upper
surface is allowed to deform. The flow is from left to right and results presented in this
work are at a chord Reynolds number of Re = 10,000.

The cost function is defined in terms of noise radiation from an acoustically com-
pact airfoil, calculated using Curle's extension to the Lighthill theory (Curle 1955). The
compactness assumption is valid for unsteady laminar flow past an airfoil at low Mach
number since the acoustic wavelength associated with the vortex shedding is typically
long relative to the airfoil chord. Details of the cost function derivation are given in
Marsden et al. (2003), and the final cost function expression is

j = (~ - njp1 (y, t)d2Y) + ( L- rnpa(y, t)d2y) 2, (2.2)

which is directly proportional to the radiated acoustic power.
The cost function, .1, depends on control parameters for the airfoil surface deformation.

Each parameter corresponds to a deformation point on the airfoil surface, and its value
must be within prescribed allowable bounds. The value of each parameter is defined
as the displacement of the control point relative to the original airfoil shape, in the
direction normal to the surface. A positive parameter value corresponds to displacement
in the outward normal direction, and a negative value corresponds to the inward normal
direction. A spline connects all the deformation points to the trailing edge point and the
left (un-deformed) region to give a continuous airfoil surface. Both ends of the spline are
fixed. While the surface must be continuous and smooth on the left side, the trailing edge
angle is free to change.

For a given set of parameter values, there is a unique corresponding airfoil shape. To
calculate the cost function value for a given shape, a mesh is generated and the flow
simulation is performed until the solution is statistically converged. A finite difference
code discussed in Wang & Moin (2000) is used to solve the time-dependent incompressible
two-dimensional Navier-Stokes equations in generalized curvilinear coordinates. Because
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the flow has unsteady vortex shedding, the cost function is oscillatory. In the optimization
procedure, the mean cost function J (cf. (2.2)) is used, which is obtained by averaging in
time until convergence. With each shape modification, the flow field is allowed to evolve
for sufficiently long time to establish a new quasi-steady state before the time averaging
is taken.

3. Outline of the surrogate management framework

In this section, we outline the steps used for trailing-edge shape optimization with the
surrogate management framework. The SMF, introduced in Booker et al. (1999), is a
pattern search method which incorporates surrogate functions to make the optimization
cost effective. The main idea behind the SMF method is to use a surrogate function
as a predictive tool, while retaining the robust convergence properties of pattern search
methods. Like pattern search methods, SMF is a mesh based algorithm, so that all points
evaluated are restricted to lie on a mesh.

The first step in the optimization is to choose a set of initial data. Latin hypercube
sampling (LHS) McKay et al. (1979), is commonly used to find a well distributed set of
initial data in the parameter space. Latin hypercube sampling ensures that each input
variable has all portions of its range represented in the chosen data set. Once the initial
data set, x, ... Xm, has been chosen, the cost function, J(x) is evaluated at these points,
and an initial surrogate model is constructed.

A Kriging surrogate model is used to interpolate the data, and to predict the value
of the function at a particular location in the parameter space. As the optimization
progresses, the surrogate model should be updated to include new data. Kriging, also
called DACE, is a statistical method based on the use of spatial correlation functions. It
is easily extended to multiple dimensions, making it attractive for optimization problems
with several parameters. A detailed derivation of the Kriging approximation is given in
Marsden et al. (2003), following Lophaven et al. (2002). After constructing an initial
surrogate, all points subsequently evaluated by the algorithm are restricted to lie on
a mesh in the parameter space. The mesh definition is flexible so long as the vectors
connecting a point x to any 2n points adjacent to x form a positive basis for Rn. The mesh
may be refined or rotated during the optimization as long as it satisfies this definition.

The SMF algorithm consists of two steps, SEARCH and POLL. The exploratory SEARCH
step uses the surrogate to aid in the selection of points which are likely to improve the
cost function. The SEARCH step provides means for local and global exploration of the
parameter space, but is not strictly required for convergence. Because the SEARCH step
is not integral to convergence, it affords the user a great deal of flexibility and may be
adapted to a particular engineering problem.

