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SUMMARY

A new constrained boundary recovery method for three dimensional Delaunay triangulations is
presented. It successfully resolves the difficulties related to the minimal addition of Steiner points
and their good placement. Application to full mesh generation are discussed and numerical examples
are provided to illustrate the effectiveness of guaranteed recovery procedure. Copyright c© 2004 John
Wiley & Sons, Ltd.
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1. Introduction

Efficient and robust mesh generation is an essential part of many scientific and engineering
computational challenges. For unstructured mesh generation, Delaunay-based algorithms have
become very popular[1-17]. For such algorithms, the input data are often given in a discrete
formulation of the domain boundary which, in the three dimensional space, may represent a
surface triangulation of the boundary. Delaunay-based methods usually first produce an initial
triangulation that forms the convex hull of the boundary points which may not match with
the prescribed boundary surface, that is, the triangulation may not satisfy the constraints
(edges and faces in 3D) imposed by the surface triangulation. This leads to the problem of
recovering the boundary geometric constraints from the initially constructed triangulation, or
simply, the problem of boundary recovery. Such problems have been successfully resolved in
two dimensional spaces[3,4], while they are still under active investigation in three dimension.
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2 DU AND WANG

Roughly speaking, there exist two types of three dimensional boundary recovery procedures.
The first is the conforming boundary recovery which is done by applying edge/face splitting
to recover a constraint as the concatenation of edges/faces. It usually requires the insertion
of points to the missing constraints [13-16]. The effectiveness of such recovery methods
has been demonstrated in many cases. Recently, we have also developed a very robust and
theoretically guaranteed scheme for conforming boundary recovery [20]. The second approach
is the constrained boundary recovery, which does not allow extra points being added to the
missing constraints during the recovery. The constrained boundary recovery respects the local
sizing specification of the input boundary triangulation and offers more robustness than the
conforming recovery when meshes from two connected regions are merged together. We note
that both the conforming or constrained boundary recovery may be applicable with input being
a surface triangular mesh, however, the resulting tetrahedral mesh after boundary recovery
may not be strictly Delaunay. Due to the Schoenhardt configuration[17], it is well known that
the success of constrained boundary recovery may rely on the occasional insertion of interior
Steiner points [17].

To list a few well-studied methods for constrained boundary recovery, we begin with the
work by George et al.. In [12], they introduced ingenious techniques to reconstruct a prescribed
surface triangulation. The surface edges and faces were recovered by a series of edge/face swaps
(or flips), and occasionally some heuristic insertions of interior points (Steiner points). The
heuristic procedures do not work in all cases, as several examples in [11] provides evidences
that the above methods may fail in some situations. In [13], Weatherill and Hassan introduced
methods in which they first insert intersections points on missing edges and faces to get a
conforming recovery, then they try to delete the inserted points through retriangulating the
tetrahedra set connected to those points. The existence of Schoenhardt configuration again
implies that the success of such deletion can not always be guaranteed. Until now, there is
no published algorithm on constrained boundary recovery that claims theoretically guarantee
for its success in all cases. A number of difficult issues remain to be resolved, such as the
placement of the Steiner points, the minimum bound on such points, etc [17].

In this paper, a new constrained boundary recovery algorithm is presented which combines
conforming boundary recovery with a procedure called added-points-splitting to give a
constrained recovery of the missing boundary constraints. The convergence of the method in
all cases is theoretically proved. Our approach is different from the previous works [12-15,17]
where one first recovers all the missing edges and then faces. Briefly, in our approach, for each
missing face, we first recover its missing edges (if there exist) together itself by the modified
edge/face splitting method proposed in [20]. This results in the conforming recovery of the
missing face, as some points are added to its missing edges or the interior of the face. Then the
points added to each missing edge of the missing face are split, one by one, into two interior
Steiner points located away from the missing face. The splitting continues until a complete
constrained recovery of the missing edge. Once all the missing edges of the face are recovered,
we again apply the splitting operations sequentially to the added points on the face until the
recovery of the missing face. The splitting operation includes a directional perturbation and a
constrained Delaunay insertion of a face-symmetric point. The cavity is appropriately chosen
so that a basic flippable local tetrahedra set can be generated. For a missing edge, by flipping
the local tetrahedra set, the edge or a part of it is recovered in a constrained manner; for a
missing face with already recovered edges, the number of added points are gradually reduced
until the complete recovery of the face.
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 3

Note that in the above constrained recovery procedure, when a missing face is recovered,
each point added in the initial conforming recovery procedure (if there exists any) is split into
two interior Steiner points positioned on the two sides of the recovered face. For applications to
full mesh generations, either vertex suppression is performed (if allowed), or the added points
are relocated to suitable positions with respect to the given sizing field. For practical 3D
Delaunay constrained boundary recovery, we first perform several basic swapping operations
described in [20] to recover a large portion of missing constraints. This will involve some simple
local operations. Then, we apply the proposed recovery method to the remaining missing faces.
This combination will decrease the added Steiner points greatly and also leads obviously to
convergence.

Overall, our proposed constrained boundary recovery is proved to work for all cases
theoretically in this paper. Moreover, our approach also addresses some key aspects of boundary
recovery: how to recover the missing constraints, where the added Steiner points should be,
and how to minimize the number of added Steiner points. We also demonstrate in this paper
the effectiveness and robustness of the proposed method through various numerical meshing
examples.

The remaining part of the chapter is organized as follows: some basic concepts such as
Voronoi tessellation, Delaunay triangulation, conforming and constrained boundary recovery
are briefly described in Section 2. The existing conforming and constrained boundary recovery
methods for 2D and 3D Delaunay triangulation are discussed in section 3. The details of
the proposed new recovery method are presented in Section 4 and Section 5 for 2D and 3D
respectively. The application of the method to full 3D Delaunay meshing is discussed in Section
6, along with various numerical meshing examples and meshing statistics. Finally, conclusion
remarks are given in Section 7.

2. Preliminaries: some basic concepts

Given a polyhedra domain Ω in Rd (d=2,or 3) and a set of points S = {Zi}ki=1 in Ω̄, the Voronoi

region V̂i corresponding to the point Zi consists of all the points in Ω which are closest to Zi
than to other points {Zj}j 6=i. With the usual Euclidean metric, the union {V̂i}ki=1 is called a
Voronoi tessellation or a Voronoi diagram of Ω. The geometric dual of a Voronoi tessellation is
known as the Delaunay triangulation, which shares the empty ball property, that is, the circum-
sphere of each element does not contain any other vertex. This results in the maximizing the
minimal angle property in two dimension and the connection of nearest points property in
general dimensions. In practical implementation, the Incremental Insertion method [17] may
be followed to construct the Delaunay triangulation. The Delaunay insertion kernel, including
the construction of the so-called Base, Cavity and Ball, is used for the addition (or insertion)
of Steiner point [17]. For a given point set S, the Delaunay triangulation forms a triangular
mesh (tetrahedral mesh in 3D) of its convex hull in general.

