
Korean J. Chem. Eng., 18(5), 606-611 (2001)

ntly
nal
ro-

 for
finite
ways
ysi-
me.
 the
n the
 con-
d to
 de-
ies

 sys-
ons
n-

con-
n is
rob-

t al.,
ing
trat-
on-
e of
r is
th a

et
trol

ess
 tra-
g.
put
ches.
606

†To whom correspondence should be addressed.
E-mail: jchoi@ccs.sogang.ac.kr

Constrained Digital Regulation of Hyperbolic PDE Systems:
A Learning Control Approach

Jinhoon Choi†, Beom Joon Seo and Kwang Soon Lee

Department of Chemical Engineering, Sogang University,
1 Sinsoo-Dong, Mapo-Koo, Seoul 121-742, Korea

(Received 18 May 2001 • accepted 21 August 2001)

Abstract−−−−In this paper, exploiting repetitive properties, a constrained digital regulation technique for first order hy-
perbolic PDE systems is proposed that guarantees the stability and performance of the closed loop system.
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INTRODUCTION

Most of the process control algorithms in practice are based on
the finite dimensional control theory. However, many chemical pro-
cesses are described by partial differential equations (PDE’s) and
are infinite dimensional in nature due to spatial variation. Espe-
cially when the convection is dominant and thus diffusion can be
ignored, chemical processes that are described by a system of first
order hyperbolic PDE’s. Such processes include tubular reactors
[Ray, 1981], fixed bed reactors [Stangeland and Foss, 1970] and
pressure swinging adsorption [Ruthven and Sircar, 1994]. More
examples can be found in [Rhee et al., 1986]. Conventionally such
infinite dimensional systems described by PDE’s are controlled by
finite dimensional controllers that are designed through finite dimen-
sional reduction of the process model via the spatial discretization
techniques. However, such spatial discretization leads in general to
a high order finite dimensional system. Moreover, the finite dimen-
sional controllers based on the finite dimensional models can lead
to an unstable closed loop system. Although stability is achieved,
the performance of such controllers can be very poor when they
are applied to an infinite dimensional system. For diffusion domi-
nant systems that are described by parabolic PDE’s, there are in-
finitely many discrete modes among which only finite number of
modes are slow and all the rests are stable fast [Balas, 1979; Fried-
man, 1976]. Hence, for such systems, a meaningful low dimensional
approximation possible through modal decomposition. However,
for first order hyperbolic PDE’s, all the modes have the same, or
almost the same, energy. Thus, a low dimensional model through
modal decomposition is not possible since an infinite number of
modes are necessary for accurate approximation of the original sys-
tem. As a result, even if the finite dimensional high order system
model obtained through spatial discretization is reduced by the op-
eration data based model reduction techniques such as Karhunen-
Loeve decomposition [Sirovich, 1987], such reduced system may
work very poorly under the situation different from operation data.
Due to such prob- lems, the optimal control approach was adopted
for the control of hyperbolic PDE systems, that leads to infinite di-

mensional controllers [Wang, 1966; Lo, 1973; Balas, 1986]. Rece
the geometric control theory based design of infinite dimensio
controller without resorting to optimal control techniques was p
posed in Christofides and Daoutidis [1996].

The aforementioned optimal and geometric control strategies
hyperbolic PDE systems are unconstrained, continuous and in
dimensional ones that are quite complicated. Constraints are al
present in any practical control problems. For instance, the ph
cal restriction of the actuator limits the value the input can assu
Moreover due to safety, environmental regulation and so on,
states of the plant are desired to lie within a designated area i
state space. Moreover, since all the chemical processes are
trolled by computers nowadays, these control techniques nee
be implemented in discrete time. Hence it is clearly desirable to
velop some constrained finite dimensional digital control strateg
that guarantee the stability and performance of the closed loop
tem. In this paper, we first show that the hyperbolic PDE soluti
are repetitive in nature. Exploiting this, we reformulate the co
strained regulation problem of hyperbolic PDE systems as a 
strained batch process control problem where the control actio
updated in discrete time. For the resulting batch process control p
lem, we adopt the recently developed Q-ILC techniques [Lee e
1996, 2000; Chin et al., 1999; Jung et al. 1999], that is a learn
control strategy for batch processes. The resulting regulation s
egy is a constrained, digital and finite dimensional one. The c
vergence of the control law is guaranteed from the convergenc
Q-ILC techniques. Moreover, the performance of the controlle
also guaranteed. The proposed methodology is illustrated wi
tubular reactor example.