Convergence of the SMF algorithm is guaranteed by a POLL step, in which points
neighboring the current best point on the mesh are evaluated to check whether the current
best point is a mesh local optimizer. A set of POLL points are required to generate an
n + 1 positive basis. An example of such a basis is constructed in R' as follows. We let
V be the matrix whose columns are the basis elements. Then construct D = [V, -V. e],
where e is the vector of ones and -V e is the negative sum of the columns of V. The
columns of D form an n + 1 positive basis for Rn. For example, in three dimensions such
a basis could be given by (1,0,0), (0, 1,0), (0,0, 1), (-1,-1,-1).

Following evaluation of the initial data, the first step in the optimization is a SEARCH
step. In the SEARCH step, optimization is performed on the surrogate in order to predict
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the location of one or more minimum points, and the function is evaluated at these
points. If an improved cost function value is found, the search is considered successful,
the surrogate is updated, and another search step is performed. If the SEARCH fails to
find an improved point, then it is considered unsuccessful and a POLL step is performed,
in which the set of POLL points are evaluated. If the POLL produces an improved point,
then a SEARCH step is performed on the current mesh. Otherwise, if no improved points
are found, then the current best point is a local minimum of the function on the mesh.
For greater accuracy, the mesh may be refined, at which point the algorithm continues
with a SEARCH. Convergence is reached when a local minimum on the mesh is found, and
the mesh has been refined to the desired accuracy. Each time new data points are found
in a SEARCH or POLL step, the data is added to the surrogate model and the surrogate is
updated. The steps in the algorithm are summarized below, where the set of points in
the initial mesh is M 0 , the mesh at iteration k is Mk, and the current best point is Xk.

1. SEARCH
(a) Identify finite set of trial points Tk on the mesh Mk.
(b) Evaluate J(Xtrial) for trial points Tk E Mk.
(c) If for any point in Tk, J(xtriai) < J(xk), a lower cost function value has been
found, the SEARCH is successful. Increment k and go back to SEARCH.
(d) Else if none of Tk improves the cost function, SEARCH is unsuccessful. Increment k
and go to POLL.
2. POLL
(a) Find a set of poll points Xk around Xk which are neighboring mesh points that
generate a positive basis.
(b) If for any point in Xk , J(xpo11) < J(xk), a lower cost function has been found and
the POLL is successful. Increment k and go to SEARCH.
(c) Else if none of Xk improves the cost function, POLL is unsuccessful.

(a) If convergence criteria are satisfied, a converged solution has been found. STOP.
(b) Else if convergence criteria are not met, refine mesh. Increment k and go to
SEARCH.

Because the method has distinct SEARCH and POLL steps, convergence theory for the
SMF method reduces to convergence of pattern search methods. Convergence of the
SMF method is discussed at length by Booker et al. (1999). Pattern search convergence
theory is presented by Audet & Dennis (2003).

4. Unconstrained two parameter results

In this section, the full SMF method is validated using two shape parameters. The
control points, a and b, are evenly distributed on the upper surface of the airfoil. For
each set of parameters, the airfoil surface is interpolated using a hermite spline. The
lower bound on the parameters is chosen to correspond to a straight line connecting the
left edge of the deformation region and the trailing edge, and the upper bound is an
equal deformation in the outward normal direction.

