Korean J. Chem. EndL§5), 606-611 (2001)

Constrained Digital Regulation of Hyperbolic PDE Systems:
A Learning Control Approach

Jinhoon Choif, Beom Joon Seo and Kwang Soon Lee

Department of Chemical Engineering, Sogang University,
1 Sinsoo-Dong, Mapo-Koo, Seoul 121-742, Korea
(Received 18 May 2001 « accepted 21 August)2001

Abstract—In this paper, exploiting repetitive properties, a constrained digital regulation technique for first order hy-
perbolic PDE systems is proposed that guarantees the stability and performance of the closed loop system.
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INTRODUCTION mensional controllers [Wang, 1966; Lo, 1973; Balas, 1986]. Recently
the geometric control theory based design of infinite dimensional
Most of the process control algorithms in practice are based otontroller without resorting to optimal control techniques was pro-
the finite dimensional control theory. However, many chemical pro- posed in Christofides and Daoutidis [1996].
cesses are described by partial differential equations (PDE's) and The aforementioned optimal and geometric control strategies for
are infinite dimensional in nature due to spatial variation. Espe-hyperbolic PDE systems are unconstrained, continuous and infinite
cially when the convection is dominant and thus diffusion can bedimensional ones that are quite complicated. Constraints are always
ignored, chemical processes that are described by a system of figgtesent in any practical control problems. For instance, the physi-
order hyperbolic PDE’s. Such processes include tubular reactorsal restriction of the actuator limits the value the input can assume.
[Ray, 1981], fixed bed reactors [Stangeland and Foss, 1970] aniMoreover due to safety, environmental regulation and so on, the
pressure swinging adsorption [Ruthven and Sircar, 1994]. Morestates of the plant are desired to lie within a designated area in the
examples can be found in [Rhee et al., 1986]. Conventionally suclstate space. Moreover, since all the chemical processes are con-
infinite dimensional systems described by PDE's are controlled bytrolled by computers nowadays, these control techniques need to
finite dimensional controllers that are designed through finite dimen-be implemented in discrete time. Hence it is clearly desirable to de-
sional reduction of the process model via the spatial discretizatiowvelop some constrained finite dimensional digital control strategies
techniques. However, such spatial discretization leads in general tthat guarantee the stability and performance of the closed loop sys-
a high order finite dimensional system. Moreover, the finite dimen-tem. In this paper, we first show that the hyperbolic PDE solutions
sional controllers based on the finite dimensional models can leadre repetitive in nature. Exploiting this, we reformulate the con-
to an unstable closed loop system. Although stability is achievedstrained regulation problem of hyperbolic PDE systems as a con-
the performance of such controllers can be very poor when thegtrained batch process control problem where the control action is
are applied to an infinite dimensional system. For diffusion domi- updated in discrete time. For the resulting batch process control prob-
nant systems that are described by parabolic PDE's, there are item, we adopt the recently developed Q-ILC techniques [Lee et al.,
finitely many discrete modes among which only finite number of 1996, 2000; Chin et al., 1999; Jung et al. 1999], that is a learning
modes are slow and all the rests are stable fast [Balas, 1979; Friedentrol strategy for batch processes. The resulting regulation strat-
man, 1976]. Hence, for such systems, a meaningful low dimensionagy is a constrained, digital and finite dimensional one. The con-
approximation possible through modal decomposition. However,vergence of the control law is guaranteed from the convergence of
for first order hyperbolic PDE’s, all the modes have the same, 0iQ-ILC techniques. Moreover, the performance of the controller is
almost the same, energy. Thus, a low dimensional model throughlso guaranteed. The proposed methodology is illustrated with a
modal decomposition is not possible since an infinite number oftubular reactor example.
modes are necessary for accurate approximation of the original sys-
tem. As a result, even if the finite dimensional high order system PRELIMINARIES ON Q-ILC
model obtained through spatial discretization is reduced by the op-
eration data based model reduction techniques such as Karhunen-In this section, we briefly review the Q-ILC technique [Lee et
Loeve decomposition [Sirovich, 1987], such reduced system mayal., 1996, 2000], which is a model-based iterative learning control
work very poorly under the situation different from operation data. technique developed specifically for multivariable batch process
Due to such prob- lems, the optimal control approach was adoptedontrol problems. It can be regarded as a generalization of the tra-
for the control of hyperbolic PDE systems, that leads to infinite di- ditional ILC techniques developed mainly for robot-arm training.
The Q-ILC technique can be used to recursively refine the input
*To whom correspondence should be addressed. trajectory based on the tracking error obtained in the previous batches.
E-mail: jchoi@ccs.sogang.ac.kr Consider an finput, n-output discrete-time linear time varying
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batch process that is run over a prespecified time interval. Sinc&. Robustness
only the transient behavior exists in the operation of a batch pro- The convergence property is retained when the model error is
cess and most of the chemical processes are nonlinear, the procegthin certain limits. The region of attractivity can be increased by
model for control is typically described by linear time varying dif- increasing the input weight R. However, this slows down the rate
ference equations that are obtained for instance through linearizaf convergence.
tion around the desired trajectory. Since a batch operation is define8l. Disturbance Sensitivity
over a finite time interval, a general and convenient description of The severe sensitivity of input signal to high frequency compo-
process dynamics is a linear algebraic system relating the input s@ents of the output error in other traditional ILC algorithms can be
guence to the output sequence over the entire batch horizon. Definabated without losing the convergence property. Indeed it can be
Y =Iy (Y)Y (N)] adjusted at will by the choice of R.
u"=[u"(0)u’(1)--u'(N ~1)]. @) FORMULATION
Then, we may describe the effect of u ony as
The behavior of first order hyperbolic PDE systems cannot be
reduced to a low dimensional manifold. Hence the available con-
where G is the dynamic gain matrix which is assumed to be knowrtrol design techniques for such systems results in a unconstrained
(through identification or linearization of a nonlinear model with infinite dimensional controller that updates the distributed control
respect to a reference trajectory) and b is the bias vector which map continuous time. However as we will show in this section the
be unknown. The causality of the process restricts G to have a loweolution of hyperbolic PDE is repetitive in nature. Hence we show
triangular structure. that, updating the control iteratively, we can obtain a simple con-
Now define the error trajectory vector: strained digital finite dimensional regulation strategy for first order hy-
e=y-y 3 perbolic PDE systems that guarantees the stability and performance.
¢ Consider the linear first order hyperbolic partial differential equa-
where y is the desired reference output trajectory. The error trajection:
tory may depend on several things including input u and initial con-

