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Abstract 

Constrained efficient allocation (CE) is characterized in a model of adverse selection and 
directed search (Guerrieri, Shimer, and Wright (2010)). CE is defined to be the allocation 
that maximizes welfare, the ex-ante utility of all agents, subject to the frictions of the 
environment. When equilibrium does not achieve the first best (the allocation that 
maximizes welfare under complete information), then welfare in the CE is strictly higher 
than welfare in the equilibrium allocation. That is, equilibrium is not constrained efficient. 
Under some conditions, welfare in the CE even attains welfare in the first best. Finally, 
sufficient conditions are provided under which equilibrium is not constrained Pareto 
efficient, either. Cross-subsidization is the key to all these results. In an asset market 
application, the first best is shown to be implementable through tax schedules that are 
monotone in the asset prices. 

Bank topics: Market structure and pricing; Financial system regulation and policies; 

Financial markets; Economic models 

JEL codes: D82; D83; E24; G1; J31; J64 

 
Résumé 

Une allocation efficace opérée sous contrainte est caractérisée dans un modèle de sélection 
adverse et de prospection ciblée (Guerrieri, Shimer et Wright, 2010). Cette allocation est 
définie comme une allocation maximisant le bien-être (l’utilité espérée de tous les agents) 
en présence de frictions. Lorsque l’optimum atteint à l’équilibre n’est pas de premier rang 
(l’allocation qui maximalise le bien-être en situation d’information parfaite), le bien-être 
associé à l’allocation efficace est strictement supérieur au bien-être produit par l’allocation 
d’équilibre. Autrement dit, l’équilibre n’est pas efficace en présence de frictions. À 
certaines conditions, le bien-être associé à l’allocation efficace est même égal à celui de 
l’optimum de premier rang. Enfin, nous établissons les conditions sous lesquelles, en 
présence de frictions, l’équilibre n’est pas un optimum de Pareto. Des subventions croisées 
expliquent l’ensemble des résultats. Dans le cadre d’un marché d’actifs, nous montrons 
que l’optimum de premier rang est réalisable si des barèmes de taxes uniformes sont 
appliqués aux prix des actifs. 

Sujets : Structure de marché et fixation des prix ; Réglementation et politiques relatives 

au système financier ; Marchés financiers ; Modèles économiques    

Codes JEL : D82 ; D83 ; E24 ; G1 ; J31 ; J64 



Non-Technical Summary

Adverse selection and search frictions are prevalent in the asset, insurance, labor and

housing markets. For example, consider markets for assets traded over the counter such as

mortgage-backed securities, structured credit products and corporate bonds. Sellers in these

markets may have some private information about the value of their assets, and they must

incur search costs to find buyers for their assets.

I study socially efficient allocations in an environment with search frictions and adverse

selection using a mechanism design approach: the planner maximizes the weighted average

of the payoff to agents subject to the same frictions present in the market economy, namely

incentive compatibility and participation constraints of the agents and the planner’s budget

constraint. The main result is that the market allocation is not constrained efficient. That

is, the planner can always achieve higher welfare than the market economy. Also, the planner

can sometimes achieve allocations that Pareto dominate the market allocation. Under some

conditions, the planner can completely undo the effects of adverse selection and achieve the

same welfare level attainable in the economy with complete information. To summarize, an

optimal intervention in the form of taxation can improve efficiency of the market.

If the intervention is only in the form of sales tax, then the optimal tax schedule in an

asset market application is non-monotone in the asset prices. Implementing a non-monotone

tax schedule is difficult from a practical point of view, because it requires the planner to

have accurate information about the distribution of types. I show that if entry tax is also

used, the optimal allocation can be implemented through sales and entry tax schedules that

are monotone in the asset prices.

To understand the mechanism through which the planner can achieve better outcomes,

consider a labor market example. There are two types of workers: low type and high type.

High-type workers incur less cost for working longer hours and generate higher output (both

in average and at the margin). In equilibrium, two types of contracts are offered: a short-

hours low-wage contract attracting low-type workers and a long-hours high-wage contract

attracting high-type workers. Indeed, high-type workers work inefficiently for longer hours

(intensive margin) than they would work under complete information and are matched with

inefficiently higher probability, because there is excessive entry of firms (extensive margin).

To correct these inefficiencies, the planner uses the policy of taxing the firms that offer

long-hours contracts and subsidizing other firms. This policy discourages excessive entry of

firms. Also, because of free entry of firms, eventually workers pay or receive these taxes and

subsidies. As a result, this policy discourages low-type workers from applying for the long-

hours contracts. Altogether, this policy corrects the inefficiencies along both the extensive

and intensive margins while all constraints, especially the incentive compatibility constraint

of low-type workers to apply for the long-hours contract, remain satisfied.
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1 Introduction

Adverse selection and search frictions are prevalent in the asset, insurance, labor and housing

markets. For example, consider markets for assets traded over-the-counter such as mortgage-

backed securities, structured credit products and corporate bonds. Sellers in these markets

may have some private information about the value of their assets, and they must incur

search costs to find buyers for their assets.

Guerrieri, Shimer, and Wright (2010), GSW hereafter, introduce a model of adverse

selection and search frictions. Particularly, they study a directed (competitive) search model

in which agents on one side of the market post terms of trade and agents on the other

side search for trading partners. Directed search models are interesting and widely used,

because the equilibrium allocation with directed search and complete information is usually

constrained efficient. Also, directed search may be more realistic than random search in

many markets, like the ones mentioned above. Furthermore, as GSW show, using directed

search resolves the problem that competitive equilibrium with adverse selection may not

even exist (Rothschild and Stiglitz (1976)).

GSW define and characterize equilibrium and show its existence and uniqueness. Be-

cause equilibrium in some examples that they present fails to achieve the first best, i.e., the

efficient allocation under complete information, a natural and important question is whether

it is possible to achieve “better” allocations than the market, with the planner’s intervention

consistent with the frictions of the environment. To address such questions, I study socially

efficient allocations in their environment by using a mechanism design approach. In partic-

ular, I study whether the equilibrium allocation is socially efficient or not. And, what is the

best allocation that the planner can achieve?

The environment can be briefly described as one with a large number of buyers whose

population is endogenously determined through free entry. There is a fixed population of

sellers of I ∈ N types who have private information about their types. Buyers and sellers

match bilaterally and trade in different locations, called submarkets. In each submarket,

there are search frictions in the sense that buyers and sellers on both sides are matched

generally with probability less than one.

To study constrained efficiency in this environment, consider a planner who chooses an

allocation that maximizes welfare, the ex-ante payoff to all types, subject to the frictions of

the environment. Call this allocation the constrained efficient allocation (CE). In Theorem 1,

I show that the planner achieves strictly higher welfare than equilibrium for any distribution

of types when equilibrium does not achieve the first best (ex-ante incentive inefficiency of

equilibrium). In Theorem 3, I show that the planner can even achieve the first best under

relatively mild conditions. These results are important as they imply that although adverse

selection can lead to inefficiency, appropriate interventions can completely undo the effects of
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adverse selection and recover efficiency. In Theorem 4, I provide necessary conditions for the

CE. This result is useful for the environments in which the sufficient conditions of Theorem

3 may not hold. Pinning down the CE from these necessary conditions is usually easy in

economic applications. Finally, in Theorem 2, I show that if the measure of lower types is

sufficiently small, then the equilibrium allocation is not constrained Pareto efficient (interim

incentive inefficiency of equilibrium). That is, there exists an allocation that satisfies all

participation and incentive constraints of the agents and Pareto dominates the equilibrium.

This result is reminiscent of a well-known result that competitive equilibrium with adverse

selection, even if it exists, may not be constrained Pareto efficient (e.g., Greenwald and

Stiglitz (1986), among others).

The key to all these results is cross-subsidization. That is, some types should be taxed

to finance subsidies to other types. The important task in the proofs is to show how cross-

subsidization should be used, i.e., how the contracts allocated to different types should be

changed compared with equilibrium and how much transfers different types should pay or

receive. First, I show, similar to GSW, that it is sufficient to consider only some incentive

compatibility (IC) constraints, only the upward IC constraints, to characterize equilibrium.

The upward (downward) IC constraint means that a lower (higher) type should not gain by

reporting a higher (lower) type. Second, I show that the downward IC constraints are not

binding in equilibrium. That is, all types strictly prefer to report their own type rather than

a lower one. These two points together provide a great deal of flexibility for the planner

to construct better allocations: if lower types are equally subsidized by a sufficiently small

amount, then none of the IC constraints are violated.

To construct an allocation with higher welfare than the equilibrium allocation, assuming

that type i’s equilibrium allocation is different than the first best allocation, the planner

subsidizes types 1, 2, ..., i − 1 by a small amount. To finance these subsidies, the planner

taxes all types in a lump sum way. Since the amount of this lump sum tax is small too,

the participation constraints of agents are not affected. The IC constraints are not affected

either as mentioned above, so this allocation respects all the constraints that the planner

faces (budget-balance, participation and incentive constraints). Therefore, welfare in this

allocation is higher than welfare in the equilibrium allocation, as type i creates more surplus

due to the relaxation of upward IC constraints of lower types, and other types continue to

create the same amount of surplus.

To construct an allocation that Pareto dominates the equilibrium allocation, the same

schedule of subsidies is used as above, but they are now financed by taxing only types

1, 2, ..., i. If the level of improvement in the type i’s payoff resulting from the relaxation of

IC constraints is greater than the amount of tax that type i should pay, then this allocation

will Pareto dominate the equilibrium allocation. This happens if the aggregate measure of

types 1, 2, ..., i− 1 is sufficiently smaller than the measure of type i.
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There has been much discussion post-financial crisis about the role of private information

in causing this crisis. Consequently, many policy questions have arisen, one of which is

whether subsidizing asset purchases is a good policy from a social point of view. To the best

of my knowledge, no paper has studied this question yet, but some papers such as Chang

(2014), Guerrieri and Shimer (2014a) and Chiu and Koeppl (2016) have studied positive

implications of these and similar policies. Guerrieri and Shimer (2014a) study the effects of

asset subsidy programs by an entity with deep pockets and show that these programs can

increase liquidity and prices of assets, therefore saving the market from a liquidity crisis.