To give a basis for comparison, results using two parameters without the POLL step
are presented in Table 1. We term this method the "strawman method." The case shown
produces a cost function reduction of 54% with 18 function evaluations. The optimal
shape obtained in this case is shown on the left of Figure 2. The corresponding normalized
cost function reduction is given on the right of Figure 2, and the initial and final Kriging
surrogates are shown in Figure 3. To make the "strawman" case consistent with cases
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FIGURE 2. Left: initial (thin line) and final (thick line) airfoil shapes using two parameters with
no poll step ("strawman method"). Right: normalized cost function (acoustic power) vs. total
function evaluations
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FIGURE 3. Initial and final Kriging surrogate functions for "strawman" case. Left plot shows

initial data obtained with latin hypercube sampling; right side shows final surrogate fit.

using the SMF method, all points evaluated were restricted to lie on a mesh of the same
size, and the mesh was refined twice. Convergence was reached when surrogate minimum
point was the same as the previous iteration.

For purpose of comparison, all full SMF method cases use the same set of LHS initial
data (7 points) as the "strawman" case shown on the left side of Figure 3. The two-
parameter results obtained using the full SMF method are given in Table 1. The table
lists the total number of function evaluations as well as the number of iterations, where
one iteration is a complete SEARCH or POLL step. In all cases, the number of function
evaluations includes the number of initial data points.

The second line of table 1 shows a case in which one point, the surrogate minimum on
the mesh, is evaluated in each SEARCH step. With two mesh refinements, the total cost
function reduction is 72%. Comparing with the "strawman" case, the POLL step adds
some computational expense, but also results in a significantly lower cost function value.
As discussed in Section 3, the POLL step ensures convergence to a local minimum on the
mesh in the parameter space.

Lines three and four in Table 1 explore the effect of using multiple points in the
SEARCH step of the algorithm. In each case, one SEARCH point is found by a direct search
for the minimum of the surrogate function on the mesh. Additional "space-filling" points
are added in an effort to keep the data set well distributed and prevent degradation of
surrogate accuracy. The addition of "space-filling" points does not necessarily increase
the overall cost since the SEARCH points may be evaluated in parallel. Results using two
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FIGURE 4. Left: initial (thin line) and final (thick line) airfoil shapes using two parameters with
SMF method. Right: normalized cost function (acoustic power) vs. total function evaluations.
Each SEARCH step used three function evaluations.

optimization method parameters search points % reduction evaluations iterations

strawman 2 1 54% 18 11
SMF 2 1 72% 33 15
SMF 2 2 72% 42 15
SMF 2 3 77% 46 13

TABLE 1. Two parameter SMF - Comparison of cases using one, two, and three search points.

points (the surrogate minimum and one "space-filling" point) in each SEARCH step are
given in line three of Table 1. The cost function reduction and the optimal shape are
identical to the case with only one search point. In both cases, 15 iterations were required
using two mesh refinements, a slight increase in cost over the "strawman" case.

Using three SEARCH points (one surrogate minimizer and two 'space-filling' points) a
larger cost function reduction of 77% was achieved, as shown in line four of Table 1.
Figure 4 shows the optimized airfoil shape (left) and the cost function reduction (right)
for this case. Comparing with the other cases in Table 1, the case with three search
points required fewer iterations. This savings is explained by a higher surrogate quality
in the final iterations, resulting in fewer polling steps. A comparison of surrogate quality
is made by evaluating the mean squared error.

We have shown that efforts to reduce surrogate degradation can pay off, resulting in a
lower cost function solution. In addition, the two parameter cases, shown in Figures 2 and
4, resulted in airfoil shapes with a blunt trailing-edge, which was at first sight counter-
intuitive. Figure 5 illustrates the time-dependent nature of the problem and compares
cost function vs. time for the original airfoil, the "strawman" case, and the best SMF case.
The magnitude of acoustic power has decreased significantly for the optimized shapes
compared to the original. However, with the 77% acoustic power reduction in the best
two parameter case, the optimized airfoil has 20% lower lift than the original, which
is often not allowed in engineering practice. This emphasizes the need for addition of
constraints on lift and drag, which is addressed in Section 5.1.
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FIGURE 5. Comparison of cost functions for original airfoil (upper plot), "strawman" with 54%
reduction (middle plot) and SMF with 77% reduction (lower plot). Thin line is instantaneous
cost function (acoustic power), and thick line is averaged cost function (acoustic power).