y=Gu+b @

dition (i.e., condition at the start of a batch). %)t( = Ag—)z( +B(z)x *C(2)u
Let g be the error vector at theh batch. Then, (2) can be re-

written as with the boundary condition
€.:=6~ GAU,,.. @ x(t, 0)=%

whereAu,,;=U,;—U,.
Q-ILC is derived based on model (4) and solves the following

and the initial condition:

minimization at the start of the kth batch: x(0, 2) =x,(z), UzO[O, L].
1 T Such system may be obtained from the linearization around the
Min={ - -, TAURA 5 . .
R 2{ 81 Q81 FAURAUS ©) steady state of the quasi-linear first order PDE systems such as reac-
where Q and R are PD (positive definite) matrices. tion convection processes:
For the unconstrained case, the resulting control law is ax __ ,0x
o Aa— FF(x)x +*G(x)u
uk:u<—1+HQek—1k—1 (6)
where or the nonlinear first order PDE systems:
H°=(G'QG+R)'G'Q. @ %X =-p% +H(x, u)
t T

As in model predictive control, we may incorporate constraints
imposed on the input and output variables into the above quadratic Here we assume the matrix A is simple and is in the form
minimization. In this case, (5) becomes a standard quadratic pro-
gramming problem. a 0 0
It has been shown that the Q-ILC algorithm given by (6) has the , _ (0 a = 0
following properties [Lee et al., 2000]: Do
1. Convergence 0 0
If the desired trajectory is reachable (this is always true when
we have sufficient control inputs and thus G has full row rank), thewhere @a2---2a,>0. Hence we have
error trajectory e for system (4) converges to zero asymptotically ;. ax
as the number of batch grows for any choice of Q>0 and R>0. 3 =~a3, *Bi(2x*C(2)u
Otherwise the Q-ILC minimizes the error. The same is true for the
constrained algorithm under some reasonable assumptions on thehere Bz) and z) are the ith row of B(z) and C(2), respectively.
choice of constraints. In this paper we will consider a finite number of control actuators
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Fig. 1. Sensors and actuators.
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Fig. 3. Representative characteristic lines.
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the digital regulation of the hyperbolic PDE systems reduces to a
batch process control problem for which numerous techniques are
available. In this paper, we will apply the Q-ILC technique that has
been developed recently. In each block, the characteristic line for x
depicted in Fig. 3 will be used as the representative characteristic
line for x since, above the characteristic line fgnxwill be the
same on any characteristic lines for x
Z Since the Q-ILC technigue requires the discrete time model, the
Fig. 2. Characteristic lines for x. ODE'’s need to be discretized. Exact discretization [Rugh, 1996] is
desirable. However, if this is not possible, approximate discretiza-
tion can also be used. Notice that the time scales are different for
and finite number of point sensors. Namely different control inputsdynamics of each »n the representative characteristic line. Hence
are applied in each prespecified intervals and the states are medsr coordination, sampling times of the ODE's on the representa-
ured many but finite number of locations by point sensors as detive characteristic lines should be different for eaciNamely, if

picted in Fig. 1. A, is the sampling time for,xthe sampling time for, XAt;, must

In this paper, we consider the regulation problem of the hyperbolibe (a/a) At,. Then the spatial location associated wittkthesam-
PDE systems. The characteristic lines far& shown in Fig. 2. pling time will be the same for allsx Now we assume the point

Employing the method of characteristics [Ray, 1981], the sys-sensors are located in each spatial location corresponding to a sam-
tem on the characteristic line can be reduced to an ODE: pling point so that the location of point sensors are the integer mul-

tiple of gAt..
dx =B,(2)x +*C(z)u. Through discretization, we get the following discrete state space
@ model along characteristic lines:

Instead of contlnuou_s updgte of control mpgt, we Wl!l adopt d|g|ta! X(i+1)=Bx(i)+C(i)u().
control where control input is renewed at discrete times. For this

define Then G associated with this system is given by
T=L, c(1) 0 0
% c(?) B(2)C(1) 0
Now consider the region over the time interealtfr T] where a G= c(3 B(3)C(2 B(3)B(2)C(2)
characteristic line passing through iT) is shown for each sub- :
system for xas depicted in Fig. 3. C(N-1) B(N-1)C(N-2) B(N-1)B(N-2)C(N-3)
If the control input is fixed over the above region, the solution
above the characteristic line forwill be the same for each z. Now 0
consider successive such blocks and assume the control action is 0
fixed over each block. In each block, the solution will be constant 0
at each spatial position z above the characteristic ling fdnereas - :
the transient behavior will take place below the characteristic line . B(N -1)---B(2)C(1)

for x,. Exploiting this, we consider such a block as a batch ignor-
ing the transient behavior below the characteristic line,farhen With this discretized system, we are now ready to apply the Q-ILC
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technique.