Similarly, Chang (2014) shows that the purchase of low-price assets increases the liquidity

of all assets in the market. None of the above papers consider budget-balanced policies, nor

do they study the optimal one.1

To characterize the optimal policy that is budget-balanced in these markets, I study a

model of asset market with lemons. Sellers have one indivisible asset that is of two types.

The high-type asset is more valuable to both buyers and sellers. In the unique equilibrium,

which is separating, sellers with high-type assets strictly prefer to trade in the submarket

with a higher price but lower probability of finding a buyer. Sellers with low-type assets,

conversely, sell their assets in the submarket with a low price but higher probability of finding

a buyer. These sellers, indeed, are indifferent between the two submarkets.

The optimal policy is to subsidize trade in the low-price submarket and tax trade in the

high-price one so that low-type sellers strictly prefer the former to the latter. Since the IC

constraint of low-type sellers to go to the high-price submarket is now relaxed, more buyers

are willing to enter the high-price one, increasing the chances of high-type sellers to meet

a buyer. As a result, welfare increases as the volume of trade increases compared with the

equilibrium allocation. Furthermore, if the fraction of low-type sellers in the population

is sufficiently small, then the same cross-subsidization scheme can be used to construct an

allocation that Pareto dominates the equilibrium.

This two-type model is extended to a continuous-type one to investigate whether the

optimal submarket-specific sales tax is monotone in the asset prices, similar to the two-type

model. It turns out that this is not the case. In the next step, I show that imposing two types

of taxes, sales tax and submarket-specific entry tax, solves the non-monotonicity problem.

Entry tax is levied on buyers conditional on entry to each submarket whether or not they

find a match. This result states that the planner can always design monotone tax schedules,

decreasing entry tax and increasing sales tax, to implement the CE.

This paper is related to the literature on directed as well as random search. It is well

1Since the budget-balance condition is taken into account in the present paper, its analysis is specially

useful for long-run interventions, when budget considerations are important. The policy analyses in the

aforementioned papers seem to be more concerned with short-time (crisis management) policies, so they do

not restrict policies to be budget balanced.
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established in the literature that the agents entering the market in the directed search settings

can internalize search externalities by choosing the “right” price (contract) and committing

to them, if the agents’ types are observable and contractible. The following papers study

directed search: Peters (1991), Moen (1997), Acemoglu and Shimer (1999a), Shi (2001, 2002),

Mortensen and Wright (2002), Shimer (2005) and Eeckhout and Kircher (2010), among many

others. In the random search settings, the equilibrium is generally inefficient because the

entrants generally fail to internalize the search externalities. See Pissarides (2000) for a

random search model.

My paper is the first in the directed search literature that uses a mechanism design

approach. The only paper that is somewhat an exception is Golosov, Maziero, and Men-

zio (2013), who study a model with directed search and moral hazard. The information

asymmetry in their paper is not about gains from trade; rather, it is about workers’ search

decision. More specifically, workers have private information whether they have searched

or not, and if they have searched, toward which type of firms. Guerrieri (2008) and Moen

and Rosén (2011) study the constrained efficient allocation in environments with directed

search and private information. In both papers the agents who search (workers) do not have

ex-ante private information. Rather, their information is match-specific and realized only

after they are matched with firms.

The idea that cross-subsidization helps to relax incentive constraints has been used in

the adverse selection literature (e.g., Miyazaki (1977) and Spence (1978)). I elaborate on

the relationship between my results and important contributions in this literature, namely,

Rothschild and Stiglitz (1976), Wilson (1977), Holmström and Myerson (1983) and Maskin

and Tirole (1992), in Section 6, but my contributions to this literature can be summarized as

follows: First and foremost, I show that the inefficiency of equilibrium in standard adverse

selection models fully extends to environments with search and matching.2 Second, my

results regarding ex-ante and interim inefficiency of equilibrium are more general compared

with other results in this literature, if one incorporates the matching probability into the

payoff function of agents and treats it as another dimension of contract space. My results

are more general as I do not impose any restrictions on the number of types or dimension

of contract space (except being finite) or concavity of payoff functions. Third, although the

idea that cross-subsidization is helpful is not new, my results shed light on the way that

cross-subsidization should be used.

The paper is organized as follows. In Section 2, I develop the environment of the model

and define the planner’s problem. In Section 3, I state my main results. In Section 4, I

study a two-type asset market application, characterize the constrained efficient allocation

and compare it with the equilibrium allocation. I also explain the nature of inefficiency in the

2Note that traditional search frictions are not necessary for my results, so even if the short side of the

market matches for sure, the results continue to hold.
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market economy and discuss why and how the planner can allocate resources more efficiently

than the market economy. In Section 5, I study a version of the rat race, originally studied

by Akerlof (1976). The planner achieves the first best by paying low-type workers higher

wages and high-type workers lower wages than their wages under complete information. If

the fraction of high-type workers is sufficiently high, then CE even Pareto dominates the

equilibrium allocation. In Section 6, I place my results in the adverse selection literature. In

Section 7, I study the asset market with a continuous-type space and discuss the monotonicity

of the optimal tax schedule. Section 8 concludes. All proofs appear in the Appendix unless

otherwise noted.

2 Model

I introduce the environment of the model first and then define the planner’s problem. My

environment is similar to that of GSW with two minor differences: I impose quasi-linearity

on the payoff functions, mostly to make the exposition simpler, and also I do not allow for

lotteries on allocations.3 In the Appendix, I elaborate on why I impose these assumptions,

but it is enough to say here that all results will continue to hold even without them.

2.1 Environment

Consider an economy with two types of agents—buyers and sellers—and n+ 1 goods where

n ∈ N. Goods 1, 2, ..., n are produced by sellers and consumed by buyers, while good n+1 is a

numeraire good and is produced and consumed by everyone. Let a ≡ (a1, a2, ..., an) ∈ A ⊂ R
n

be a vector where A is compact, convex and non-empty. Component l of this vector, al,

denotes the quantity of good l. For example, in a labor market, a can be a positive real

number denoting the hours of work. When I say an agent produces (or consumes) a, I mean

that the agent produces (or consumes) a1 units of good 1, a2 units of good 2 and so on.

There is a measure 1 of sellers. A fraction πi > 0 of sellers are of type i ∈ {1, 2, ..., I}.

Type is seller’s private information. On the other side of the market, there is a large contin-

uum of homogenous buyers who can enter the market by incurring cost k > 0. After buyers

enter the market, buyers and sellers are allocated to different submarkets (described below).

Matching is bilateral. After they match, they trade.

There are search frictions in this environment. By search frictions, I mean that sellers

generally get to match with the buyers they have chosen with probability less than one.

3By lotteries, I mean that the same type of sellers are assigned to different allocations with positive

probabilities when these allocations deliver them different payoffs. However, I do allow for lotteries to be

used within a given allocation. For example, an allocation may specify that a seller of a given type gets paid

a certain amount of money (numeraire good) but delivers the asset with a probability less than one. My

assumption only requires that this allocation be the same for all sellers of this type.
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Matching occurs in submarkets that are simply some locations for trade. Matching technol-

ogy determines the probability that sellers and buyers in each submarket are matched. If

the ratio of buyers to sellers in one submarket is θ ∈ [0,∞], then the buyers are matched

with probability q(θ). Symmetrically, matching probability for sellers is m(θ) ≡ θq(θ). As

standard in the literature, I assume that m is non-decreasing and q is non-increasing. Both

m and q are continuous.

Sellers’ and buyers’ payoff functions are quasi-linear in the numeraire good. The payoff

to a buyer who enters the market from consuming a and producing p ∈ R units of the

numeraire good is vi(a)− p− k if matched with a type i seller, and is −k if unmatched. The

payoff to a type i seller from producing a and consuming p ∈ R units of the numeraire good

is ui(a) + p if matched with a buyer and is 0 otherwise.

2.2 Planner’s Problem Using Taxation

I first briefly describe how the market economy works, the special case in which the planner

does nothing, and then define the planner’s problem. Submarkets in the market economy are

characterized by y ≡ (a, p), where a ∈ A denotes the vector of goods 1 to n to be produced

by sellers in this submarket and p ∈ R is the amount of the numeraire good to be transferred

from buyers to sellers. No submarket that would deliver buyers a strictly positive payoff is

inactive in the equilibrium. On the other side of the market, sellers observe all (a, p) pairs

posted in the market, anticipate the market tightness for each submarket and then direct

their search toward one that delivers them the highest expected payoff. The equilibrium

notion used here is exactly the same as that in GSW.4

The planner is assumed to have the power to levy taxes and subsidies on agents. First, the

planner sets a tax amount for each submarket. This tax will be levied on buyers conditional

on trade, t(a, p) : A × R → R. The results will not change if, instead, taxes are levied on

sellers. Second, the planner makes lump sum transfers, t0 ∈ R+ units of the numeraire good,

to sellers. Call {t, t0} a policy. In the next subsection, the planner’s problem is defined using

a direct mechanism in which sellers report their types to the planner and then the planner

allocates them resources. I show that levying these two types of taxes is sufficient for the

planner to implement the outcome of the direct mechanism.