5. Constrained optimization with multiple parameters

5.1. Filtering method for constrained optimization

Lift and drag constraints can be enforced using the filtering method of Audet & Dennis
(2000) and Audet et al. (2000), an extension of the pattern search method, and hence of

the SMF method. We consider the general constrained optimization problem

minimize J(x),

subject to x E Q, C(x) <_ 0. (5.1)

In the above problem statement, J : R1 --+ R is the cost function, and x is the vector

of parameters. The constraints are given by m functions contained in C(x) so that C =
(c, (x) ... c.(x))T . The bounds on the parameter space are defined by a polyhedron in
Rn denoted by Q.

We begin by defining a constraint violation function, H, the value of which indicates

how closely the problem constraints are being met. With multiple constraints, H may be

the sum of several constraint functions which are weighted according to relative impor-

tance. The goal of the optimization problem is to find solutions which have a small cost

function value, together with a small (or zero) value of H.

The feasible region in a plot of J vs. H is defined as the set of points that exactly satisfy

H(x) = 0. Thus, a point x is infeasible if H(x) > 0. A point x' is considered filtered,
or dominated, if there is a point x belonging to the filter for which H(x) < H(x') and

J(x) •_ J(x'). A filter, YF, is defined here to be the finite set of non-dominated points

found so far. The above concepts are exemplified in figure 8, which depicts the final filter

corresponding to the constrained trailing-edge optimization (to be discussed later). The

points in the filter are connected with vertical and horizontal lines to form a dividing line

between filtered and unfiltered regions. The best feasible point, marked with a square,
is the point with the lowest cost function value, which exactly satisfies the constraint
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(i.e. H = 0). The least infeasible point, marked with a triangle, is the filter point with
the lowest non-zero constraint function value. Other points in the filter are marked with
circles.

The steps in the filtering optimization algorithm fit within the framework of the SMF
method, and the basic structure is the same as presented in Section 3. The differences
in implementation between unconstrained SMF and the filter method lie in the criteria
which make SEARCH and POLL steps successful or unsuccessful. In this implementation of
the filter method, a SEARCH step is formally considered successful if it improves the filter,
which means that a new non-dominated point was identified. A POLL step is considered
successful if it improves either the the best feasible point or the least infeasible point.
Convergence theory of this method is also based on pattern search theory, and is discussed
at length in Audet & Dennis (2000). The set of points in the initial mesh is M 0 , the mesh
at iteration k is Mk, the current least infeasible point is LFk and the current best feasible
point is BFk. The SEARCH and POLL steps are as follows:

1. SEARCH
(a) Identify finite set of trial points Tk on the mesh Mk.
(b) Evaluate J(xtriai) and H(xtriai) for trial points Tk E Mk.
(c) If any point in Tk, is an unfiltered point, the SEARCH is successful. Increment k and
go back to SEARCH.
(d) Else if none of Tk is an unfiltered point, SEARCH is unsuccessful. Increment k and
go to POLL.
2. POLL
(a) Find a set of POLL points Xk around LFk or BFk, which are neighboring mesh
points that form a positive basis.
(b) If any point in Xk dominates LFk or B&k, the POLL is successful. Increment k and
go to SEARCH.
(c) Else if none of Xk dominates LFk or BFk, the POLL is unsuccessful.

(a) If convergence criteria are satisfied, a converged solution has been found. STOP.
(b) Else if convergence criteria are not met, refine mesh. Increment k and go to
SEARCH.

5.2. Incorporation of a penalty function

Many optimization methods rely on the use of a penalty function to enforce constraints.
Penalty functions are attractive due to ease of implementation into existing optimization
frameworks. Challenges usually involve the choice of arbitrary weighting of the constraint
function relative to the cost function. Penalty functions can be easily incorporated into
the SMF filtering method, and can be extremely useful in aiding the selection of SEARCH
points. Here, we present a systematic approach for choosing the penalty constant by
making use of the filtering framework.