Table 1. Process parameters

609

From the convergence result of Q-ILC, the states at the dis- Process parameter Value
cretized points on the characteristic lines converge to the desirect -
values. If the discretization is exact and the desired state is reach- v (m/min) !
able, then this in tum implies that the desired trajectory for original E (cal/mol) 2.0x10
hyperbolic systems is achieved along the characteristic lines. Even R (cal/mol-K) 1.987
if the desired state is reachable, the approximate discretization will p (kgft) 0.09
usually lead to minor off-set despite of the integral action of the Q- ¢, (calkkg-K) 700.231
ILC. This results from the lack of degree of freedom of control action Ko (1/min) 5x10°
and, thus, will not happen if we have sufficient degree of freedom. U,, (cal/min-K) 2000.0
However, when the approximation is good enough, this off-set will AH (cal/mol) 548.0001
be negligible since Q-ILC minimizes the off-set. Clearly if the de- V(1Y 10
sired trajectory is achieved above the representative characteristic L (m) 1
line for x, it is achieved over each entire block. When the desired
trajectory is not reachable, Q-ILC will minimizes the error between
the desired trajectory and the converged trajectory in the long run. 40 ® Stady State
Polynomial Fit
APPLICATION TO NONISOTHERMAL 25
TUBULAR REACTOR 5 ]
©
Consider the nonisothermal tubular reactor that is a reaction cor g 07
vection process. We assume a first order endothermic reaction tak § ]
place in the reactor: 287
A—B 204
and the associated reaction kinetics follows the Arrhenius Law: oo A o o6 AR o
4
CA — ~E/RT,
_Ddt %m =kee " Cy ®  Steady State
Polynomial Fit
where G is the concentration of species A; T is the reactor tem- 2451
perature; kis the pre-exponential constant; E is the activation en-
ergy; R is the gas constant. We adopt the following standard assum 340
tions on the ideal tubular reactor: °
% 335
» Perfect radial mixing takes place g&
« Diffusion is negligible @ 3307
» Densities and heat capacities for A and B are the same and co 1
stant 3254
Under these assumptions the species balance for A and ener 20 " " P o o

balance become

at 9z ke G
T __ 0T MMy emre , U o _
V5 pe ke T ()

with the boundary conditions
C.(0,1)=C,, T(0, )=T°

and initial conditions
Cuz, 0)=Cy(2), T(z, 0)=T(2)

where v is the velocity of the flowkH, is the heat of reactiop;is
the density; gis the heat capacity; & the jacket temperature, U is

Fig. 4. Steady state profiles.

The desired steady state profile is assumed to be the one when

the jacket temperature is constant as’R50 is depicted in Fig. 4.

For the application of the control strategy proposed in this paper,

we need linear hyperbolic PDEs. Hence we linearize the quasi-inear

hyperbolic PDEs around the desired steady state. Since the exact
solution of desired steady state is difficult to find, we obtain the an-