Let γi(y) denote the share of sellers who are type i in the submarket denoted by y,

with Γ(y) ≡ {γ1(y), ..., γi(y), ..., γI(y)} ∈ ∆I where ∆I is an I−dimensional simplex, that

4When I refer to equilibrium in the paper, I mean the notion of equilibrium in which the uninformed side

of the market posts contracts as discussed above. I do not mean the notion of equilibrium with signaling in

which the informed side of the market posts contracts, as in Delacroix and Shi (2013). I conjecture that my

results regarding the inefficiency of equilibrium will hold even if the latter notion is considered. However,

one may need to impose some reasonable restrictions on off-the-equilibrium-path beliefs similar to those

proposed by Cho and Kreps (1987).
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is, 0 ≤ γi(y) ≤ 1 for all y and
∑I

i=1 γi(y) = 1. To make the notation clear for the rest of

the paper, the first component of y ≡ (a, p) is denoted by a rather than y1, and the second

component is denoted by p rather than y2. Similarly, if a submarket is denoted by y′, the

first and second components of y′ are denoted by a′ and p′. An allocation {λ,Y ,Θ,Γ} is a

distribution λ over Y with support Y (so Y is the set of open or active submarkets), the ratio

of buyers to sellers for each submarket Θ : Y → [0,∞], and the distribution of types in each

submarket Γ : Y → ∆I . Because the planner faces some constraints, only some allocations

are implementable, which are defined below.

Definition 1. An allocation {λ,Y ,Θ,Γ} is implementable through policy {t, t0} if it satisfies

conditions (i)-(iv):

(i) Buyers’ maximization and free entry: For any y ≡ (a, p) ∈ Y ,

q(Θ(y))
∑

i

γi(y)(vi(a)− p− t(y)) ≤ k, with equality if y ∈ Y .

(ii) Sellers’ optimal search: Let Ui ≡ max{0,maxy′∈Y{m(Θ(y′))(ui(a
′) + p′)}} + t0

and Ui = t0 if Y = ∅. For any y ∈ Y and i,

m(Θ(y))(ui(a) + p) + t0 ≤ Ui, with equality if γi(y) > 0 and Θ(y) < ∞.

If ui(a) + p < 0, then Θ(y) = ∞ or γi(y) = 0.

(iii) Feasibility or market clearing: For all i,
∫

Y
γi(y)
Θ(y)

dλ({y}) ≤ πi, with equality if

Ui > t0.

(iv) Planner’s budget-balance condition:
∫

Y
q(Θ(y))t(y)dλ({y}) ≥ t0.

An allocation is said to be implementable if it is implementable through some policy.

Some comments about this definition will follow. Note that under the policy of zero

taxes, i.e., t(y) = 0 for all y ∈ Y and t0 = 0, this definition reduces exactly to the definition

of equilibrium in GSW, so the equilibrium in GSW is clearly implementable through the

policy of zero taxes. In general, buyers take into account the policy, i.e., the tax amount for

each submarket, and then decide where to go. Sellers then choose which submarket to go to

among all submarkets that buyers have chosen. Condition (i) states that buyers should not

earn a strictly positive profit from entering any submarket (on- or off-the-equilibrium-path).

Moreover, for all markets that the planner wants to be open, buyers must receive exactly

zero expected payoff. A buyer has to incur entry cost k if he wants to enter submarket y.

Then, he matches with a type i seller with probability γi(y) from which he receives a payoff

of vi(a) in terms of the numeraire good, and pays p units of the numeraire good to the seller

and t(y) units to the planner.

Condition (ii) is composed of two parts. The first part states that among all open sub-

markets, y ∈ Y , sellers choose to go to a submarket that maximizes their payoff. The second
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part imposes some restrictions on beliefs regarding the market tightness and composition of

types for off-the-equilibrium-path, y /∈ Y . The market tightness for off-the-equilibrium-path

is set such that the sellers who choose to go to those submarkets do not gain by doing so

relative to their equilibrium payoff. Also, this restriction with respect to the composition of

types states that if buyers believe that some types would apply to an off-the-equilibrium-path

submarket, then those types should be exactly indifferent between the payoff they receive

from that submarket relative to their equilibrium payoff. Condition (iii) is straightforward.

Condition (iv) is the planner’s budget-balance condition stating that no external resources

are available to the planner to finance the transfers.

In the market economy, it is not possible to transfer funds (the numeraire good) from

one submarket to another. In contrast, the planner here may want to levy taxes on agents

in some submarkets and subsidize others, so sellers might receive a higher or lower payoff

than the surplus they generate. This cross-subsidization across submarkets is the key to all

the results. The difficulty in the proofs comes from the fact that any cross-subsidization

scheme affects incentive constraints of all types, so it should be conducted in a way so that

all constraints remain satisfied.

Definition 2. A constrained efficient allocation is an implementable allocation that maxi-

mizes welfare among all implementable allocations. That is, a constrained efficient allocation

solves the following problem:

max
{λ,Y,θ,Γ},{t,t0}

∑

i

πiUi

subject to {λ,Y , θ,Γ} is implementable through policy {t, t0},

where Ui, type i’s payoff, is defined in part (ii) of Definition 1.

In the language of mechanism design, the notion of efficiency used above is ex-ante

incentive efficiency, i.e., welfare is calculated before agents learn their types. Another possible

notion is interim incentive efficiency in which welfare is calculated after each agent learns

his type. An allocation is interim incentive efficient if it is implementable and there does

not exist another implementable allocation in which all types are weakly better off while

some types are strictly better off, i.e., if no other implementable allocation Pareto dominates

it. Since in my model agents know their types from the beginning, one may argue that the

appropriate notion is an interim one. I would argue that although interim efficiency is an

appropriate notion here, ex-ante efficiency is appropriate too.

One way to think about ex-ante efficiency is to assume that the sellers in my model

meet before learning their types and try to design the best arrangements for trade. These

sellers maximize their ex-ante payoff taking into account that after the realization of their

types, they will have private information. Another way to think about ex-ante efficiency is

to assume that sellers are members of a family or employees of a large firm who compete
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with one another in the market stage, but share their payoffs after they trade in the market.

Either way, they want to maximize the aggregate amount of the surplus created in this

economy given the incentive constraints. I elaborate on these notions of efficiency in Section

6.

In Theorems 1, 3 and 4 below, ex-ante efficiency is concerned.5 However, in Theorem 2

(and all the applications), sufficient conditions will be provided under which the equilibrium

allocation is not only ex-ante incentive inefficient but also interim incentive inefficient.6

2.3 Planner’s Problem Using Direct Mechanism

In this section, the planner is assumed to use a direct mechanism to allocate resources. In

the direct mechanism, sellers report their types to the planner and then the planner allocates

them to a 3-touple (θi, ai, si). Intuitively, the planner sets up I locations (one for each type),

a certain number of buyers are allocated to match with sellers at each location and then

sellers are asked to produce a certain amount of goods if they find a match. Also, the

planner makes transfers to sellers.

More precisely, ai is the vector of goods 1 to n to be produced by sellers who report type

i conditional on finding a match in the location designed for type i, si is the amount of the

numeraire good transferred to them and θi is the average number of buyers assigned to them

in that location. The planner is subject to the same frictions present in the market economy,

as summarized below:

Definition 3. A feasible mechanism is a set {(θi, ai, si)}i∈{1,2,...,I} such that the following

conditions hold:

(i) Incentive compatibility of sellers: for all i and j

Ui ≡ m(θi)ui(ai) + si ≥ m(θj)ui(aj) + sj (IC).

(ii) Participation constraint of sellers: for all i

Ui ≥ 0 (PC).

(iii) Planner’s budget-balance condition:

I∑

i=1

πi[m(θi)vi(ai)− kθi] ≥
I∑

i=1

πisi (BB).

5When the planner or constrained efficiency is mentioned without a further reference, the ex-ante notion

of efficiency is meant.
6Focusing on the ex-ante efficiency notions is consistent with long-run efficiency considerations in many

environments, such as some financial markets, in which sellers may have superior information compared with

buyers at any point in time, but in the long run, participants may want to collectively set up arrangements

to improve efficiency. On the other hand, focusing on the notion of interim efficiency discussed in Theorem

2 may be more appropriate for environments such as housing or labor markets in which the type of agents

does not change frequently.
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These conditions are straightforward to understand. The only point is that in condition

(iii), the right-hand-side (RHS) is the amount of the numeraire good that the planner must

pay to sellers. The left-hand-side (LHS) is the net payoff to buyers from entry added over

all I locations, as there πiθi number of buyers at each location, and each of them gets an

expected benefit of q(θi)vi(ai)− k. The planner’s objective is to maximize welfare, which is

the weighted average of the payoff to sellers.7

Definition 4. An optimal mechanism, {(θ∗i , a
∗
i , s

∗
i )}i∈{1,2,...,I}, is a feasible mechanism that

maximizes welfare. That is, the optimal mechanism solves the following problem:

max
{(θi,ai,si)}i∈{1,2,...,I}

∑

i

πi(m(θi)ui(ai) + si)

subject to: {(θi, ai, si)}i∈{1,2,...,I} is a feasible mechanism.

Using a direct mechanism requires a large amount of communication and may not be

practical in many economic applications, but working with it is convenient. Lemma 1 guar-

antees that there is no loss of generality in focusing only on direct mechanisms. That is,

a planner who uses a direct mechanism achieves the same welfare level as the planner in

Definition 2. Therefore, all results obtained by utilizing direct mechanisms can be naturally

obtained in the market setting if the planner has the power of taxation.

Lemma 1. For any feasible mechanism, there is an associated implementable allocation

under which all types receive exactly the same payoff as in the direct mechanism.