In this approach, a penalty is added to the cost function as follows,

J = Jon'9 + aH. (5.2)

A surrogate is constructed to model the function J, so that it is used to predict areas
of the function which satisfy the constraint. The minimum of the modified surrogate
function can then be evaluated in the SEARCH step.

The parameter a is chosen based on the current set of filter points (including the best
feasible point). We wish to choose a so as to bias the surrogate towards points with low
values of H, which will improve the filter. Let us first consider a filter with two points,
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"a and b, for which H(a) < H(b) and J(a) > J(b). We wish to choose a so that point
"a is favored by the surrogate model because it has a smaller constraint violation. We
therefore require

J(a) + alH(a) < J(b) + aH(b).

For this pair of points, a must be at least as large as the slope of the line connecting
them. When considering the set of points making up a filter, a should be at least as
large as the slope of the steepest line connecting any two points in the filter. This choice
guarantees domination of the point with the smallest value of H in the filter. Since the
filtered points are not of interest in the optimization, they need not be considered in
the choice of a. If there are less than two points in the filter set, a = 0. As points are
evaluated in the optimization, the filter evolves and the value of a is updated in each
iteration. Values of J and H for all data points should be saved so that previous data
points may be updated in the surrogate model as the value of a changes.

5.3. Issues with multiple parameters

The constrained optimization is performed using five design parameters. An increase in
the number of parameters gives greater flexibility in the airfoil geometry and will also
demonstrate feasibility and cost of the SMF method for more realistic applications. In-
creasing the number of parameters also presents challenges for searching on the surrogate
model, and these are first discussed briefly.

Thickness constraints are defined by drawing a straight line from the left side of the up-
per surface deformation region to the trailing-edge point. The maximum airfoil thickness
is defined by an equal displacement from the surface in the outward normal direction.
Use of a hermite cubic spline as the interpolating function for the airfoil surface guar-
antees that no point on the surface will be displaced more than the maximum allowable
displacement distance. This method can be easily generalized for any prescribed function
which defines the thickness constraint.

Using a surrogate of multiple dimensions requires use of an optimization method to
search for the surrogate minimum. To search the surrogate in the five parameter cases, a
standard covariance matrix adaptation evolutionary strategy, or CMA-ES (Hansen & Os-
termeier 1996) is employed. Accuracy is increased by running the CMA-ES optimization
several times and taking the minimum value.

Based on experience with two parameters, three points are used in each SEARCH step
for the five-parameter cases. In this case, the three SEARCH points are chosen to meet
three goals: (1) global search, (2) local search around current best point and (3) model
improvement.

The first point is chosen using the surrogate function as a predictor. The minimum
of the surrogate is found using the CMA-ES, and the nearest mesh point is evaluated
in the SEARCH. The second SEARCH point takes advantage of the surrogate to do a local
search around the current best point. In order to pre-empt the need for a POLL step, the
surrogate is used to predict the values of the POLL points neighboring the current best
point. In the constrained case, the current best point may be either the best feasible point
or the least infeasible point. The POLL point with the smallest surrogate value is then
evaluated. In the event that the SEARCH step fails, one of the POLL points has already
been evaluated, reducing the cost of a POLL step to N evaluations. The third point is for
both model improvement and global search. The CMA-ES is used to search the Kriging
surrogate for the point of maximum mean squared error (MSE), and the nearest mesh
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parameters constraints % reduction %change lift % change drag evaluations iterations

5 no 77% -17% -12% 88 22
5 yes 43% +0.2% -9% 92 22

TABLE 2. Five parameter cases with SMF method. The first line is unconstrained and the
second line is with constraints on lift and drag.
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FIGURE 6. Left: initial (thin line) and final (thick line) airfoil shape with 5 shape parame-
ters, unconstrained case. Right: corresponding normalized cost function reduction vs. number
of function evaluations.

point is used in the SEARCH. This is done in an attempt to find areas with the fewest
data points, as well as mitigate surrogate degradation.