PRELIMINARIES ON Q-ILC

In this section, we briefly review the Q-ILC technique [Lee 
al., 1996, 2000], which is a model-based iterative learning con
technique developed specifically for multivariable batch proc
control problems. It can be regarded as a generalization of the
ditional ILC techniques developed mainly for robot-arm trainin
The Q-ILC technique can be used to recursively refine the in
trajectory based on the tracking error obtained in the previous bat

Consider an nu-input, ny-output discrete-time linear time varying
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batch process that is run over a prespecified time interval. Since
only the transient behavior exists in the operation of a batch pro-
cess and most of the chemical processes are nonlinear, the process
model for control is typically described by linear time varying dif-
ference equations that are obtained for instance through lineariza-
tion around the desired trajectory. Since a batch operation is defined
over a finite time interval, a general and convenient description of
process dynamics is a linear algebraic system relating the input se-
quence to the output sequence over the entire batch horizon. Define

(1)

Then, we may describe the effect of u on y as

y=Gu+b (2)

where G is the dynamic gain matrix which is assumed to be known
(through identification or linearization of a nonlinear model with
respect to a reference trajectory) and b is the bias vector which may
be unknown. The causality of the process restricts G to have a lower
triangular structure.

Now define the error trajectory vector:

e=yd −y (3)

where yd is the desired reference output trajectory. The error trajec-
tory may depend on several things including input u and initial con-
dition (i.e., condition at the start of a batch).

Let ek be the error vector at the kth batch. Then, (2) can be re-
written as

ek+1=ek− G∆uk+1. (4)

where ∆uk+1=uk+1−uk.
Q-ILC is derived based on model (4) and solves the following

minimization at the start of the kth batch:

(5)

where Q and R are PD (positive definite) matrices.
For the unconstrained case, the resulting control law is

uk=uk−1+HQek− 1|k− 1 (6)

where

HQ=(GTQG+R)− 1GTQ. (7)

As in model predictive control, we may incorporate constraints
imposed on the input and output variables into the above quadratic
minimization. In this case, (5) becomes a standard quadratic pro-
gramming problem.

It has been shown that the Q-ILC algorithm given by (6) has the
following properties [Lee et al., 2000]:
1. Convergence

If the desired trajectory is reachable (this is always true when
we have sufficient control inputs and thus G has full row rank), the
error trajectory e for system (4) converges to zero asymptotically
as the number of batch grows for any choice of Q>0 and R>0.
Otherwise the Q-ILC minimizes the error. The same is true for the
constrained algorithm under some reasonable assumptions on the
choice of constraints.

2. Robustness
The convergence property is retained when the model erro

within certain limits. The region of attractivity can be increased 
increasing the input weight R. However, this slows down the r
of convergence.
3. Disturbance Sensitivity

The severe sensitivity of input signal to high frequency com
nents of the output error in other traditional ILC algorithms can
abated without losing the convergence property. Indeed it can
adjusted at will by the choice of R.