There are various ways to generate a triangular mesh for a given domain Ω that is in
conformity with a given sizing function, i.e., the edge lengths obeying given specifications.
Among them, the popular Delaunay-based methods starts with a discretization of the domain
boundary in accordance with the given sizing function. For planar domain, this corresponds
to the discretization of a piecewise linear polygon, while for three dimensional cases, the
discretization is formed by a closed surface triangulation. Denote the points (vertices) of the
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4 DU AND WANG

discretized boundary by S, the next step is to form the Delaunay triangulation of S using the
Incremental insertion method. The resulting triangulation forms an initial mesh of the convex
hull of S. Then, field points are generated according to the sizing function and inserted into the
initial mesh or the most recently updated mesh. Finally, optimization is performed to improve
the mesh quality.

It is important to elaborate on the fact that the boundary of the initial mesh often does not
match the discretization of the domain boundary, see Fig1. In other words, some constraints
(edges, faces or surface triangles) of the surface triangulation are missing from the initial
mesh. This leads to the boundary integrity problem [3,4,12,13]. The retrieving of the missing
boundary constraints can be done through either a priori re-definition of the constraints, if a
satisfactory topological and geometrical equivalent can be found in the initial mesh, or by a
posteriori recovery of the topological and geometrical requirements of the missing constraint.
The latter is called the boundary recovery [3,4,12,13,17].

The a posteriori recovery of a missing constraint from the initial mesh consists of some local
operations to recover the constraint. Based on the characteristics of the local operations, the
boundary recovery approaches can be classified into two categories: conforming and constrained
boundary recovery [17]. In conforming boundary recovery, usually additional points are added
to the missing constraint, as shown in Fig1(3); while in constrained boundary recovery, no
points are allowed to be added to the missing constraint, and only occasional interior Steiner
points are inserted, as shown in Fig1(4) (the most right).

If the input is a piecewise linear complex(PLC), Schewchuk proposed the constrained
Delaunay triangulation (CDT) for boundary recovery [18]. For a PLC, Schewchuk’s algorithm
first adds points to missing edges of the PLC in order to reconstruct it as a union of edges; then
a CDT is constructed without introducing any interior points. Such a recovery scheme preserves
some nice theoretical properties of Delaunay triangulation and works well with provably good
Delaunay refinement methods for tetrahedral mesh generation. However, as extra points on
missing edges are added, such an approach belongs to the conforming boundary recovery
category.

For practical applications, whenever possible, the constrained boundary recovery is often
a better alternative to the conforming counterpart. In the next section, we will discuss the
existing methods for 2D/3D conforming and constrained boundary recovery.

3. Existing boundary recovery methods for conforming and constrained 2D and 3D
triangulation

In this section, we briefly recall the features of some typical existing conforming and constrained
boundary recovery approaches. Our focus is on the extendibility of two dimensional methods
to the three dimensional case.

3.1. Conforming boundary recovery

Many existing methods for 2D conforming boundary recovery have one common characteristic:
the addition of points on missing edges through the typical Delaunay insertion procedure or
others, see for example [18]. These points can be intersections points of the missing edge with
the available mesh or the midpoints of the missing edge [17]. Due to the nearest connection
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 5

Figure 1. Boundary recovery for 2D case, from left to right: (1) boundary discretization; (2) the missing
specified edges: AC, BD; (3) conforming boundary recovery; (4) constrained boundary recovery.

Figure 2. Conforming recovery for a missing face: (1) a missing face and its two missing edges AC,
BC; (2) the face is recovered as a concatenation of sub-faces.

property of the Delaunay triangulation, a missing edge can always be recovered as a union of
edges in the mesh. The difference of the existing 2D methods often lies on the number and
the positions of the added points on the missing edges. Also, when recovering a missing edge,
most of the algorithms do not pay any attention to whether an existing or a already recovered
constrained edge could be destroyed.

Comparing with 2D cases, three dimensional conforming boundary recovery is different in
several aspects. At first, a missing face may contain one or more missing edges, i.e., when
recovering the face, its missing edges also need to be recovered. Secondly, one often first
recovers all the missing edges then proceeds to the missing faces, or reconstructs each face
(triangle) together with its missing edges independently. A similarity with the 2D procedure
is the addition of intersection points or some other kinds of points (analogous to midpoints for
edges) on missing constraints (edges or faces), see a detailed discussions in [17] on the three
dimensional conforming boundary recovery. When recovering a missing edge or face, as in the
two dimensional case, in order to protect the Delaunay property, most existing methods do
not protect the existing recovered constraints, that is, no consideration is given to whether
some already-recovered constraints would again be destroyed. This could result in recursive
the addition of points. Special treatments must be required for the convergence. For a missing
face, i.e., a surface triangle, the final reconstruction is a concatenation of sub-triangles in the
mesh after the conforming recovery, see the illustration in Fig2.

In [20], the authors proposed a theoretically guaranteed three dimensional conforming
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6 DU AND WANG

boundary recovery which recovers the missing faces one by one. For each missing face, its
missing edges are recovered first followed by the recovery of the face. The recovery process
uses the addition of nearest-mid intersection points for missing edges and the addition of
intersection points for missing faces. The Delaunay insertion kernel is modified so that it
protects any existing constraint or any recovered parts of a missing constraint. This guarantees
the convergence of a complete conforming boundary recovery. Moreover, when adding points
to a missing constraint, some neighboring missing constraint may be recovered simultaneously.

In order to achieve constrained boundary recovery, further modification of the above method
is needed. In particular, the recovery of a missing face and its edges should be independently
done. In essence, such a strategy makes the method work in both two and three space
dimensions.

3.2. Constrained boundary recovery

Among methods for two dimensional constrained boundary recovery [3,4,17], perhaps the most
popular and the easiest to implement method is the random or serial diagonal edge swapping
algorithm proposed by P.L.George in [13,17]. For a missing edge, the recovery procedure begins
with finding the intersection edges of the missing edge with the existing mesh (actually with
the edges of the mesh), followed by randomly or sequentially swapping the intersection edges,
if the operation is allowed. If the edge is recovered, the process is terminated; else, the above
two steps are iterated until the final recovery, see the illustration in Fig3. The diagonal edges
swapping is a local operation, hence making the recovery efficient. The recovery of each missing
edge is independent from any other missing or constrained edge, and accordingly does not affect
the recovery of other edges. Furthermore, due to the fact that for an arbitrary 2D piecewise
linear polygon, it is always guaranteed that one may triangulate it with its boundary edges
being constrained and without introducing any inner field points (Steiner points), we see from
the above two properties that the two dimensional constrained boundary recovery problem is
completely resolved by applying the above diagonal edges swapping [17].