alytic expression of the desired steady state through the regression
with the 8th order polynomial (see Fig. 4) and use it for lineariza-
tion. It is

the heat transfer coefficient; V is the volume of reactor. The length C,.(z)=4.00005- 0.445222-1.72573%- 5.06454%+12.70154%

of the reactor L is assumed 1 m. Notice that these are quasi-linear

hyperbolic PDEs. The process parameters are listed in Table 1

—-8.700482- 1.921572+5.06086% 1.76172%,
. T(2)=320.00048+91.32149459.629092+122.33974%
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+23.97147%115.33297+76.04642% 2.5
—-13.00251%-2.43448%. — Reference
21 2y Oth lteration ]
Since the shape of the desired steady state is simple, the fitting relati b 2nd A@M A,
) . . ¥ 4th AP
error with the 8th order polynomial was less thah T@rough line- 15k | < sth AAA T |
arization, we have -8t A 2
Ay Fa
— AN
Xy __ 0Xy | ERLG, _ E  -erte g 1 RS =1
ot 97 ko 1 ORT;(Z) CAss(Z)Xz g L\Al
a_XZ _ % AHr - w 0.5F AA/\ B
a oz p, e, [© X it
_BH), B cemuac (o4 % R S e L e S R NS LR S
Upc, CRTL(2) R p%V o5l R Y
with the boundary conditions
x.(0, )=0, %(0, )=0 i 02 04 N 06 08 1.0
Z[m
and initial conditions . o .
Fig. 5. Convergence of ewith linearized model.
Xy(z, 0)=Xd2), %(z, 0)=%d2)
where 30 ; : ‘ ,
~—— Reference Fan
Xi(t, 2)=G(t, 2)-Cood2), %(t, 2)=T(t, 2)-T{2), u(t, 2)=T(t, 2)-350. & Oth iteration AD
LI + 2nd A
Employing the method of characteristics, we have the following * Z:: I
ODEFE’s along the characteristic line. o 8th o
10} -
- ‘+*_++H%i+; A
Xm _ k E/RTSS(VL)XI K, 2E E/FeTss(\n)CAss(vt)X2 r s } i ey .
dt RTss(Vt) < o ;‘t‘l“*'a ik Y vkx*%f‘l‘*‘"‘grj‘*; Zﬁ&iv
d_X2 ,k ~E/RTdvt) m Fay
dt pcp 1 AN A
I o
_ -10} 4
_ éH,ko 2E E/RTA) C,.vt) + %( A A
Dpe, RTZ(vt) pCV pq,v N )
PN
These ODE's are discretized with the sampling #tw.025 20r a R D88 ]
min. For these ODE's, the exact discretization is not possible an A/\AAA;AAAAA s
thus the approximate discretization technique is used. To obtain th 30 > = y v o
better approximate discretization, one can employ the more dis ' o2 ' '
f:r.e.tlzanon y\{lthln a sampling time and solve them for x(k+1) with Fig. 6. Convergence of gwith linearized model,
initial condition x(k) and constant control u(k).
Now we are ready to apply the control strategy proposed in this
paper. For this, we assume the reactor is divided into five differen T Reforonos
. . Vo VaAVAVAVAVAVAVAN
zones with the same length and each zone is heated by separate h AAAAAAAA o gtzlteration
ing jacket. Moreover we assume the temperature and the concentr 40 ; .
tion are measured at every discretized point by point sensors. Final * z::
the control inputs are assumed to satisfy the saturation constraints 20} TaVAVAVAVAVAVAVAN :
298<T(2)<400
g , N |
or =} - +TT 4+
—52<u<50.
20 4
The weighting matrices associated with Q-ILC are as follows: DABADALA
- 40+ 1
Q :|:O j’ R FAVAVAVAVAVAVAN
% 0.975