FORMULATION

The behavior of first order hyperbolic PDE systems cannot
reduced to a low dimensional manifold. Hence the available c
trol design techniques for such systems results in a unconstra
infinite dimensional controller that updates the distributed cont
in continuous time. However as we will show in this section t
solution of hyperbolic PDE is repetitive in nature. Hence we sh
that, updating the control iteratively, we can obtain a simple c
strained digital finite dimensional regulation strategy for first order h
perbolic PDE systems that guarantees the stability and performa

Consider the linear first order hyperbolic partial differential equ
tion:

with the boundary condition

x(t, 0)=xi

and the initial condition:

Such system may be obtained from the linearization around
steady state of the quasi-linear first order PDE systems such as
tion convection processes:

or the nonlinear first order PDE systems:

Here we assume the matrix A is simple and is in the form

where a1≥a2≥…≥an>0. Hence we have

where Bi(z) and Ci(z) are the ith row of B(z) and C(z), respectivel
In this paper we will consider a finite number of control actuat

yT
 = yT 1( )yT 2( )…yT N( )[ ]

uT
 = uT 0( )uT 1( )…uT N  − 1( )[ ].

min
1
2
--- ek k− 1

T Qek k− 1+ ∆uk
TR∆uk{ }

∆uk

∂x
∂t
------  = − A

∂x
∂z
------  + B z( )x + C z( )u

x 0, z( ) = x0 z( ), z∀ 0, L[ ]∈ .

∂x
∂t
------  = − A

∂x
∂z
------  + F x( )x + G x( )u

∂x
∂t
------  = − A

∂x
∂z
------  + H x, u( ).

A = 

a1  0  …  0

0  a2  …  0

       

0  …  0  an

...
. . . ..

.. . .

∂xi

∂t
-------  = − ai

∂xi

∂z
-------  + Bi z( )x + Ci z( )u
Korean J. Chem. Eng.(Vol. 18, No. 5)
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ILC
and finite number of point sensors. Namely different control inputs
are applied in each prespecified intervals and the states are meas-
ured many but finite number of locations by point sensors as de-
picted in Fig. 1.

In this paper, we consider the regulation problem of the hyperbolic
PDE systems. The characteristic lines for xi are shown in Fig. 2.

Employing the method of characteristics [Ray, 1981], the sys-
tem on the characteristic line can be reduced to an ODE:

Instead of continuous update of control input, we will adopt digital
control where control input is renewed at discrete times. For this
define

Now consider the region over the time interval [τ, τ+T] where a
characteristic line passing through (L, τ+T) is shown for each sub-
system for xi as depicted in Fig. 3.

If the control input is fixed over the above region, the solution
above the characteristic line for xn will be the same for each z. Now
consider successive such blocks and assume the control action is
fixed over each block. In each block, the solution will be constant
at each spatial position z above the characteristic line for xn whereas
the transient behavior will take place below the characteristic line
for xn. Exploiting this, we consider such a block as a batch ignor-
ing the transient behavior below the characteristic line for xn. Then

the digital regulation of the hyperbolic PDE systems reduces 
batch process control problem for which numerous techniques
available. In this paper, we will apply the Q-ILC technique that h
been developed recently. In each block, the characteristic line fi

depicted in Fig. 3 will be used as the representative characte
line for xi since, above the characteristic line for xn, xi will be the
same on any characteristic lines for xi.

Since the Q-ILC technique requires the discrete time model,
ODE’s need to be discretized. Exact discretization [Rugh, 1996
desirable. However, if this is not possible, approximate discret
tion can also be used. Notice that the time scales are differen
dynamics of each xi on the representative characteristic line. Hen
for coordination, sampling times of the ODE’s on the represen
tive characteristic lines should be different for each xi. Namely, if
∆tn is the sampling time for xn, the sampling time for xi, ∆ti, must
be (an/ai) ∆tn. Then the spatial location associated with the kth sam-
pling time will be the same for all xi's. Now we assume the poin
sensors are located in each spatial location corresponding to a
pling point so that the location of point sensors are the integer m
tiple of an∆tn.

Through discretization, we get the following discrete state sp
model along characteristic lines:

x(i+1)=B(i)x(i)+C(i)u(i).

Then G associated with this system is given by

With this discretized system, we are now ready to apply the Q-

dxi

dt
-------

ci

= Bi z( )x + Ci z( )u.

T = 
L
an

----.

G = 

C 1( )  0  0

C 2( )  B 2( )C 1( )  0

C 3( )  B 3( )C 2( )  B 3( )B 2( )C 1( )
     

C N − 1( )  B N −  1( )C N −  2( )  B N − 1( )B N  − 2( )C N −  3( )

. . .