For three dimensional constrained boundary recovery, however, the solution is not ideal. Due
to the Schoenhardt configuration shown in Fig4, a constrained triangulation for an arbitrary
polyhedron is not always guaranteed without introducing some inner field points, i.e., Steiner
points [17]. In [12], P.L.George introduced a method combined with some heuristics that uses
a series of complex edges and faces flipping for the recovery, and occasionally some Steiner
points are added to generate the basic flippable configurations. Though the method has been
demonstrated to be very successful in numerical testing, no theoretical guarantee can be
claimed on the success of the method in all cases [11] as it does not adequately address
issues like where to place the Steiner points and how many Steiner points are needed. Later,
in [13], Weatherill and Hassan introduced another method which first generates a conforming
boundary triangulation with the insertion of intersection points on the missing faces or edges,
then the Ball (the elements emanating from the point) of each added point is re-triangulated
to delete the added point. Since the deletion can not always be done successfully, this method
also does not offer guaranteed success. Up to now, there has been very few further development
on three dimensional constrained boundary recovery [17].

Since the two dimensional conforming boundary recovery approaches often can be easily
extended to three dimensional cases, a natural question arises in comparison: can the 2D
constrained boundary recovery algorithm be extended to 3D cases? To answer such a question
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 7

Figure 3. Diagonal edges swapping for a missing edge.

Figure 4. The Schoenhardt configuration

affirmatively, it is crucial to develop the right methodology for the two dimensional constrained
boundary recovery first. In the 2D case, a series of local swapping may be applied to recover
the missing edge and there is no need to introduce any Steiner point. In the 3D case, however,
the issue of Steiner points starts to surface. This difference tells us that even for the 2D case,
we should develop a new method which considers the generation and deletion of the Steiner
points. In some sense, the diagonal edges swapping method is hiding the problem of Steiner
points as their deletion can be done successfully in 2D. Thus, we see naturally where the
improvement needs to be made in a new approach: for the recovery of a missing edge, the
new method should include the addition of intersection points, the point splitting, the natural
generation of Steiner points, the deletion of the Steiner points and the final recovery of missing
edges. The two dimensional version of such an approach is described in the next section while
in Section 5, the method is naturally extended to the three dimensional cases, and it solves
the three dimensional constrained boundary recovery problem by addressing several important
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8 DU AND WANG

Figure 5. Diagonal edge swapping: Swap2-2

issues with satisfaction.

4. A new 2D constrained Delaunay boundary recovery

Before introducing the new algorithm for two dimensional constrained boundary recovery, we
first present some basic definitions.

DEFINITION 4.1. Let P be a vertex. All the elements (i.e., triangles) emanating from
P is called the Ball of P , denoted by Ball(P). For an interior vertex, its Ball is a closed and
connected polygon in 2D and a polyhedron in 3D.

DEFINITION 4.2. Let 4ABC and4ABD be two triangles sharing the common edge
AB, shown in Fig5. If the quadrilateral ACBD is convex, we can swap the diagonal edge AB
to CD, and form two new triangles 4ACD and 4CBD. This swapping is called Swap2-2.

The importance of Swap2-2 is the direct recovery of edge CD in the boundary recovery,
which has been discussed before. It also plays a role in preserving the Delaunay property or
the empty disc property and in mesh optimization [17].

DEFINITION 4.3. Let P be an interior vertex and its Ball be denoted by Ball(P). An
operation that gets a triangulation of Ball(P)’s vertices except P itself, with respect to the
boundary edges of Ball(P), is called a Vertex Suppression of P .

In Fig6, it is shown in 2D cases there are two methods for the suppression of P . We can
first delete P and then re-triangulate the remaining polygon; also, we can perform a series of
Swap2-2 operations to the inner edges of Ball(P) until the existence of a configuration where
three edges are connected to P , then, we can remove P and get the triangulation we want.

DEFINITION 4.4. Let P and Ball(P) be defined as above. Then, there must be a polyline
which consists of some inner edges connecting P and divides Ball(P) into two connected and
non-overlapping parts. Such a division is called a Polyline Cutting.

In Fig7, the polyline ÂPB and ĈPB both form Polyline Cuttings of Ball(P).
DEFINITION 4.5. Let P and Ball(P) be defined as above and shown in Fig8(4), where

P is on the line AB. We call the following operations Point Splitting, i.e., the splitting of P ,
by mirror symmetry with respect to AB.

(a). First, P is perturbed to P 1 along the direction normal to
−−→
AB. Denote the symmetric point

(mirror image) of P 1 with respect to the line AB by P 2. Let the perturbation distance of P be
ε (here, ε is required to be small enough such that both P 2 and P 1 stay inside Ball(P), such
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 9

Figure 6. Vertex Suppression: (1) ball(P); (2) method 1: retriangulation; and method2: from (3) edges
swapping to (4) final vertex deletion until (5) final swapping

Figure 7. Polyline Cutting: (1) choosing the polyline; (2) cutting into two parts

an ε always exists and it it related to the point P and its ball configuration). An example of
the perturbation is shown in Fig8:(2)-(3).
(b). The second step (shown in Fig8) is to add the symmetric point P 2 in the Delaunay mesh.

In the addition, we let ÂP 1B be a Polyline Cutting of Ball(P) and choose the part which
contains P 2 as the Cavity, shown in Fig8.
(c). Insert P 2 into the mesh using the classical Delaunay insertion kernel[17], with the Cavity
chosen as in the above. This operation is shown as in Fig8(5).
(d). Perform Swap2-2 to the edge P 1P 2, then AB becomes an edge of the final mesh. The last
step in Fig8(6) gives an illustration of this operation.
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10 DU AND WANG

Figure 8. Point Splitting: (1) ball(P); (2) perturbing P to P 1; (3) adding P 2; (4) choosing cavity; (5)
mesh updating; (6) final swapping

By the above splitting, P is replaced by two points P 1, P 2, and AB becomes an edge of
the final triangulation. If AB is an constrained edge or a part of some constrained edge, we
have recovered a missing edge or a part of it through the splitting. Furthermore, two inner
field points, i.e., two Steiner points are generated naturally and they can be subject to vertex
suppression. Obviously, for two dimensional cases, we can delete them through the vertex
suppressions. For 3D, the vertex suppression cannot not always be guaranteed to work, even
though it can be performed in 2D.

With the above preparation, we now come to the description of our new algorithm for
constrained 2D boundary recovery. For each missing edge, first, we perform the proposed
nearest-mid intersection points insertion to recover the edge in a conforming manner; then, for
each added point on the edge, we sequentially perform point splitting and vertex suppressions
to recover a part of or the whole missing edge in a constrained manner. This recovery process
is shown in Fig9. The pseudo-code form of the algorithm is given as follows:

Algorithm: Point-Splitting Boundary Recovery.

For each missing edge (say AB), perform the operations:
(a). Obtain a conforming recovery of AB by adding the nearest-mid intersection points

on AB (see Section2). AB is then reconstructed as a union of edges in the mesh.
(b). For each added point (say P) on AB, perform the operations:

(c). Perform Point Splitting to P to obtain two Steiner points P 1, P 2 in
the mesh. A part of AB is then recovered in a constrained form.