The intuition behind this result is simple. Since there is no constraint on the taxation

power of the planner, the planner can effectively shut down any submarket of his choice

by levying large taxes on that submarket to achieve the same outcome as in the direct

mechanism. If some restrictions are imposed on the taxation power, e.g., a ceiling on the

amount of taxes at each submarket or the monotonicity of taxes as a function of price, then

this result may not hold. Moreover, given that the taxation power is not restricted here,

constrained efficient allocation is invariant to any restriction on the off-the-equilibrium-path

beliefs, again, because the planner can prevent trading in any submarket that he wants by

levying large taxes on trade in that submarket, and as a result, no buyer would want to

trade in that submarket no matter how off-the-equilibrium-path beliefs are formed.

3 Characterization

The complete information allocation is first studied as a benchmark and then the main

results are presented.

7Buyers receive zero payoff both in the market economy and under the planner’s problem, so it is equivalent

to say that the planner’s objective is to maximize the total amount of the surplus in the economy.
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3.1 Complete Information Allocation or First Best

As a benchmark, consider an otherwise identical environment as introduced above except

that the type of sellers is common knowledge. The optimal mechanism with complete in-

formation can be defined in a similar fashion as in Definition 3. The only difference is that

incentive compatibility constraint should be removed from the definition of feasible mecha-

nism. Without IC constraints, the planner with complete information always achieves weakly

higher welfare than the planner facing private information. It is also easy to see that the

optimal mechanism with complete information can be solved type by type. That is, the

planner with complete information solves the following problem for each type separately:

max
θ,a,s

{m(θ)ui(a) + s}

subject to: m(θ)vi(a)− s ≥ kθ, and m(θ)ui(a) + s ≥ 0.

Let UFB
i be the optimal value for this problem, so

UFB
i = max

θ,a
{m(θ)(vi(a) + ui(a))− kθ}.

Moreover, define

(θFB
i , aFB

i ) ∈ argmax
θ,a

{m(θ)(vi(a) + ui(a))− kθ}.

It is easy to check that UFB
i is exactly the payoff to the sellers of type i in the equilibrium

with complete information.8 The first best allocation (FB) is defined to be an allocation in

which type i sellers produce aFB
i and match in a location with market tightness θFB

i .

Regarding the language used in the paper, it is said that the planner achieves the first best

if there exists a feasible mechanism {(θi, ai, si)}i∈{1,2,...,I} in which (θi, ai) ∈ argmaxθ,a{m(θ)(vi(a)+

ui(a)) − kθ} for all i. Equivalently, it is said that the planner achieves the first best if the

first best allocation is implementable. Moreover, it is said that the equilibrium achieves the

first best (does not achieve the first best) if FB is (not) implementable through the policy

of zero taxes, i.e., t(.) = 0 and t0 = 0. Moreover, when equilibrium is used without any

8In the equilibrium with complete information, buyers post (a, p, i) to attract type i sellers. Therefore,

they solve maxθ,a,p{m(θ)(ui(a) + p)} subject to q(θ)(vi(a)− p) ≥ k. This problem is clearly the same as the

planner’s problem with complete information. As cited in the introduction, there are many papers in the

literature with different environments but with the common theme that when agents on one side of the market

compete with each other in posting contracts and commit to them, then the market decentralizes the planner’s

allocation, if the contract space is rich enough. If the contract space is not rich enough, the equilibrium might

be constrained inefficient, as in Galenianos and Kircher (2009). Moreover, Acemoglu and Shimer (1999b)

and, more specifically, Golosov et al. (2013) find inefficiency of directed search equilibrium under some types

of moral hazard in the context of labor markets. Following the present paper, Davoodalhosseini (2015) uses a

directed search model with adverse selection and complementarity between factors of production and shows

that equilibrium is constrained inefficient.
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reference, GSW equilibrium is meant. As far as the notation is concerned, superscript ∗

represents the optimal mechanism (or constrained efficient allocation), FB represents the

first best allocation and EQ represents the GSW equilibrium allocation.

3.2 Efficiency Properties of GSW Equilibrium

Since GSW equilibrium is an implementable allocation through the policy of zero taxes, it is

immediately followed that the planner can achieve the welfare level that is at least as much

as that in the equilibrium. Theorem 1 states that the planner can achieve strictly higher

welfare than the equilibrium regardless of the distribution of types. The obvious qualification

is that the equilibrium should fail to achieve the first best, for otherwise, private information

would not have caused any inefficiency and the planner would not be able to achieve higher

welfare.9

Let Ȳ ≡ ∪iȲi where Ȳi ≡
{
(a, p)

∣
∣(a, p) ∈ A×R, q(0)(vi(a)− p) ≥ k, and ui(a) + p ≥ 0

}
,

and Ā ≡
{
a
∣
∣(a, p) ∈ Ȳ for some p ∈ R

}
. If (a, p) /∈ Ȳ , then no type will be attracted to this

submarket in the market economy.

Assumption 1.

(i) Strict monotonicity: For all a ∈ Ā, v1(a) < v2(a) < ... < vI(a).

(ii) Sorting: For all i, a ∈ Ā and ǫ > 0, there exists a′ ∈ Bǫ(a) ≡
{
a′ ∈ A

∣
∣ ||a− a′||2 < ǫ

}
such

that

uj(a
′)− uj(a) < uh(a

′)− uh(a) for all j and h with j < i ≤ h.

(iii) Single peak: m(θ)(ui(a) + vi(a))− kθ has a single peak on its domain, R+ × A, for all i.

Theorem 1 (Ex-ante incentive inefficiency of equilibrium). Suppose Assumption 1 holds.

Also assume that all types with positive gains from trade, i.e., all i with UFB
i > 0, receive

a strictly positive payoff in equilibrium. If equilibrium fails to achieve the first best, then

welfare in the constrained efficient allocation is strictly higher than that in equilibrium.

Some remarks about the assumptions are in order. Assumption 1(ii) is the same as

Assumption A3 in GSW. A sufficient condition for Assumption 1(iii) is that m(θ)(ui(a) +

vi(a)) − kθ is strictly quasi-concave. Furthermore, if one assumes that m is concave, as

usually assumed in the applications, then a milder sufficient condition for Assumption 1(iii)

is that ui(a) + vi(a) is strictly quasi-concave. The requirement that all types with positive

gains from trade must be active in equilibrium is satisfied if there are positive gains from

9Assuming that UFB
i > 0 for all i, equilibrium fails to achieve the first best if and only if UFB

i − UFB
j >

m(θFB
i )(ui(a

FB
i ) − uj(a

FB
i )) for some i, j. As a result, one needs to check at most n(n − 1) conditions to

examine whether equilibrium fails to achieve the first best or not.
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trade for all types (according to Proposition 4 in GSW). In an example in Section 4, I make

it clear why this assumption is necessary.

The idea of the proof will follow. I begin from the equilibrium allocation, propose a direct

mechanism, which basically implements an allocation sufficiently close to the equilibrium

allocation, and then show that the proposed allocation is feasible and achieves strictly higher

welfare than the equilibrium allocation.

First, we need to understand how GSW equilibrium is constructed. Let {λEQ,YEQ,ΘEQ,ΓEQ}

denote the equilibrium allocation where YEQ ≡ {yEQ
1 , yEQ

2 , ..., yEQ
I }. Also let UEQ

i denote the

payoff to type i in the equilibrium. In this explanation, assume that all types are active in

the equilibrium, UEQ
i > 0. Under similar conditions, weak monotonicity and sorting, GSW

prove that the equilibrium for type i is uniquely characterized by maximizing the payoff to

type i subject to the free-entry condition and the incentive compatibility constraint of all

lower types. After incorporating the free-entry condition, the problem turns into:

max
θ∈[0,∞],(a,.)∈Ȳ

{m(θ)(ui(a) + vi(a))− kθ}

subject to: m(θ)(uj(a) + vi(a))− kθ ≤ UEQ
j (ICji) for all j < i.

Call this problem Pi. The objective function is the surplus that type i creates. The constraint

ICji states that type j should not receive a higher payoff if he chooses the submarket that

type i chooses, for all j < i. See the proof of Theorem 1 for derivation of this problem.

Since the equilibrium does not achieve the first best, there must exist a type, say type r,

that creates a surplus that is strictly less than the first best level, i.e., UEQ
r < UFB

r . It implies

that at least one incentive compatibility constraint in the problem for type r is binding in

the equilibrium.

The planner begins from a direct mechanism in which each type is allocated the same

production level a, the same market tightness θ and the same expected payment s = m(θ)p

(where p = vi(a)−
k

q(θ)
is pinned down by free-entry condition) as in equilibrium. The planner

then subsidizes all types below r identically by a small amount, ǫ > 0. Since the constraints

of the maximization problem for type r become slack, the planner can find another triple

(θ′, a′, s′) close to (θ, a, s) for this type such that the surplus generated by this type increases

following Assumption 1(iii).10 As a result, the payoff to type r strictly increases.

To ensure that these transfers do not violate IC constraints, it is shown in Lemma 3 in

the Appendix that no downward IC constraint in the equilibrium is binding; that is, type

10It can be clearly seen here why Assumption 1(iii) is needed. If m(θ)(ui(a) + vi(a)) − kθ has a local

maximum that is not a global maximizer, then locally relaxing the constraints may not be useful, as there

may not be any other allocation in the neighborhood of the original allocation that delivers strictly higher

value for the objective function.
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i will be strictly worse off by reporting type j for all j < i.11 Moreover, it is shown that

the payoff to type r is continuous in the amount of transfers to lower types, ǫ. Therefore,

if ǫ is chosen sufficiently small, no incentive compatibility constraint is violated and welfare

increases at the same time. This is because type i has generated strictly higher surplus and

all other types have generated the same surplus. To finance transfers to types 1, 2, ..., r − 1,

the planner levies a lump sum tax on all types so that no IC constraint is affected. Making

transfers across agents does not change welfare; therefore, the welfare level is now strictly

higher than that in equilibrium.