Since the control input must be the same over the each zone co

trolled by a heating jacket. We need the following constraints:

AUgy; =DUgyi+y =7+ =DUsi47, Ui =0, 1,..., 4

z [m]

Fig. 7. Convergence of u with linearized model.

The simulation of the closed loop system starting from a non-with the linearized model are shown in Figs. 5, 6 and 7 whereas
steady state trajectory has been carried out. The simulation resultose with the nonlinear model in Figs. 8, 9 and 10.
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25 ™ T y T
— Reference ADDDDAN A
A Oth Iteration e Shan,
24 4+ 2nd AL Tha,
|« 4 A TRy,
x  6th Eay e
1.5p . 8th e
S —
N
= 1 N
3 N
£
= AN
T 05; A
A
TR ++Ti4.7 EXTEEEETET N NN Faa
' TA A b g,
05}
1 . ) . .
0 0.2 0.4 0.6 0.8 1.0
z[m]
Fig. 8. Convergence of gwith nonlinear model.
30 u y
—— Reference Al
4 Oth lteration A
20} F 2nd A
*  4th A
x 6th A
o 8th
10 Fay
TR ot
— +++ e i ++“"++++++++ b IR -
X ossdk ig@g&@ PR R T LR LR b g#%ﬁ@‘é‘%_;wfwmi.%vw* R
™~ aN
w
Jas Fay
a
1o} © Jay
Fay PN
& Fa\
20 o VAYAVAN
=20 A
A /\AAAA
AAAAA/_\AAA“
30 . : . .
o] 0.2 0.4 0.6 0.8 1.0
z [m]

Fig. 9. Convergence of gwith nonlinear model.

60

—— Reference
Vi VAVAVAVAVAVAVAN

JAVAVAVAVAVAVAVAN +  2nd
% 4th
«  6th
o 8th

40+

4 Oth tteration

20t ANDANNLN

U [K]
o

20+
FAVAVAVAVAVAVAVAN

401

-60

FAVAVAVAVAVAVAY:

z {m]

Fig. 10. Convergence of u with nonlinear model.

0.975
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in the spatial direction, the error trajectories @fe not quite smooth.
In practice, these trajectories will be smoothen out since the exact
step change is not possible physically.

CONCLUSION

The existing control strategies for systems described by first order
hyperbolic PDE’s are unconstrained, continuous time and infinite
dimensional ones that need to be approximated for computer control.
In this paper, we have proposed a constrained finite dimensional dig-
ital regulation technique that guarantees the stability and performance
of the closed loop system. It is illustrated with an example that the
proposed technique is promising for computer control of systems
described by first order hyperbolic PDE’s subject to constraints.
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