(d). Perform Vertex Suppressions to P 1 and P 2.
Enddo
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 11

Figure 9. Point-Splitting Constrained recovery for a missing face: (0) edge AB is missing; (1)
conforming recovery for AB; (2) splitting of the added point P ; (3) suppression of Steiner points;

(4) splitting of added point Q; (5) final recovery

Enddo

In the above boundary recovery procedure, the convergence of the initial conforming
boundary recovery for each missing edge has been theoretically proven in [20]. The splitting
of each added point recovers a part of the missing edge (or the whole edge) in the constrained
form. With such splittings, the recovered part of the missing edge becomes longer and longer
and after a finite step, the complete constrained recovery is achieved. Furthermore, the vertex
suppressions can always be done successfully. Thus, we have the following theorem for the
convergence of the proposed algorithm:

Theorem 4.1. The above Point-Splitting Boundary Recovery algorithm is convergent, and
there is no Steiner points to be included in the final mesh.

Generally speaking, the above new algorithm is more complex than the diagonal edges
swapping introduced by P.L.George[17] but it captures the essence of constrained boundary
recovery in having a suitable treatment of Steiner points. Through the insertion of nearest-mid
intersection points, a conforming recovery of the missing edge is obtained, which provides the
initial positions for the Steiner points introduced later; through Point-Splitting, it naturally
generates the Steiner points and recovers the constrained edge or a part of it; through Vertex-
Suppression, it deletes the generated Steiner points naturally, while preserving the recovered
edges. More importantly, it leads naturally to a three dimensional constrained boundary
recovery method that includes, similar to 2D cases, conforming 3D boundary recovery, vertex
splitting for the natural generation of Steiner points and the recovery of constraints, vertex
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12 DU AND WANG

Figure 10. Poly-triangles Cutting.

suppression or optimal placement for the treatment of the Steiner points. Details on these
extensions are given in the next section.

5. 3D constrained Delaunay boundary recovery

In three dimension, the recovery procedure contains edges recovery and faces recovery which
will be treated separately, even though there are many common features between them.

5.1. Basic definitions and Properties

We again begin with some definitions.

DEFINITION 5.1. In a three dimensional tetrahedral mesh, all the tetrahedra emanating
from a vertex is called its Ball and all the elements connecting an edge is called its shell.

DEFINITION 5.2. Let P be an inner vertex of a tetrahedral mesh with ball Ball(P). An
operation is called a Vertex Suppression of P if a constrained tetrahedralization is obtained
from the surface points of Ball(P) with the input being the surface triangles of Ball(P) but
with P not being a vertex of the tetrahedralization.

The suppression of an inner vertex is always guaranteed in the 2d case, but not in the 3D
case due to the existence of the Schoenhardt configuration.

DEFINITION 5.3. Let P and Ball(P) be defined as above. A subset of the inner triangles
of Ball(P) is called a Poly-Triangle Cutting of Ball(P) if it is connected and divides Ball(P)
into two connected and non-overlapping subsets.

As an illustration, the set of inner triangles {PQ1Q2, PQ2Q3, PQ3Q4, PQ4Q5, PQ5Q1}
forms a Poly-Triangle Cutting of Ball(P) in Fig10.

DEFINITION 5.4 Let 4ABC be a triangle with O as the centroid, and P be a point
shown in Fig11. The vertices of 4ABC are called directionally oriented (or ordered), if the

outer normal direction
−−→
ON is defined as

−−→
AB ×−−→BC. The triangle 4ABC is said to be visible

to P , if
−−→
ON · −−→OP > 0.

The visibility of 4ABC to P is equivalent to the signed volume of the tetrahedron ABCP

being positive, or, P being on the side of 4ABC that
−−→
ON points to. In Fig11, 4ABC is
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GUARANTEED CONSTRAINED BOUNDARY RECOVERY 13

Figure 11. Visibility of a face to a point: (1) directionally oriented; (2) visible to P , not to Q

visible to P , but not to Q. If
−−→
ON · −−→OP = 0, P is on the plane defined by the three points

A,B,C.
The incremental Delaunay insertion kernel for adding a new point (say P ) consists of three

parts: finding the Base, constructing the Cavity, forming the Ball and updating the mesh[17].
In practice, due to the round-off errors, the initially formed Cavity is usually processed by
a correction procedure to ascertain its validity [17] which is defined as: first, it should be
connected and have no inner vertex; then, each boundary face (i.e. triangle) of the cavity
should be visible to the added point P . Let Tc be the initially defined cavity for P , we now
recall a simplified version of the correction procedure proposed in [20] in the following pseudo-
code form.

Algorithm: Cavity Correction.

1 Find {Fi}mi=1, the external faces F of Tc; define the m simplices Kj : Kj = {Fj , Pi+1}
with Det(Kj) being the signed volume of Kj .

2 Set T = Tc, loop over j = 1 to m
If Det(Kj) > 0, continue;
If Det(Kj) < 0, T = T −Kj ;
If Det(Kj) = 0, T = T ∪K,

where K is the simplex of Told, with face Fj , not in Tc.
3 If T is not affected by step 2, end; else update the set of F and go back to step 2.

DEFINITION 5.6. With reference to Fig12, the three basic single-step swappings are

1 Swap23 : exchange abcd and abce with deab, debc, deca, where de intersects the interior
of abc;

2 Swap32 : the inverse of Swap23 ;
3 Swap44 : exchange abde, bcde, abfe, bcdf with acde, abce, acdf, abcf, where ac intersects

the interior of bde or bdf.

Swap23 results in the generation of an edge de and will be used in the recovery of missing
edges; Swap32 results in the generation of an face abc and will be used for recovering missing
faces; and Swap44 can be used in both edges and faces recovery. The first two swaps will be
the most basic swapping operations in our 3D constrained boundary recovery.
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Figure 12. Basic swappings

These three basic operations are not enough to recover all missing constraints in practice.
In [17], P.L.George proposed a series of complex swapping operations. We describe two more
basic tetrahedra configurations and transformations (or say flippings) here which forms the
key parts of our 3D constrained boundary recovery.

DEFINITION 5.7 Cap-Configuration and Cap-Transformation: With reference to
Fig13, P,Q are two plane-symmetric points with respect to the plane defined by the co-planar
points P1(= A), P2, ..., Pn−1, Pn(= B). And AB intersects with the interior of all the faces
{PQPj}n−1

j=2 . The set of tetrahedra {PPiPi+1Q}n−1
i=1 , whose union is called a Cap-Configuration.

In the above tetrahedra union, AB does not exist as an edge. In Fig13, it is shown on the right
that if we triangulate the 3D-polygon {Pj}nj=1 into a set of triangles {4i}n−2

i=1 , we can exchange

the above tetrahedra set with the union of three parts: ABPQ, {P4i}n−2
i=1 , {4iQ}n−2

i=1 . Here,
we generate a new edge AB in the exchanged tetrahedra union. Such a exchange is called
Cap-Transformation.