It becomes clear from this explanation that although the welfare level increases following

this cross-subsidization scheme, types r + 1, r + 2, ..., I become worse off relative to the

equilibrium allocation. To study constrained Pareto (in)efficiency of equilibrium, consider

another financing scheme in which the planner levies lump sum taxes only on types 1, 2, ..., r

to finance transfers to types 1, 2, ..., r − 1. Under this scheme, the net amount of tax that

type r has to pay is
∑r−1

j=1
πj

∑r
j=1

πj
ǫ. If the level of improvement in the surplus of type r resulting

from the relaxation of the constraints in Pr is more than the net amount of tax levied on

type r, then type r is weakly better off than in equilibrium. Types below r are strictly better

off, as they have received ǫ −
∑r−1

j=1
πj

∑r
j=1

πj
ǫ net of transfers. Types above r are not affected by

these transfers. The new allocation clearly Pareto dominates the equilibrium allocation. It

remains to check that the IC constraints for higher-type problems, Pj for j > r, have not

been tightened. This is obviously true because all types 1, 2, ..., r are weakly better off, so

they have even less incentive to report higher types. Higher types obviously do not want

to report lower types because ǫ is small and their IC constraints were slack in equilibrium.

This result is summarized in the following theorem, for which some notation is needed.

Denote by J the set of types whose market tightness or production level is distorted

relative to the first best allocation, J = {r ∈ {1, 2, ..., I}|Ur
EQ < UFB

r }. That is, for

any r ∈ J , some constraints in Pr are binding. For this result, differentiability is assumed

whenever needed to calculate the improvement in the payoff of type r following the relaxation

of constraints in Pr. Denote by λjr the Lagrangian multiplier associated with the ICjr

constraint. Denote by Ūr(ǫ) the value of the objective function for Pr when UEQ
j in the

constraint is replaced by UEQ
j + ǫ for all j < r.

Theorem 2 (Constrained Pareto inefficiency of equilibrium). Assume UFB
i > 0 for all i.

Assume that there exists a type r ∈ J such that the following holds: (i) Functions m(.), uj(.)

and vj(.) are continuously differentiable in the neighborhood of the solution to problem Pr for

11Lemma 3 is similar to Lemma 1 in GSW, but my claim is stronger. I prove that higher types are strictly

worse off if they apply to submarkets designed for lower types. That is, downward IC constraints cannot be

binding. The reason that I obtain a stronger result is that I assume strict monotonicity for vi(a) in i for

every a with a ∈ Ā, while they assume weak monotonicity. Strict monotonicity holds in all applications that

they study and in many economic applications.
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all j ≤ r. (ii) The equilibrium allocation for type r is interior. (iii) Ūr(ǫ) is a differentiable

function of ǫ in the neighborhood of ǫ = 0. (iv) Also

r−1∑

j=1

λjr >

(

1 +
πr

∑r−1
j=1 πj

)−1

. (1)

Then, an implementable allocation exists which Pareto dominates the equilibrium allocation.

The interesting fact about condition (1) is that its LHS, although being endogenous,

is independent from the distribution of types, as Pi is independent from the distribution.

Therefore, the following result is immediately obtained.

Corollary 1. Assume UFB
i > 0 for all i, but equilibrium does not achieve the first best,

particularly, UEQ
r < UFB

r for some r. Also assume that requirements (i), (ii) and (iii) in

Theorem 2 hold. If
∑r−1

j=1
πj

πr
is sufficiently small, then the equilibrium allocation is Pareto

dominated by another implementable allocation.

Proof. Equilibrium does not achieve the FB for type r, so λjr > 0 for some j. Therefore,

the LHS of (1) is strictly positive. The result follows immediately.

This result states that if the equilibrium allocation, which is independent of the distri-

bution of types, does not achieve the first best, and if the relative share of lower types in

the population is sufficiently small, then the equilibrium is not constrained Pareto efficient.

That is, cross-subsidization can make everybody better off. From a practical point of view,

this result suggests that the optimal policy intervention (aiming at improving the allocation

for all types) may require the policy maker to have precise information about the distri-

bution of types, and a one-fits-all solution is unlikely to be optimal. From a theoretical

point of view, this result implies that the GSW equilibrium concept, built on Gale (1996)

with off-the-equilibrium-path belief restrictions in the spirit of Cho and Kreps (1987), is

susceptible to introducing even a small fraction of “bad” types, as it can make the allocation

worse for everybody. A natural step for future work is to either weaken GSW restrictions

on the off-the-equilibrium-path beliefs so that equilibrium becomes constrained efficient, or

to introduce other equilibrium concepts to recover efficiency. See Lester et al. (2015) as an

attempt related to the latter.

3.3 Constrained Efficient Allocation

In the last subsection, I obtained some results about inefficiency of equilibrium. In this

subsection, I focus on the planner’s problem and provide sufficient conditions for the planner

to achieve the first best. Later, I characterize the planner’s problem under more general

conditions.
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We say that â ≥ a if âl ≥ al for all l ∈ {1, 2, ..., n}, that is, if each component of â

is greater than each component of a. Function gi(a) : A × {1, 2, .., I} → R has increasing

differences in (a; i) if gi(â) − gi(a) is weakly increasing in i for â ≥ a. Function gi(a) is

super-modular in a if gi(a)+gi(â) ≤ gi(a∨ â)+gi(a∧ â) for all a, â and i ∈ {1, 2, .., I}, where

the component l in a∨ â (a∧ â) is equal to max{al, âl} (min{al, âl}). Let also Πi ≡
∑I

j=i+1 πj

for i < I, and ΠI ≡ 0.

Assumption 2. The following conditions hold:

(i) Monotonicity of u in i: u1(a) ≤ u2(a) ≤ ... ≤ uI(a) for all a ∈ Ā.

(ii) ui(a) has increasing differences in (a; i) for all a ∈ Ā and i.

Assumption 3. fi(a) ≡ ui(a) + vi(a) is super-modular in a and has increasing differences

in (a; i) for all a ∈ Ā and i.

Assumption 4. Either (i) holds or both (ii) and (iii) hold:

(i) Monotonicity of v in i: v1(a) ≤ v2(a) ≤ ... ≤ vI(a) for all a ∈ Ā.

(ii) Monotonicity of f in i: f1(a) ≤ f2(a) ≤ ... ≤ fI(a) for all a ∈ Ā.

(iii) Sufficient gains from trade for all types:

I∑

i=1

πi

[

UFB
i −m(θFB

i )(ui+1(a
FB
i )− ui(a

FB
i ))

Πi

πi

]

≥ 0.

Theorem 3 (Sufficient conditions to achieve the first best). Under Assumptions 2, 3 and

4, the planner achieves the first best.

Assumption 2(i) simply states that the payoff to higher types is higher than that to lower

types for any given level of production. For example, it is less costly for higher types to

produce the output. Assumption 2(ii) is equivalent to the single crossing condition, which is

also called the Spence-Mirrlees condition, for a broad class of functions.12 If u is differentiable

(although I do not impose differentiability for this result), this assumption implies that for

a given level of production, the marginal payoff to higher types with respect to the level of

production of a good l ∈ {1, 2, ..., n} is higher than that of lower types. The first part of

Assumption 3 is simply a standard super-modularity condition requiring that the marginal

surplus created by type i with respect to the level of production of good l1 is increasing in the

level of production of good l2 (l1 6= l2). Assumption 4 requires either one of the two following

conditions: For any given level of production, buyers weakly prefer higher types of sellers.

Or, the match surplus is higher for higher types, and the maximum possible surplus in this

12See Milgrom and Shannon (1994) for a full discussion about single crossing condition, increasing differ-

ences property and super-modularity, and the relationship between them.
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economy,
∑I

i=1 πiU
FB
i , is weakly higher than the total amount of information rents given to

sellers,
∑I

i=1 πi

(
m(θFB

i )(ui+1(a
FB
i )− ui(a

FB
i ))Πi

πi

)
. See Section 3.3.1 for the interpretation of

information rents.

The requirements of Theorem 3 are not weaker nor stronger than the requirements of

Theorem 1. For example, Assumption 1 requires strict monotonicity of vi, while Assumption

4(i) requires only weak monotonicity. On the other hand, Assumption 3(i) requires weak

monotonicity of ui, while Assumption 1 does not. Furthermore, although Assumptions 1(ii)

and 3(ii) are similar, they are not exactly the same. A standard single crossing condition

states that the indifference curves of different types must cross only once. The sorting

assumption here, which is the same as in GSW, is in a sense a local crossing condition,

because it allows a′ to be greater than a for some a and less than a for other a. Moreover,

it is in a sense stronger than a single crossing condition, because it states that given any a,

there exists an a′ with such a property.13

The proof follows a guess-and-verify approach. I first guess that the planner can achieve

the first best, then I verify that conditions for feasibility are satisfied. The goal is to find

a feasible mechanism in which type i sellers match with probability m(θFB
i ) and produce

aFB
i . For that, one needs to find a set of transfers that together with (θFB

i , aFB
i ) satisfy IC

and other constraints. To find such a set, it is shown that if Assumption 2(i) holds and if

transfers are such that all local downward IC constraints are satisfied and are binding, then

all IC constraints are satisfied. By local downward (upward) IC constraint, I mean that type

i should not gain by reporting type i − 1 (i + 1). Following this construction method, the

amount of transfers to the lowest type, s∗1, determines the amount of transfers for all other

types. This set of transfers satisfies all IC constraints if (θFB
i , aFB

i ) is increasing in i and u

has increasing differences property in (a; i), i.e., Assumption 2(ii). See Theorem 7.1 and 7.3

in Fudenberg and Tirole (1991) or Section 3.1 in Laffont and Martimort (2009) for reference.