. . .

...

…  0
…  0
…  0

   
…  B N − 1( )…B 2( )C 1( )

. . .

...

Fig. 1. Sensors and actuators.

Fig. 2. Characteristic lines for xi .

Fig. 3. Representative characteristic lines.
September, 2001
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From the convergence result of Q-ILC, the states at the dis-

cretized points on the characteristic lines converge to the desired
values. If the discretization is exact and the desired state is reach-
able, then this in turn implies that the desired trajectory for original
hyperbolic systems is achieved along the characteristic lines. Even
if the desired state is reachable, the approximate discretization will
usually lead to minor off-set despite of the integral action of the Q-
ILC. This results from the lack of degree of freedom of control action
and, thus, will not happen if we have sufficient degree of freedom.
However, when the approximation is good enough, this off-set will
be negligible since Q-ILC minimizes the off-set. Clearly if the de-
sired trajectory is achieved above the representative characteristic
line for xi, it is achieved over each entire block. When the desired
trajectory is not reachable, Q-ILC will minimizes the error between
the desired trajectory and the converged trajectory in the long run.

APPLICATION TO NONISOTHERMAL
TUBULAR REACTOR

Consider the nonisothermal tubular reactor that is a reaction con-
vection process. We assume a first order endothermic reaction takes
place in the reactor:

A�B

and the associated reaction kinetics follows the Arrhenius Law:

where CA is the concentration of species A; T is the reactor tem-
perature; k0 is the pre-exponential constant; E is the activation en-
ergy; R is the gas constant. We adopt the following standard assump-
tions on the ideal tubular reactor:

• Perfect radial mixing takes place
• Diffusion is negligible
• Densities and heat capacities for A and B are the same and con-

stant

Under these assumptions the species balance for A and energy
balance become

with the boundary conditions

CA(0, t)=C0
A, T(0, t)=T0

and initial conditions

CA(z, 0)=CA0(z), T(z, 0)=T0(z)

where v is the velocity of the flow; ∆Hr is the heat of reaction; ρ is
the density; cp is the heat capacity; Tj is the jacket temperature, U is
the heat transfer coefficient; V is the volume of reactor. The length
of the reactor L is assumed 1 m. Notice that these are quasi-linear
hyperbolic PDEs. The process parameters are listed in Table 1.

The desired steady state profile is assumed to be the one w
the jacket temperature is constant as 350oK. It is depicted in Fig. 4.

For the application of the control strategy proposed in this pa
we need linear hyperbolic PDEs. Hence we linearize the quasi-li
hyperbolic PDEs around the desired steady state. Since the 
solution of desired steady state is difficult to find, we obtain the 
alytic expression of the desired steady state through the regre
with the 8th order polynomial (see Fig. 4) and use it for lineari
tion. It is

CAss(z)=4.00005− 0.44522z−1.72573z2 − 5.06454z3+12.70154z4

CAss(z)=−8.70048z5− 1.92157z6+5.06086z7−1.76172z8,
Tss(z)=320.00048+91.32149z−159.62909z2+122.33974z3

− 

dCA

dt
--------- 

 
rxn

 = k0e
− E RT⁄ CA

∂CA

∂t
---------  = − v

∂CA

∂z
--------- − k0e

− E RT⁄ CA

∂T
∂t
------ = − v

∂T
∂z
------  − 

∆Hr

ρcp

---------k0e
− E RT⁄ CA + 

U
ρcpV
------------ Tj  − T( )

Table 1. Process parameters

Process parameter Value

v (m/min) 1
E (cal/mol) 2.0×104

R (cal/mol·K) 1.987
ρ (kg/lt) 0.09
cp (cal/kg·K) 700.231
k0 (1/min) 5×1012

Uw (cal/min·K) 2000.0
∆H (cal/mol) 548.0001
V (lt) 10
L (m) 1

Fig. 4. Steady state profiles.
Korean J. Chem. Eng.(Vol. 18, No. 5)



610 J. Choi et al.

eas
Tss(z)=+23.97147z4−115.3329z5+76.04642z6

Tss(z)=−13.00251z7−2.43448z8.