Obviously, if AB is a missing constrained edge or a part of a constrained edge, through the
Cap-Transformation, it can be recovered in a constrained manner. In the simplest case, n = 3,
the Cap-Transformation is reduced to Swap23, thus it gives a natural extension of Swap23.

The above co-planarity condition of {Pj}nj=1} can be relaxed. Actually, we only need that
AB intersects the interior of the faces PQP2, ..., PQPn−1.

In the configuration of Swap32, edge de intersects only one triangle abc. If there are more
than one triangle, we have the following extension of Swap32.

DEFINITION 5.8 Shell-Configuration and Shell-Transformation: With reference
to Fig14, A and B are two points on the two sides of the plane defined by the co-planar
points {Pj}nj=1}. Let AB intersect the interior of the 3D-polygon P1P2...Pn. With these n+ 2

points, we form a tetrahedra union: U∗ = ∪n−1
i=1 {PiPi+1BA} ∪ {PnP1BA}, which is called a

Shell-Configuration. As in the Cap-configuration, if the 3D-polygon P1P2...Pn is triangulated
to be a union of triangles {4i}n−2

i=1 , we can exchange U∗ with the union of {4iA}n−2
i=1 and

{4iB}n−2
i=1 . Such an exchange is called a Shell-Transformation.
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Figure 13. (1) Cap-configuration; (2) Cap-transformation.

Figure 14. (1) Shell-configuration ; (2) Shell-transformation.

The simplest Shell-Conformation with n = 3 is just the basic operation Swap32.
We now present two important points splitting operations for removing edge-added-point

(point added to an edge) and face-added-point (point added to a face) which will results in
the constrained recovery of edges/faces.

Algorithm: Edge-Added-Point Splitting.

Suppose 4ABC is a missing face with edges either missing or not missing and a
conforming recovery has been performed through the addition of intersection points so
that4ABC has been reconstructed as a union of triangles in the existing mesh. Without
loss of generality, we make reference to Fig15:(1), where two points are added on AC,
one point is added on BC and one interior point is added on the face ABC. Relabel the
points set {c, g, f, e2} by {P1, P2, P3, P4} for convenience, see Fig15:(2). The ”Splitting”
of the added point e1 means that P1P4 is generated as an edge in the updated mesh
after the ”Splitting”, i.e., a part of the edge AC is recovered in a constrained manner.
Such an operation for e1 is called an Edge-Added-Point Splitting. In more details, the
operation is as follows:

(a) First, we perturb e1 in the direction
−→
N1 (

−→
N1 =

−−→
AB × −−→BP1) by a distance ε1, i.e.,

e1 = e1 + ε1 ·
−→
N1 (see Fig15:(3) for an illustration of its new position).

Then, we perturb e1 in the direction
−→
N2 by a distance of ε2. Here,

−→
N2 is parallel to the

plane defined by ABP1 and is vertical to
−−→
AP1. Fig15:(4) shows the newly perturbed
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position of e1. Denote the symmetric point of e1 (with respect to the plane ABP1) by e∗1.
The two distances ε1, ε2 are chosen to be suitably small such that e1, e

∗
1 are both contained

in the ball of e1 and all the faces {e1PjPj+1}n−1
j=1 are visible to e∗1 (such distances ε1, ε2

can obviously be defined in all cases and they are related to the added point and its ball
configuration).

(b) Insert e∗1 into the existing mesh using the constrained Delaunay insertion kernel :
First, the cavity of e∗1 (Denoted by Tc) is initialized to be the ball of e1, i.e., Tc = Ball(e1).
Then, Tc = Tc − {ti}, where {ti} include the tetrahedra having {e1PiPi+1, i = 1, 2, 3}
as faces and lying ”above” the triangle 4ABP1 (i.e. in the same direction as

−→
N1). With

reference to Fig15:(5), {ti} are the tetrahedra e1P3P4f1, e1P2P3f2, e1P1P2f2. which do
not intersect the triangle 4ABP1. Obviously, Tc may not be a valid cavity.
Then, the third step is to perform the Cavity Correction procedure described above to
Tc. Denote still the updated and valid cavity by Tc. Since the faces {e1PiPi+1}n−1

i=1 } are
visible to e∗1, they will be in Tc as boundary faces.
Finally, we insert e∗1 into the mesh with Tc being the cavity. According to the constrained
Delaunay insertion kernel, new tetrahedra will be formed by e∗1 and the boundary faces
of Tc. Hence, a Cap-Configuration Cc = {e∗i f i, f i = eiPiPi+1}n−1

i=1 will be generated (see
Fig15:(6)).

(c) Perform Cap-Transformation to the Cap-Configuration Cc. Then, P1P4 becomes an edge
in the the updated mesh (the final configuration is shown in Fig15:(7)).

The above point splitting procedure deletes an added point e1 on AC and generates two
Steiner points e1, e

∗
1, which are on the two side of 4ABC. And a part of the edge AC is

recovered in a constrained manner. Having a suitable definition for the cavity Tc is the key to
reach the above result. In conclusion, we have the following lemma for the Edge-Added-Point
Splitting.

Lemma 1. The above Edge-Added-Point Splitting operation deletes one added point on a
conformly recovered edge once a time, and recovers a part of the edge in constrained form (if
there is only one added point, this operation results in the complete constrained recovery of
the edge). Moreover, each splitting generates two Steiner points, and this splitting will never
results in new added points in the interior of the missing face. Also, it will not affect the
existence of any recovered or constrained face or edge.

We now deal with the splitting of points added to faces.

Algorithm: Face-Added-Point Splitting.

Let4ABC be a missing face after a conforming recovery with its three edges all recovered
through the above Edge-Added-Point Splitting operations. Assume that 4ABC still
does not exist in the mesh as a face, that is, there are still points added in the interior
of 4ABC. Without loss of generality, suppose three points {P1, P2, P3} are added on
4ABC (see Fig16:(1) for reference). We call the following operation a Face-Added-Point
Splitting which will ”Split” an added point (say P1) into two Steiner points. Denote the
triangles in 4ABC that connect P1 by {fi} (see in Fig16:(2)), which forms a subpart of
4ABC. Now, we describe the Face-Added-Point Splitting operation for P1.
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Figure 15. Operation for edge-added-point-splitting: (1) points added for conforming recovery; (2)
re-labeling the added points around e1; (3) first perturbation of e1 in the normal direction; (4)
second perturbation; (5) cavity modification; (6) inserting the symmetric point e∗1 and obtain a Cap-

configuration; (7) Cap-transformation.

(a) Perturb P1 in the direction
−→
N by a distance ε. Here,

−→
N =

−−→
AB × −−→BC , i.e., the normal

direction of 4ABC. Denote the symmetric point of P1 (with respect to the plane ABC)
by P ∗1 . The distance ε is chosen appropriately or small enough such that P1, P

∗
1 are both

contained in the ball of P1 and the faces {fi} after the perturbation becomes visible to
P ∗1 . (The perturbed configuration is shown in Fig16:(3).)