To show that (θi, ai) is increasing in i, note that if ui + vi satisfies Assumption 3, then

aFB
i ≡ argmaxa∈A{ui(a) + vi(a)} is increasing in i, i.e., aFB

i ≥ aFB
i−1, according to Theorem

5 in Milgrom and Shannon (1994). If ui + vi is increasing in i (Assumption 2(i) together

with 4(i), or Assumption 4(ii) alone), then m(θ)(ui(a
FB
i ) + vi(a

FB
i )) − kθ has increasing

differences in (θ; i). Also, m(θ)(ui(a
FB
i ) + vi(a

FB
i )) − kθ is clearly super-modular in θ be-

cause θ is one-dimensional. Again, according to Theorem 5 in Milgrom and Shannon (1994),

argmaxθ{m(θ)(ui(a
FB
i )+vi(a

FB
i ))−kθ} will be increasing in i. Hence, (θFB

i , aFB
i ) is increas-

ing in i.

Finally, the planner adjusts s∗1 such that all types receive a positive payoff. It is interesting

13In many economic applications, if Assumptions 4(i) and 3 (second part) are satisfied, it is likely that

Assumptions 1(i) and 1(ii) are satisfied, respectively. Thus, very loosely speaking, the requirements of

Theorem 3 (Assumptions 2, 3 and 4) are likely to be stronger than requirements of Theorem 1 (Assumptions

1(i) and (ii)), although not much can be said about Assumption 1(iii).
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to note that under Assumption 4(i), which is independent from the distribution of types, the

budget-balance condition is satisfied, so the first best allocation is implementable regardless

of the distribution. If Assumption 4(i) fails, then Assumption 4(iii) is sufficient for the

budget-balance condition to hold. In future sections, I will make it clear by presenting some

applications, the mechanism through which the planner can achieve superior outcomes than

the market. Particularly, I indicate in application 2 that Assumptions 2, 3 and 4(i), though

seemingly strong, hold in a natural labor market model.

3.3.1 General Characterization

Throughout the discussion, I assume Assumptions 2 and 3 are satisfied. If Assumption 4

is also satisfied, then the planner achieves the first best (Theorem 3). Theorem 4 below,

which is especially useful if Assumption 4 is not satisfied, provides necessary conditions for

the planner’s problem. It is usually easy to pin down the solution from these necessary

conditions.

Define virtual surplus as

rρi (a) ≡ ui(a) + vi(a)− ρ
Πi

πi

(ui+1(a)− ui(a)) for ρ ∈ [0, 1].

The interpretation of the virtual surplus is that when the planner wants to allocate (θi, ai)

to type i, incentive compatibility condition requires that ρm(θi)(ui+1(ai) − ui(ai)) is left

for all types above i as information rent. Therefore, the total rent is ρm(θi)(ui+1(ai) −

ui(ai))
∑I

j=i+1 πj. Variable ρ shows the relative strength of the budget-balance condition. If

ρ = 0, then the virtual surplus is exactly equal to the surplus of the match. This is the case

only if there are enough resources available to the planner to satisfy BB so that he would

not distort the market tightness or production levels. Higher ρ corresponds to conditions

under which the constraints are tighter, so the planner needs to leave more rents for higher

types by distorting the market tightness or production levels. See Jullien (2000) for a related

discussion.

Assumption 5. rρi (a) is super-modular in a and has increasing differences in (a; i) for all

a ∈ Ā, for all i and ρ ∈ [0, 1].

Assumption 6. Monotonicity of rρ in i: rρ1(a) ≤ rρ2(a) ≤ ... ≤ rρI (a) for all a ∈ Ā and

ρ ∈ [0, 1].14

Theorem 4. Suppose Assumptions 2, 5 and 6 hold and all ui(a),vi(a) and m(θ) are contin-

uously differentiable. Denote the optimal mechanism by {(θ∗i , a
∗
i , s

∗
i )}i∈{1,2,...,I}. If (θ∗i , a

∗
i ) is

14Assumption 5 is stronger than Assumption 3, as the former boils down to the latter for ρ = 0. Similarly,

Assumption 6 is stronger than Assumption 4(ii).
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interior for all i, then there exists ζ∗ ∈ R+ such that the optimal mechanism satisfies:

∂Li(θ
∗
i , a

∗
i , ζ

∗)

∂θ
= 0 and

∂Li(θ
∗
i , a

∗
i , ζ

∗)

∂al
= 0 for all i ∈ {1, 2, ..., I} and l ∈ {1, 2, ..., n}, (2)

I∑

i=1

πiLi(θ
∗
i , a

∗
i , ζ

∗) ≥ 0 with equality if ζ∗ > 0, (3)

where Li(θ, a, ζ) ≡
(
m(θ)(ui(a) + vi(a))− kθi

)
(1 + ζ)− ζm(θ)

(
ui+1(a)− ui(a)

)
Πi

πi
.

The main insight from the proof is that local downward IC constraints and the PC of

the lowest type are sufficient to characterize the optimal mechanism even if the first best

allocation is not implementable. The proof is somewhat similar to the proof of Theorem 3.

However, further work is required because the guess-and-verify approach does not work as

the planner may not achieve the first best. Since the planner’s problem is hard to handle, as a

standard trick in the mechanism design literature, I first try to solve a more relaxed problem.

Instead of considering all IC and PC constraints, only local downward IC constraints and

PC constraint of the lowest type are taken into account to write a modified budget-balance

condition, and then the total amount of surplus in the economy is maximized subject to only

this modified constraint. Considering the relaxed problem and forming the Lagrangian, one

can easily verify that the two equations in the theorem, are necessary for optimality. Finally,

even if the solution is not interior, first-order conditions can be easily adjusted, but I do not

report the results for that case here to save space.

4 Application 1: Asset Market with Lemons

I have considered a general framework so far. In the following two sections, I study two

applications from GSW, characterize the constrained efficient allocation, and compare it

with the respective equilibrium allocation. At the end of this section, I elaborate on the

inefficiency results and provide some intuition on how and why the planner can increase

welfare by using appropriate transfers.

The first application is an asset market with lemons, in the spirit of Akerlof (1970).

There are two types of assets, with value ci to the seller and hi to the buyer. Both ci and

hi are in terms of a numeraire good. The payoff of a buyer matched with a type i seller is

ahi − p − k, where a is the probability that the buyer gets the asset from the seller and p

is the amount of the numeraire good he produces, i.e., the price that he pays in terms of

the numeraire good. The payoff of a type i seller matched with a buyer is −aci + p, where

a is the probability that the seller gives the asset to the buyer and p is the amount of the

numeraire good he consumes. The buyer’s payoff is −k if unmatched. As a special case

of the original setting, here: I = 2, n = 1, ui(a) = −aci and vi(a) = ahi. The matching
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function is m(θ) = min{1, θ}, that is, the short side of the market matches with certainty.

Following GSW, I make the following assumptions:

Assumption 7. In the asset market with lemons,

(i) 0 < h1 < h2 and 0 < c1 < c2.

(ii) For i = 1, 2, ci < bi ≡ hi − k.

4.1 Characterization

Since there are positive gains from trade for both types according to Assumption 7(ii),

under complete information, the planner wants both types to match with probability 1,

θFB
1 = θFB

2 = 1, and also trade with probability 1, aFB
1 = aFB

2 = 1. As already discussed,

the market with complete information decentralizes the first best allocation. With adverse

selection, GSW equilibrium is unique and separating. Different types trade in two different

submarkets. In submarket one, price is lower, but probability of matching for sellers is higher

compared with submarket two. The market tightness is used for buyers to screen different

types. The probability of matching for type two is distorted so that type one would not want

to apply to submarket two. The equilibrium allocation is independent of the distribution

of types. The second and third columns of Table 1 include the equilibrium outcomes under

complete information and adverse selection, respectively. Now let’s turn to the constrained

efficient allocation.

Proposition 1. Suppose Assumption 7 holds. Then the planner achieves strictly higher

welfare than the equilibrium. The optimal mechanism is given by:

(θ∗1, a
∗
1, s

∗
1, θ

∗
2, a

∗
2, s

∗
2) =







(1, 1, π1b1 + π2b2, 1, 1, π1b1 + π2b2) if π1b1 + π2b2 ≥ c2

(1, 1, π1b1(c2−c1)+π2c1(c2−b2)
c2−π1c1−π2b2

, π1(b1−c1)
c2−π1c1−π2b2

, 1, 0) if π1b1 + π2b2 < c2
.

Finally, if π1c1 + π2b2 ≥ c2, then the equilibrium is Pareto dominated by another imple-

mentable allocation.

The first part of this proposition is a special case of Theorem 1. In the second part, to fully

characterize the optimal mechanism, two cases are considered separately. If π1b1+π2b2 ≥ c2,

then the planner achieves the first best, for example, through a pooling allocation. This claim

is stronger than Theorem 3, because a weaker assumption than Assumption 4 is required.15

The allocation implemented by this mechanism, which is given in the fourth column of Table

1, does not require the planner to actually use any transfers. All he needs to do is to set zero

15To apply Theorem 3 to this setting, first switch the labels of type one and type two. Now see that

Assumption 2 is satisfied. Assumptions 4(iii) is satisfied if π2(U
FB
2 −m(1)(−c1+c2)

π1

π2

)+π1U
FB
1 ≥ 0, which

is equivalent to π1b1 + π2b2 ≥ c2. However, for Assumptions 3 and 4(ii) to hold, h2 − c2 ≤ h1 − c1 is needed.
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tax for the pooling price p = π1b1 + π2b2 and levy large taxes on other submarkets. This

allocation cannot be sustained as an equilibrium, because buyers would have incentives to

open a new submarket with a slightly higher price to attract only high-type sellers from the

pool, i.e., cream skimming, but then the probability that high-type sellers match would be

reduced compared with the first best.