Since the shape of the desired steady state is simple, the fitting relative
error with the 8th order polynomial was less than 10−4. Through line-
arization, we have

with the boundary conditions

x1(0, t)=0, x2(0, t)=0

and initial conditions

x1(z, 0)=x10(z), x2(z, 0)=x20(z)

where

x1(t, z)=CA(t, z)−CAss(z), x2(t, z)=T(t, z)−Tss(z), u(t, z)=Tj(t, z)−350.

Employing the method of characteristics, we have the following
ODE’s along the characteristic line.

These ODE’s are discretized with the sampling time ∆t=0.025
min. For these ODE’s, the exact discretization is not possible and
thus the approximate discretization technique is used. To obtain the
better approximate discretization, one can employ the more dis-
cretization within a sampling time and solve them for x(k+1) with
initial condition x(k) and constant control u(k).

Now we are ready to apply the control strategy proposed in this
paper. For this, we assume the reactor is divided into five different
zones with the same length and each zone is heated by separate heat-
ing jacket. Moreover we assume the temperature and the concentra-
tion are measured at every discretized point by point sensors. Finally
the control inputs are assumed to satisfy the saturation constraints:

298≤Tj(z)≤400

or

−52≤u≤50.

The weighting matrices associated with Q-ILC are as follows:

Since the control input must be the same over the each zone con-
trolled by a heating jacket. We need the following constraints:

The simulation of the closed loop system starting from a non-
steady state trajectory has been carried out. The simulation results

with the linearized model are shown in Figs. 5, 6 and 7 wher
those with the nonlinear model in Figs. 8, 9 and 10.

∂x1

∂t
------- = − v

∂x1

∂z
------- − k0e

− E RTss z( )⁄
x1 − k0

E

RTss
2 z( )

-----------------e
− E RTss z( )⁄

CAss z( )x2

∂x2

∂t
------- = − v

∂x2

∂z
------- − 

∆Hr

ρcp

---------k0e
− E RTss z( )⁄

x1

− 
∆Hr( )
ρcp

-------------k0
E

RTss
2 z( )

-----------------e
− E RTss z( )⁄

CAss z( ) + 
U

ρcpV
------------ 

 x2 + 
U

ρcpV
------------u

dx1

dt
------- = − k0e

− E RTss vt( )⁄
x1 − k0

E

RTss
2 vt( )

-------------------e
− E RTss vt( )⁄

CAss vt( )x2

dx2

dt
------- = − 

∆Hr

ρcp

---------k0e
− E RTss vt( )⁄

x1

− 
∆Hr

ρcp

---------k0
E

RTss
2 vt( )

-------------------e
−  E RTss vt( )⁄

CAss vt( )  + 
U

ρcpV
------------ 

 x2 + 
U

ρcpV
------------u

Q = 
7  0

0  7
, R = 1.

∆u5 i×  = ∆u5 i + 1×  = 
…

 = ∆u5 i + 7× , i  = 0, 1,…, ∀ 4.

Fig. 5. Convergence of e1 with linearized model.

Fig. 6. Convergence of e2 with linearized model.

Fig. 7. Convergence of u with linearized model.
September, 2001
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For both linearized and nonlinear models, the trajectories con-
verge to the desired ones. Due to the step changes of the control input

in the spatial direction, the error trajectories of e2 are not quite smooth.
In practice, these trajectories will be smoothen out since the e
step change is not possible physically.

CONCLUSION

The existing control strategies for systems described by first o
hyperbolic PDE’s are unconstrained, continuous time and infin
dimensional ones that need to be approximated for computer co
In this paper, we have proposed a constrained finite dimensiona
ital regulation technique that guarantees the stability and perform
of the closed loop system. It is illustrated with an example that
proposed technique is promising for computer control of syste
described by first order hyperbolic PDE’s subject to constraints.
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