5.4. Comparison of constrained and unconstrained results

Unconstrained results using five shape parameters are shown in the first line of Table 2.
The number of evaluations in the table includes the initial data set of 15 points, found
with LHS. The number of iterations includes all search and poll steps after one mesh re-
finement. The converged airfoil shape for the unconstrained case is shown on the left side
of Figure 6, and the cost function reduction for this case is shown on the right. The blunt
trailing-edge shape is qualitatively similar to the shapes obtained with the two parameter
optimization, confirming robustness of the SMF method. The maximum cost function
reduction for this case is 77% using 22 iterations after one mesh refinement, which agrees
with the two parameter results. As in the two parameter case, the blunt trailing-edge
results in a significant (nearly 20%) loss in lift. We observe that the blunt trailing-edge
reduces the surface area affected by the separation region at the trailing-edge, and that
pressure fluctuations are reduced in this region due to the smaller separation area. This
in turn results in less vorticity generation, and a smaller vorticity magnitude in the wake.

Results for the constrained case are presented in the second line of Table 2. The
surrogate for this case is constructed with an L1 constraint violation function, aimed at
keeping lift and drag at desirable levels:

H = max O, L' L) + max (O, D D* (5.3)

where L* and D* are the original airfoil lift and drag. The surrogate is constructed using
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FIGURE 7. Left: initial (thin line) and final (thick line) airfoil shape with 5 shape parameters,
and constraints on lift and drag. Right: corresponding normalized cost function reduction vs.
number of function evaluations.

equation (5.2), so that a penalty is added if either the lift decreases or the drag increases.
In this way, we allow the lift to increase and/or the drag to decrease.

The optimized airfoil shape for the constrained case is shown on the left side of Figure
7. The constraints are effective in keeping the lift at the target value, and the drag for
this case has fortuitously decreased by 9%. The cost function reduction for this case is
43%, requiring 22 iterations for convergence on a once-refined mesh. The bump near the
trailing-edge reduces the magnitude of the unsteady vortex shedding by reducing the
size of the separation region. However, when compared to the unconstrained case, the
bump size has been compromised to maintain lift, and the trailing-edge shape is closer
to a cusp. Comparison of the shapes for the constrained and unconstrained cases also
illustrates the sensitivity of the flow to very small changes in the shape of the airfoil.

The final filter is shown in Figure 8. The left side shows the entire filter domain, and
the right side shows a magnified view of the filter region. The filter shows the trade-off
between cost function reduction and constraint violation. The cluster of points around
the filter, and on the H = 0 axis verifies that the algorithm is expending much effort in
the relevant region of the function. For comparison, the rightmost filter point corresponds
to a shape with a 64% cost function reduction and a 13% loss in lift. The other filter
points show the range of possible airfoil designs between this point and the optimal point.

Reduction in acoustic power can be caused by reduction in the amplitude, or a decrease
in frequency of lift and drag oscillations (see (2.2)). Results do not show a change in
frequency when comparing optimized cases with the original, and the influence of the
unsteady drag was found to be small. The reduction of unsteady lift amplitude can
be illustrated by closer examination of the flow field. Instantaneous vorticity contours
are shown in Figure 9 for the original (upper), unconstrained (middle) and constrained
(lower) cases. In this plot, we verify that the magnitude of vortex shedding has decreased
for both optimized shapes compared to the original. In addition, we observe that vortices
are shed much closer to the trailing-edge in the original case compared with the optimized
cases. Movement of the unsteady region away from the trailing-edge results in smaller
pressure fluctuations on the airfoil surface in this region, and explains the reduction in
unsteady lift, and therefore of acoustic power.
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FIGURE 8. Final filter for constrained 5 parameter optimization problem. Cost function J vs.
constraint violation function H. The best feasible point is the square, the least infeasible point
is the triangle, the filter points are the circles, and filtered points are stars. The original airfoil
cost function is marked with a diamond. Right figure is close-up of filter region in left figure.