If π1b1 + π2b2 < c2, type two would receive less than 0 under the pooling allocation, so

pooling both types is not feasible. Therefore, the first best is not achievable via a pooling

allocation. This is not achievable through any separating allocation either, because if a1 =

a2 = θ1 = θ2 = 1, then the payment to sellers in both submarkets should be the same to

satisfy the IC constraint, but it is already shown that the pooling allocation is not feasible.

The constrained efficient allocation in this case is given in the fifth column of Table 1.

GSW show that in the asset market with lemons, if there are no gains from trade only

for type one, that is, b1 − c1 < 0 and b2 − c2 > 0, then the entire market will shut down.

I show that in this case, if π1b1 + π2b2 < c2, then the planner cannot help. See page 65

in the Appendix for the proof, but the intuition is as follows. Type two is not active in

the equilibrium, so given the IC constraint of type one, the highest payoff that type two can

receive in the market is zero, so type two chooses not to participate in the market. Therefore,

both IC constraints are binding as both types receive a zero payoff anyway. The trick that

worked in the proof of Theorem 1 is not effective here, because any direct subsidies intended

for type one equally attract type two sellers, so type two would also prefer to report to be

type one. The policy implication is that if the distortion in the market is so severe that

inactivity of one type in equilibrium leads to inactivity of other types, then the planner may

not be able to improve the allocation using a budget-balanced policy.

4.2 Explanation of the Results

Assume as a thought experiment that the planner begins from the equilibrium allocation

and wants to increase welfare. We have already seen that the equilibrium allocation is

implementable through zero taxes. In the equilibrium, type one is indifferent between choos-

ing submarket one and submarket two. Although some type two sellers are unmatched in

submarket two, buyers do not enter submarket two further, because more entry will make

submarket two strictly preferable for type one, leading to entry of type one to submarket two.

Nevertheless, matching with type one sellers in submarket two with a positive probability is

not worthwhile for buyers given the high price that they need to pay in submarket two.

To increase welfare, the planner increases the net payment to type one, so that the IC

constraint of type one for choosing submarket two becomes slack. The planner implements

this allocation by subsidizing buyers in submarket one, i.e., t1 < 0. According to buyers’

maximization and zero profit condition, buyers in submarket one pay the net amount of

b1, which is equal to p1 + t1. But t1 < 0, so p1 > b1. In other words, taxes are levied on
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Complete Equilibrium Constrained Constrained

information efficient efficient

(FB) if π1b1 + π2b2 ≥ c2 if π1b1 + π2b2 < c2

a1, a2 1 1 1 1

θ1 1 1 1 1

θ2 1 b1−c1
b2−c1

− π1(b1−c1)
c2−π1c1−π2b2

p1 b1 b1 π1b1 + π2b2
π1b1(c2−c1)+π2c1(c2−b2)

c2−π1c1−π2b2

p2 b2 b2 − c2

t1 − − 0 −π2(b2−c2)(b1−c1)
c2−π1c1−π2b2

t2 − − b2 (large) b2 − c2

U1 b1 − c1 b1 − c1 π1b1 + π2b2 − c1
π1(b1−c1)(c2−c1)
c2−π1c1−π2b2

U2 b2 − c2
b1−c1
b2−c1

(b2 − c2) π1b1 + π2b2 − c2 0

Table 1: Different allocations in the asset market with lemons. Here, Ui denotes the payoff to type i

in different allocations, and ti denotes the tax amount levied on buyers in submarket i in the constrained

efficient allocation. The tax on other submarkets is sufficiently large and t0 = 0. If π1b1 + π2b2 ≥ c2, the

planner achieves the first best through a pooling allocation where both types trade in one submarket with

p = π1b1 + π2b2.

sellers anyway. As a result, type one strictly prefers submarket one over submarket two

following this subsidy. Now more buyers have incentives to enter submarket two to match

with previously unmatched sellers of type two. To finance subsidies to trading in submarket

one, the planner must tax trading in submarket two. The planner keeps increasing |t1| and t2

until one of the following happens. Either he achieves the first best, which is the case in the

pooling allocation where both types trade with the same price and with probability 1, or the

participation constraint of type two sellers binds, i.e., type two sellers receive an exactly zero

payoff. The former happens if π1b1 + π2b2 ≥ c2 and the latter happens if π1b1 + π2b2 < c2.

When π1b1 + π2b2 ≥ c2, if π2 is sufficiently large, the price in the pooling allocation is

sufficiently high so that type two sellers prefer this allocation to equilibrium. This is because

the gains that type two sellers receive from the increase in the speed of trading by pooling

all types is more than the effective tax that they have to pay. Remember that type two

sellers in equilibrium receive b2 with probability θEQ
2 < 1, while they receive π1b1+π2b2 < b2

with probability 1 in the constrained efficient allocation. Put differently, type two sellers are

forced to pay a high cost in the equilibrium to separate themeselves from type one sellers, so

they prefer collectively to cross-subsidize type one sellers if there are few of them, and trade

faster instead.

Entry of more buyers into a submarket in directed search environments creates two types
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of externalities on others. First, it decreases the probability of matching for other buyers in

that submarket. Second, it increases the probability of matching for sellers in that submarket

and consequently their payoff. In the complete information case, the change in the payoff

to sellers in one submarket does not affect the payoff to sellers in other submarkets. In fact,

the negative externality that entrants impose on other buyers under complete information

is exactly offset by the amount of positive externalities that they impose on sellers and

therefore, the equilibrium allocation is efficient. Under private information, the change in

the payoff to one type of sellers changes the IC constraints that other buyers face in other

submarkets, affecting the set of feasible contracts that those buyers can offer to attract other

types of sellers. This, in turn, will affect the payoff to other sellers in other submarkets. The

buyers in the market economy do not take this effect into account. The planner, in contrast,

internalizes these externalities by levying appropriate level of taxes, and therefore, is able to

increase welfare.

5 Application 2: The Rat Race

In this section I study another application from GSW, the rat race, which was originally

discussed in Akerlof (1976). An interesting fact about this application is that the first best

is achievable only through a separating allocation, in contrast to the previous example where

the first best was achievable through a pooling allocation for some parameter values. More

interestingly, the first best is achievable regardless of the distribution of types.

There are two types of workers (as sellers) on one side of the market and firms (as buyers)

on the other side. The payoff of a type i worker matched with a firm from a ∈ [0, amax] hours

of work and consuming p units of the numeraire good is p − φi(a), where amax > 0 is

sufficiently large. The worker’s payoff is 0 if unmatched. The payoff of a firm matched with

a type i worker when the worker works for a hours and the firm produces p units of the

numeraire good is vi(a) − p − k. The firm’s payoff is −k if unmatched. As a special case

of the original setting, here I = 2, n = 1 and ui(a) = −φi(a). Matching function m(θ) is

strictly concave and twice differentiable. I make the following assumptions:

Assumption 8. In the rat race application,

(i) Regularity assumptions on disutility of work: φi is differentiable, increasing, strictly convex

and φi(0) = φ′
i(0) = 0.

(ii) Higher disutility of work for lower types: For all a ∈ [0, amax], φ1(a) = τφ2(a) where τ > 1.

(iii) Regularity assumptions on production function: vi is differentiable, increasing and strictly

concave.

(iv) Higher productivity of higher types in average and at the margin: For all a ∈ Ā ≡
{
a ∈

[0, amax]|max{v1(a)− φ1(a), v2(a)− φ2(a)} ≥ k
q(0)

}
, v1(a) < v2(a) and v′1(a) ≤ v′2(a).
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Proposition 2. Under Assumption 8, the optimal mechanism is given by:

(θ∗1, a
∗
1, θ

∗
2, a

∗
2) = (θFB

1 , aFB
1 , θFB

2 , aFB
2 ),

s∗1 = π1U
FB
1 + π2U

FB
2 +m(θFB

1 )τφ2(a
FB
1 )− π2(τ − 1)m(θFB

1 )φ2(a
FB
1 ),

s∗2 = π1U
FB
1 + π2U

FB
2 +m(θFB

2 )φ2(a
FB
2 ) + π1(τ − 1)m(θFB

1 )φ2(a
FB
1 ).

I argue here that if Assumption 8 holds, then Assumption 2, 3 and 4(i) are automatically

satisfied, so this result is a special case of Theorem 3. Assumption 2(i) is satisfied because

−φ1(a) < −φ2(a) for all a. Assumption 2(ii) is satisfied because −φ2(a) − (−φ1(a)) is

increasing in a as τ > 1. Assumption 3 is satisfied because v2(a)− φ2(a)− (v1(a)− φ1(a)) is

increasing in a and because a is simply one-dimensional. Assumption 4(i) is satisfied because

v2(a) ≥ v1(a).
16

See the fourth column of Table 2 for the full description of the constrained efficient

allocation. When UFB
2 − UFB

1 > (τ − 1)m(θFB
2 )φ2(a

FB
2 ), then the equilibrium does not

achieve the first best. It is simple to check that for type two workers, the probability of

finding a match and also hours of work are distorted upward in equilibrium compared with

the first best allocation, i.e., θEQ
2 > θFB

2 and aEQ
2 > aFB

2 . The planner achieves the first best

by subsidizing trade in submarket one (t1 < 0) and taxing trade in submarket two (t2 > 0).

By offering this schedule of transfers, allocating the low-type workers a higher wage and the

high-type workers a lower wage than their wage under complete information, the planner

discourages type one workers from applying to submarket two, thus reducing the cost of

private information.17

When the equilibrium fails to achieve the first best, GSW propose a pooling allocation

that Pareto dominates the equilibrium allocation only if π1 is sufficiently small, although

the proposed allocation does not achieve the first best. The planner achieves the first best

here regardless of π1. Moreover, if π1 is sufficiently small, then the constrained efficient

allocation Pareto dominates the equilibrium allocation (Corollary 2). The point is that

when equilibrium does not achieve the first best, cross-subsidization is necessary, but it is

not necessarily done by pooling all types.