(b) Insert P ∗1 into the existing mesh via the constrained Delaunay insertion kernel:
The cavity for P ∗1 is chosen as follows:
Since {fi} forms a Poly-triangle Cutting of the Ball of P1, Ball(P1)is divided into two
parts. We choose the part which contains P ∗1 as the cavity (denoted by Tc) for our
use. Since {fi} are Tc’s boundary faces and are visible to P ∗1 , Tc is a valid cavity for P ∗1 .
Inserting P ∗1 into the existing mesh, a Ball-Configuration is generated (see the illustration
in Fig16:(4)).

(c) Perform Ball-Transformation to the generated Ball-Configuration.
Two Steiner points P1, P

∗
1 are generated and the subpart shown in Fig16:(2) is reduced

to that shown in Fig16:(6), which is equivalent to say that the configuration of the
conforming recovery for 4ABC is reduced. The union of new triangles is shown in
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Fig16:(6), where the added points are reduced by one. In the simplest case where there is
only one added point in the initial union, the result of the transformation gives a complete
recovery of 4ABC (consequence of a simplified Ball-Transformation - Swap32 ).

Figure 16. Operation for Face-added-point-splitting: (1) Conforming recovery; (2) A subpart:triangles
connecting P1; (3) Perturbing P1; (4) Adding the symmetric point P ∗1 and generate a Ball-

configuration; (5) Ball-Transformation; (6) New subpart; (7). Reduced configuration

We have the following lemma for the function and property of the Face-Added-Point Splitting
.

Lemma 2. For a conformly recovered missing face with its three edges being recovered in
constrained manner, if we perform the above Face-Added-Point Splitting, an added point on
the interior of the face will be deleted; two Steiner points will be generated, and the face is still
formed as a union of triangles but the configuration for the conforming recovery of the face (or
more precisely, the number of triangles in the union) will be reduced in a strictly monotonic
manner. In the simplest case that only one added point exists, the face is recovered completely
in constrained form. Furthermore, this splitting operation will never influence the existence of
any other existing/recovered constraint.

The 3D constrained boundary recovery procedure is ready to be presented which recovers the
missing faces one by one, with the missing edges of each face being recovered simultaneously.
Such a procedure is different from previous methods that first recover missing edges, then
missing faces.

5.2. Conforming Face/Edges Recovery

For each missing face, we apply the addition of intersection points procedure discussed in
Section 2, see [20] for details. Here, we simply recall the basic steps.

When adding intersection points, the Delaunay insertion kernel is modified such that the
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insertion of each point will not delete any other existing/recovered constrained edge/face, nor
a recovered part of a missing constraint. This is realized through the modification to the initial
chosen cavity for the insertion point[20]. The non-interference to other constraints results in a
monotonic decrease in the number of missing constraints. In [20], when we recover one missing
face, its neighboring faces may also be recovered as a by-product. Here, such a by-product is
given up since the Edge-added-point Splitting obviously will destroy the conforming recovery
of some neighboring faces. However, there are two properties shared by the above conforming
recovery: one is that when a missing edge of a missing face is recovered as a union of sub-edges,
then, in the recovery of the connecting faces of this edge, the recovery of this edge is preserved,
i.e., the common edges are already recovered. This will keep the conformity of the recovery of
the missing faces. Another important property is that when all three edges of a face have been
recovered but the face still missing, the subsequent addition of the interior intersection points
is independent from the addition operation of intersection points for other missing faces. This
will guarantee the convergence of the recovery.

5.3. Constrained Edge Recovery

Let f be a missing face and has been recovered in a conforming manner via the addition
of intersection points described earlier and in [20]. If it contains edges on which intersection
points have been inserted, then the first step for the constrained recovery of face is to perform
the Edge-Added-Points Splittings for the added points on these edges. The pseudo-code form
for the algorithm is given as follows:

Algorithm: Constrained Edge Recovery.
For the three edges (say ei, i = 1, 2, 3) of f , do the following operations:

if there are points {Pij , j = 1, ..., n} added on ei, then
for each Pij , perform Edge-Added-Point Splitting.

Endif
Enddo

For the above constrained edge recovery procedure, we have the following theorem:

Theorem 5.1. Suppose f is a missing face which has been recovered in a conforming
manner. If it is processed in the above constrained edge recovery procedure, then its three
edges can be recovered in constrained manner through a finite number of Edge-Added-Point
Splittings.

Proof. For an edge with intersection points being added on, by Lemma 1, we have that
each Edge-Added-Point Splitting recovers a part of the edge in constrained manner. And the
number of added points is monotonically decreasing. Since there are only finitely many added
points, a configuration with only one added point will be reached. From Lemma1, the final
Edge-Added-Point Splitting for this last added point results in the complete recovery of the
edge. Furthermore, as each Edge-Added Point Splitting is performed in the Ball of the added
point, it is independent of the recovery of other edges. Moreover, each Splitting will not result
in new points being added. Hence, the number of required splittings is just equal to the number
of initially added points which is finite.
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5.4. Constrained Face Recovery

Suppose f is defined as in Section5.3 and its three edges have been recovered by the above
constrained edge recovery procedure. If f is still formed as a union of triangles, i.e., there are
still added points in the interior of the face, then, we perform the Face-Added-Point Splitting
for its added points for the final constrained recovery of f . The pseudo-code form for such
recovery procedure is simply given as:

Algorithm: Constrained Face Recovery
For the interior added points {Pi, i = 1, ..., n} of f , do:

Perform Face-Added Point Splitting for Pi.
Enddo

We now give the following theorem:

Theorem 5.2. Let f be defined as in Theorem 5.1 but with its three edges all recovered by
Edge-Added-Point Splitting. If there are still interior points added on f , one can perform the
above constrained Face Recovery operation for f to recover f in constrained manner through
a finite number of Face-Added-Point Splittings. Moreover, its recovery will not affect other
existing or recovered constrained faces.

Proof. The proof is straightforward. We know from Lemma2 that each Face-Added-Point
Splitting reduces an added point and reduces the configuration for the conforming recovery of
the face in a strictly monotonic manner. As the number of added points is finite, eventually,
we get to the situation that there is only one added point on f . Then, the final Face-Added-
Point Splitting for this point is reduced to the simple operation Swap32 and it results in the
constrained recovery of f . Furthermore, by Lemma 2, each Face-Added-Point splitting will not
generate new added point, hence, the complete recovery needs only finite splittings, or more
precisely, the number of the splittings is equal to the number of points added in the interior
of the face f .