FIGURE 9. Comparison of vorticity contours for original (upper), unconstrained (middle) and
constrained (lower) optimal shapes. Each plot shows instantaneous vorticity contours with min-
imum -25, maximum 25 and 20 contour levels.

6. Summary and future work

Application of the SMF method to optimize a model airfoil trailing-edge with laminar
vortex shedding has resulted in significant reduction in acoustic power, as well as several
interesting and previously unexpected airfoil shapes. The SMF method is robust and
efficient for several design parameters with and without constraints. A filtering method
has been applied to enforce constraints on airfoil lift and drag. It was implemented to
include use of a penalty function, and a systematic method for choosing the penalty
parameter. Comparison between the constrained and unconstrained cases using five pa-
rameters clearly showed a trade-off between noise reduction and loss of lift.

Theoretical analysis of trailing-edge noise for the Blake airfoil geometry in turbulent
flow is presented by Howe (1988). Results from this work show that the lift dipole is
much more significant in contributing to the noise spectra than the thickness (drag)
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dipole, which was confirmed by our simulations. Although Howe's work is an analysis of
turbulent trailing-edge flow, it is worth noting that his analysis predicted a decrease in
trailing-edge noise with an increase in trailing-edge angle. This result agrees qualitatively
with the blunt shapes found by the optimization method in the two and five parameter
cases, both of which resulted in a dramatic reduction in trailing-edge noise.

The similarity between optimal shapes obtained in the unconstrained two and five
parameter cases demonstrates the robustness of the SMF method. Comparison of the
full SMF method with the "strawman" approach showed that the POLL step can lead to
a greater cost function reduction with minimal additional cost. In general, the number
of iterations required by the SMF method was modest. However, it may be possible to
further reduce the cost of the method through surrogate quality improvement. The use
of a second Gaussian process in Kriging, as in Audet et al. (2000), can prevent surrogate
degradation and has been shown to reduce the number of POLL steps in several test cases.
This is an area for future study.

In this work, we have demonstrated successful use of the SMF method for an expensive,
time-dependent cost function. The methodology described here is not restricted to the
laminar flow problem, but can be applied to a wide range of fluids problems with com-
plex geometries, unsteadiness and turbulence. Because of the portability of the method,
it can be coupled to turbulent flow solvers based on LES, unsteady RANS, or DES
(detatched-eddy simulation) for high Reynolds number flows. Use of the SMF method
for time-dependent fluid dynamics problems avoids significant difficulties with the ad-
dition of constraints, implementation and data storage that arise with adjoint solvers.
Even in problems in which gradients are available, the SMF method has many desirable
properties. Using only the sign of the gradient, polling directions can be 'pruned' to
reduce cost as in Abramson et al. (2003). The SMF method has proven to reduce the
risk of quickly converging to a shallow local minimum, as is often the case in standard
gradient methods.

Constrained optimization of both the upper and lower surfaces of the trailing-edge in
laminar flow is currently underway, and initial results are very promising. Deformation
of both sides of the airfoil allows for greater flexibility in the trailing-edge shape. In this
case, the airfoil thickness is used as an optimization parameter, and the trailing-edge
point is free to move in the vertical direction.

In future work, the SMF method will be applied for constrained optimization of the
upper and lower surface of trailing-edge in fully turbulent flow using LES. Considerations
of computational expense may lead us to incorporate a wall model (Wang & Moin 2002).
In the turbulent case, the airfoil is not acoustically compact for all the frequencies of
interest, and the cost function may need to be reconsidered. Alternatively, an approx-
imation of the cost function can be used so long as it is well correlated with the true
acoustic source function.
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