Combining Theorem 5.1 with Theorem 5.2, we have the following conclusion:

Theorem 5.3. Let f be a missing face in a 3D Delaunay tetrahedralization. By performing
the above described three operations: conforming recovery through adding intersection points,
constrained edge recovery through Edge-added-Point Splitting, and constrained face recovery
through Face-Added-Point Splitting, we can recover f in constrained manner through finite
steps of operations. And the constrained recovery of each missing face in the initial tetrahedral
mesh will not delete any existing/ recovered face.

In conclusion, for an initial Delaunay tetrahedral mesh, if we perform the recovery procedure
for its missing faces, we can get a constrained 3D Delaunay tetrahedralization in all cases. Of
course, the above recovered tetrahedral mesh may not be strictly Delaunay [17].

In practice, a large portion of missing faces/edges can be recovered through the three basic
swappings: Swap23, Swap32, and Swap44. These operations are cost-effective. Hence, like in
[20], we can first perform these operations for some missing constraints; then, for the remaining
missing ones, we perform the above constrained recovery procedure. The pseudo-code form for
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this combined constrained 3D boundary recovery scheme is as follows:

Algorithm: Combined 3D Constrained Boundary Recovery.

(a) For each missing edge or face, compare its configuration with those of Swap23, Swap32 or
Swap44. If a match is found, perform the corresponding swapping to recover the missing
constraint.

(b) For the remaining missing faces{fi, i = 1, ..., n} do:
Perform conforming boundary recovery for fi by adding intersection points.
Perform Constrained Edge Recovery for fi’s edges if there are added points on them.
Perform Constrained Face Recovery for fi if it is still not recovered in constrained

form.
Enddo.

Using the above constrained boundary recovery, we can derive successfully a constrained 3D
Delaunay (not strictly) tetrahedral mesh from an initially given Delaunay tetrahedral mesh
with a theoretical guarantee in all cases.

This above procedure addresses several important aspects of the open problems related to
the 3D constrained boundary recovery, such as where to place Steiner points, when to generate
Steiner points, how many Steiner points are needed. There are naturally other issues when
one considers the full mesh generation process. Those issues are discussed further in the next
section.

6. Application to 3D full Delaunay mesh generation

When applying the above proposed 3D constrained boundary recovery to full Delaunay mesh
generation, the naturally generated Steiner points may result in low-quality elements near
the missing constraint. To overcome this problem, we propose an approach that combines
the minimization of the number of Steiner points and an advancing front repositioning of the
remaining Steiner points. Let F be a missing face, and {Pi} be some Steiner points generated
after the constrained recovery.

If F is a boundary face, one half of these Steiner points are located outside of the domain
which require no special treatment as they will not participate in the ensuing interior field
points insertion for full mesh generation.

If F is an inner constrained face, all of these Steiner points need to be processed. The first
operation to be applied on these points is to try to delete them while keeping the recovered
face F protected. Such a deletion procedure goes as follows: when each Edge/Face-added-
points Splitting is done, we find the ball Ball(Pi) (or balls) of the generated Steiner point Pi.
Delete the point Pi from the ball, and try to tetrahedralize, for instance, via the Advancing
front method, the remaining polyhedron formed by the boundary triangles of the ball without
allowing the insertion of any additional points. This tetrahedralization can also be called a
Vertex Suppression to Pi. Obviously, this suppression can not be done for all cases [17]. If the
suppression fails, we simply keep the Steiner point unchanged. The first step described here is
referred as the Steiner points minimization.

Since the objective of processing the Steiner points is to lessen the deterioration in mesh
quality, naturally, the second operations on the Steiner points are to reposition them to better
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locations. Once F is recovered, we move the remaining Steiner points to new positions via
the Advancing front points placement method so that the placement is in line with the giving
sizing field. For the case of a single Steiner point with respect to F , the operation can be
easily performed. The Steiner point is repositioned to an optimal location so as to generate an
optimal element. For the case of multiple points, more steps need to be taken. One approach
is to perform local constrained Laplacian smoothing to the inserted Steiner points. During the
smoothing, the points are always constrained in their Balls [17] in order to keep the validity
of the triangulation. If the points can be moved considerably from the initial positions, the
inner field refinement (see the later meshing scheme) will inevitably improve the quality of the
surrounding elements connecting them. On the other hand, if the freedom for moving them
is limited, such as in a small cavity, it is obviously more difficult to improve the situation.
Moreover, the repositioning of the Steiner points can also be performed in the final mesh
optimization by mesh smoothing or by the recently developed CVT methodology [19].

To apply the above constrained boundary recovery together with the post-processing of
Steiner points to full 3D Delaunay mesh generation, we again assume that the input is a
surface triangulation of the domain boundary, and a sizing field is given or can be derived
from the surface triangulation by interpolation. Naturally, the surface mesh should conform
with the sizing field. A complete meshing scheme goes as follows.

Full 3D Delaunay Mesh Generation Scheme:

(a) Input the surface triangulation.
(b) Perform the initial Delaunay tetrahedralization in the classical Delaunay insertion kernel

using points in the surface triangulations and some other specified points if they exist.
(c) Perform the proposed 3D constrained Boundary recovery to the initial unconstrained

tetrahedral mesh, together with the Steiner points post-processing.
(d) Generate inner field points by coupling AFT method with the constrained Delaunay

insertion procedure, insert them into the existing mesh iteratively until the sizing field
is satisfied[10].

(e) Optimize the mesh with local or global geometrical and topological operations, or using
CVT optimization[19].

(f) Output the mesh.

The above scheme is applied to mesh various complex geometric models. In the following, we
present four meshing examples. The four geometric models are: a box containing nine stiffness
(spheres) which is used for composite material multi-scale simulation; a complex geometry
with many intersecting spheres, which is for simple molecular surface modeling [22]; a complex
geometry with several small cavities and large sizing variation; and lastly the Gulf2 airplane
model for external flow simulation. The examples includes pictures of surface triangulation,
cutting views of constrained boundary and the full 3D triangulation. They are presented in
Fig17-21. Also, two tables are given to present the recovery data and statistics on the element
quality.

In Table1, the geometric data for each example are provided which include the total number
of vertices in the triangulation, the vertices of the surface triangulation (i.e., boundary vertices),
the number of missing boundary faces in the initial tetrahedralization, and the number
of recovered missing faces through the simple swappings (abbr.SW), i.e., through the first
step. We also report the number of intersection points added in the conforming boundary
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Figure 17. A box included with nine stiff inclusions (spheres): (1) the surface triangulations of the
outer box and the inner spheres; (2) cutting views of the constrained boundary tetrahedral mesh; and

(3) the final full 3D tetrahedral mesh.

recovery (CBR), the number of Steiner points generated inside the domain and remained after
suppression. Moreover, the table also contains the ratios (in percentage) of the CPU timing of
the boundary recovery step to the whole meshing process of various methods.

For the four examples, a large portion (almost 70 percent) of missing faces are recovered by
the three basic swapping operations, which demonstrates that the first step in our combined
constrained boundary recovery is very effective and worthwhile. For the remaining missing
faces, in example1, 2 points are added for the conforming boundary recovery of 4 missing
faces, and then the points splitting generates 4 Steiner points. And we find these missing faces
all appear on the inner sphere surface, hence, these 4 Steiner points are all inside the domain,
as we want to mesh both sides of the inner sphere surface. Clearly, we find that vertices in
general cannot be suppressed through re-tetrahedralization. Nevertheless, with pure luck, we
find they are all moved to optimal positions with the AFT technique, which will be desirable
for the full high-quality mesh generation. In example2, there are 9 points being inserted for the
conforming recovery of missing faces. After the recovery, the same number of Steiner points
are generated inside the domain, and another 9 Steiner points are outside the domain, which
will not contribute to the subsequent interior refinement. Also, 4 Steiner points are deleted by
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Figure 18. An intersection of spheres for simple molecular surface modeling: (1) the surface
triangulation; (2) cutting views of the constrained boundary tetrahedral mesh; and (3) the final full

3D tetrahedral mesh.

suppression and the remaining 5 points are all repositioned to good locations through AFT
placement. In these two examples, after careful examination, we find that for each missing
face, one only needs to generate one or two (on either side of the face) Steiner points. The
case that more than two Steiner points are needed has never occurred in our numerical tests,
which is largely due to the smooth sizing field and a high-quality surface triangulation. This is
in sharp contrast with the example 3 where 63 Steiner points are generated in the domain and
in the end, 38 of these points still remain inside. We find that there are two cases for which
two Steiner points are generated for each missing face, and only one point has been processed
with the AFT technique while a small perturbation is performed to reposition the other point.
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Figure 19. A complex geometry with several small cavities: (1) the surface triangulation; (2) cutting
views of the constrained boundary tetrahedral mesh; and (3) the final full 3D tetrahedral mesh.

These cases happen near the part of the surface where there is a large sizing variation. But,
after the final CVT optimization [19], these points were repositioned to much better locations.
The final example, the Gulf2 model has a larger surface triangulation which has 31633 facets,
and there are 620 faces missing after the initial Delaunay tetrahedralization. This is largely
due to the existence of a lot of thin triangles in the input surface triangulation. With our
recovery technique, 184 Steiner points are added inside the domain and 72 of them remain
after the minimization. However, as the model is used for the external flow simulation, there
is substantial freedom in moving these points around. With the AFT technique, they are all
repositioned to optimal places.

We see from the last line of the Table1 that the CPU time ratio of our boundary recovery
takes up only a very small fraction of the total meshing time, and its effectiveness is evident.
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Figure 20. The Gulf2 airplane modeling: the surface triangulation

Even though we make no comparison with other techniques [10, 17] here, the efficiency is clearly
satisfactory for real applications. All of the above analysis and simulation results support our
theoretical prediction that the proposed boundary recovery provides a good and efficient 3D
constrained boundary recovery scheme and a full 3D high-quality meshing.

Table I. Recovery statistics of the examples.

Examples Example1 Example2 Example3 Example4
Total vertices 4856 12545 9466 276653
Boundary vertices 1466 3442 3107 31633
Original missing faces 14 64 225 620
Recovered faces through SW 10 50 142 408
Points added in CBR 2 9 63 184
Steiner pts generated inside domain 4 9 63 184
Steiner pts remained inside domain 4 5 38 72
CPU ratio of BR/meshing(%) 2.4 3.8 6.9 1.6

In Table2, some statistics of elements quality (after optimization through the construction
of CVDT [19]) measured by the method of [19] are provided. They include the average quality,
minimum quality, ratio of good elements, ratio of bad elements, and the number of bad elements
connecting the added Steiner points. Here, the quality of each element [19] ranges from 0 to 1.0,
with 1.0 being optimal. And we say an tetrahedron is a good element if its quality is above 0.4,
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Figure 21. The cutting view of several parts of the final full 3D tetrahedral mesh of the Gulf2 model.

and a bad element if less than 0.1. The data of the first two examples are all very satisfactory.
In the second example, there are several bad elements close to the surface boundary. For the
third example, due to the large sizing variation, the average quality is only 0.702 even after
CVT optimization. And a portion of the bad elements appear near the boundary. The Gulf2
model also has a fraction of bad elements near the input sliver triangles. However, in all of the
four examples, none of the bad element is connected with the generated Steiner points. This
is because we have either repositioned them to optimal locations through AFT techniques or
through the final CVT optimization. These data demonstrate that our treatment of Steiner
points is adequate and practical for the full three dimensional mesh generation.

Table II. Elements quality statistics of the three examples

Examples Example1 Example2 Example3 Example4
average quality 0.773 0.771 0.702 0.766
minimum quality 0.124 0.073 0.041 0.032
percentage of good elements 98.2 93.4 90.5 96.8
percentage of bad elements 0.0 0.01 0.12 0.005
bad elements connecting SP 0 0 0 0

Based on our numerical examples, we also see that in order to obtain a high-quality 3D mesh,
the sizing field of the surface triangulation should avoid large variation. This is achievable
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through surface remeshing which is an active current research field.
From the recovery data obtained for the examples, another observation can be made: better

geometric and curvature control in the surface triangulation results in smaller number of
missing faces, and also better positions for the added Steiner points. Hence, for efficient
boundary recovery, not only the sizing variation of the surface triangulation matters, the
curvature variation also influences the resulting constrained boundary recovery. Take the
second example, the variation of the sizing field is not large, however, the ratio of missing
faces is not small. With some detailed checking, we find that these missing faces are almost
all near the parts of the surface where spheres intersect, corresponding to where the curvature
undergoes large changes. Had the surface mesh been curvature-adapted, that is, larger density
when curvature is large, the number of missing faces can be reduced, and complexity in
treating the Steiner points also goes down, e.g., suffice in using the AFT techniques. The
same observation is also confirmed by the third example. Future investigations along these
lines will be pursued.

7. Conclusion and future work

A theoretically guaranteed algorithm for 3D constrained boundary recovery is presented,
which combines conforming boundary recovery with Edge/Face-Added-Points Splitting. In the
Splitting of added points, the Cavity is appropriately chosen such that some basic flippable
configuration are generated, and the corresponding transformation of these configuration
results in a partial or complete recovery of the constraint. The proposed recovery scheme solves
the open problem of the 3D constrained boundary recovery by providing answers to several
key issues: successful recovery for all cases without any heuristics, natural generation and
placement of Steiner points through points splitting, minimizing the number of Steiner points
through vertex suppression, and optimizing Steiner points through AFT points placement or
other smoothing techniques. Various meshing examples and their geometrical and elements
quality data demonstrate the effectiveness and robustness of the presented boundary recovery
algorithm and its application to full mesh generation. Future directions of research include
the further optimization of Steiner points, the extension to higher dimensional cases, and the
application to 3D anisotropic meshing. As suggested in [21], we will also consider the adding
AFT-related recovery to the initial simple swapping operations.
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