6 Relationship with Adverse Selection Literature

In this section I place my results in the adverse selection literature and compare them with

important papers of Rothschild and Stiglitz (1976), Wilson (1977), and particularly Holm-

16GSW make similar assumptions, except that they require v1(a) ≤ v2(a) (with weak inequality) and do

not impose v′1(a) ≤ v′2(a). The former and the latter are used here in Theorems 1 and 3, respectively.
17This result can provide a rationale for minimum wage or maximum compensation laws and regulations.

In the context of this model, these laws and regulations discourage low-type workers from applying for

positions designed for high types, thus relaxing IC constraints that firms, who try to attract higher-type

workers, face. Hence, the contract for high-type workers will be distorted less and efficiency will improve.

26



Complete information Equilibrium allocation Planner’s allocation

θ1 θFB
1 θFB

1 θFB
1

θ2 θFB
2 θ

EQ
2 θFB

2

a1 aFB
1 aFB

1 aFB
1

a2 aFB
2 a

EQ
2 aFB

2

p1 pFB
1 ≡ v1(a

FB
1 )− k

q(θFB
1

)
pFB
1 pFB

1 − t1

p2 pFB
2 ≡ v2(a

FB
2 )− k

q(θFB
2

)
v2(a

EQ
2 )− k

q(θEQ
2

)
pFB
2 − t2

t1 0 0 − π2

m(θFB
1

)
(UFB

2 − UFB
1 ) + π2(τ − 1)φ2(a

FB
1 )

t2 0 0 π1

m(θFB
2

)
(UFB

2 − UFB
1 )− π1(τ − 1)

m(θFB
1

)

m(θFB
2

)
φ2(a

FB
1 )

Table 2: Different allocations in the rat race. Here ti denotes the tax amount levied on buyers in the

submarket (ai, pi) in the constrained efficient allocation. The tax on other submarkets is sufficiently large,

and t0 = 0.

ström and Myerson (1983) and Maskin and Tirole (1992). I try to keep my notation as

close as possible to the last two papers so as to make the comparison simpler. First, I

formally define several notions: ex-ante incentive efficient, interim incentive efficient, and

ex-post classically efficient allocations introduced by Holmström and Myerson (1983), and

Rothchild-Stiglitz-Willson (RSW or least-cost separating) and weakly interim incentive ef-

ficient allocations introduced by Maskin and Tirole (1992). Second, using the language of

this section, I restate Theorems 1-4, so that my results can be directly comparable with this

literature. Finally, I explain what search frictions add to the picture.

There is a finite number of agents in Holmström and Myerson (1983), each with private

information, and there are exactly two agents in Maskin and Tirole (1992) with only one

having private information. In my paper, I have a continuum of sellers and buyers. To make

the comparison possible, I use the following interpretation. Instead of having a continuum

of agents, consider an environment with only one seller and one buyer (only for this section).

The seller is of type i with probability πi > 0 and has private information about his type.

Define π ≡ (π1, π2, ..., πI). The buyer has no private information. Let δ : {1, 2, ..., I} →

R+ × A × R+ denote an allocation. Elements of δ are simply (θ, a, s) and δ(i) ≡ (θi, ai, si).

Let D denote the set of all technologically feasible allocations:

D = {(θ, a, s) ∈ R+ × A× R+|θ ≤ M, q(0)(vi(a)− s) ≥ 0 and ui(a) + s ≥ 0 for all i}

where M is a sufficiently large number. Let ∆ denote the set of all classically feasible

allocations: ∆ = {δ : {1, 2, ..., I} → D}. Let the payoff to the buyer and the seller of type i

who reports type j from allocation δ be, respectively, denoted by:

V (δ(j), i) = m(θj)vi(aj)− kθj −m(θj)sj,

U(δ(j), i) = m(θj)ui(aj) +m(θj)sj.
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Note that search frictions have been incorporated in the payoff function of agents. In a

technical sense, matching probability is simply another dimension of the contracting problem

and is not different from, for example, hours of work in the labor market application, except

that it enters in the payoff function in a certain way. The set of all incentive compatible

(IC) allocations is given by:

∆∗ = {δ ∈ ∆|U(δ(i), i) ≥ U(δ(j), i) for all i, j}.

Allocation δ̄ is defined to be ex-ante or interim incentive efficient relative to the prior

beliefs π, i.e., δ̄ ∈ ∆∗
A(π) or δ̄ ∈ ∆∗

I(π), if it solves

max
δ

∑

πiλS(i)U(δ(i), i)

subject to δ ∈ ∆∗, U(δ(i), i) ≥ 0 for all i and
∑

πiV (δ(i), i) ≥
∑

πiV (δ̄(i), i),

with respective measurability restrictions on λS(i): if λS(i) is independent of i, then we get

ex-ante incentive efficient allocations, and if it depends on i arbitrarily, then we get interim

incentive efficient allocations. Obviously, any ex-ante incentive efficient allocation is interim

incentive efficient. Regarding the constraints of the problem, the first one is IC and the

second one is seller’s participation constraint.18 The last one is buyer’s ex-ante and also

interim participation constraint. This constraint is not type-by-type because the buyer does

not know the type of the seller at the ex-ante or interim stage.

Similarly, allocation δ̄ is defined to be ex-post classically efficient, i.e., δ̄ ∈ ∆P , if it solves

max
δ

∑

λS(i)U(δ(i), i)

subject to δ ∈ ∆, U(δ(i), i) ≥ 0 and V (δ(i), i) ≥ V (δ̄(i), i) for all i

for some positive weights λS(i), where λS(i) can depend on i arbitrarily.19

Allocation δRSW is defined relative to δO, with associated payoff URSW,i to type i, to be

RSW if for all i,

URSW,i ≡ U(δRSW (i), i) = max
δ

U(δ(i), i)

18I have assumed that the seller cannot commit to participate after learning his type. Otherwise, the seller’s

participation constraint for ex-ante case would be an average taken over all types, i.e.,
∑

πiU(δ(i), i) ≥ 0.
19A similar formulation of efficiency concepts were first introduced by Holmström and Myerson (1983):

Denote by ∆J (∆∗

J) the set of allocations that maximizes W (δ) =
∑I

i=1 πi(λB(i)V (δ(i), i) + λS(i)U(δ(i), i))

over ∆ (∆∗) with respective measurability constraints on λB(i) and λS(i) for J ∈ {A, I, P}. If λB(i) and

λS(i) depend on i arbitrarily, then we obtain ex-post efficient allocations. If λB(i) is independent of i, but

λS(i) depends on i arbitrarily, then we obtain interim efficient allocations. If both are independent of i,

then we obtain ex-ante efficient allocations. Unlike their paper, I have incorporated participation constraints

at different stages into the definitions of efficiency. If participation constraints are not taken into account,

then the following results will immediately follow: ∆A ⊆ ∆I ⊆ ∆P ,∆
∗

A ⊆ ∆∗

I ⊆ ∆∗

P , and ∆J ∩ ∆∗ ⊆

∆∗

J for all J ∈ {A, I, P}. See also Myerson (1983).
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subject to δ ∈ ∆∗, and V (δ(i), i) ≥ V (δO(i), i) for all i,

where, for simplicity and to conform to the formulation in the previous sections, I define δO

to be no-trade allocation, i.e., δO(i) = (0, 0, 0) for all i. Denote the set of all RSW allocations

by ∆RSW . Allocation δ̄ is defined to be weakly interim incentive efficient, i.e., δ̄ ∈ ∆∗
WI , if it

solves

max
δ

∑

λS(i)U(δ(i), i)

subject to δ ∈ ∆∗, and V (δ(i), i) ≥ V (δ̄(i), i) for all i

for some positive weights λS(i).

6.1 Results in the Language of Adverse Selection Literature

It is straightforward to show that the set of first best allocations defined in Section 3.1 is

exactly equal to the set of ex-post classically efficient allocations defined in this section, and

that the set of equilibrium allocations in GSW is exactly equal to the set of RSW allocations

in this section (within the class of deterministic allocations, as I do not allow for lotteries).20

Furthermore, the set of constrained efficient allocations as defined in Section 2 coincides

exactly with the set of ex-ante incentive efficient allocations in this section. Finally, the

set of implementable allocations that are not Pareto dominated by another implementable

allocation coincides exactly with the set of interim incentive efficient allocations in this sec-

tion. To summarize, all efficiency and equilibrium concepts defined in previous sections have

completely standard counterparts in this literature if matching probability is appropriately

incorporated into the payoff function of buyers and sellers.

Now that all needed material has been introduced, Theorems 1-4 in this paper are stated

in the language of this section for the class of quasi-linear two-agent economies in which one

agent has private information about his type:

∆RSW ∩∆P = ∅ plus other requirements specified in Theorem 1 ⇒ ∆RSW ∩∆∗
A(π) = ∅ for all π

∆RSW ∩∆P = ∅ plus other requirements specified in Theorem 2 ⇒ ∆RSW ∩∆∗
I(π) = ∅ for some π

requirements specified in Theorem 3 ⇒ ∆∗
A(π) ⊆ ∆P

δ ∈ ∆∗
A(π) plus other requirements specified in Theorem 4 ⇒ δ satisfies Equations (2), (3)

20For characterization of GSW equilibrium, look at Pi in Section 3.2 or Propositions 1-3 in GSW for more

details. Characterization method of Proposition 2 in Maskin and Tirole (1992) is very similar to GSW: Start

from the lowest type and assign them the best possible allocation subject to the participation constraints,

and then solve higher types’ problems subject to the participation constraints and incentive compatibility of

some lower types. There are two minor differences: First, their contract space is only two-dimensional and

thus more limited than GSW. Second, they only consider the incentive compatibility of the adjacent lower

type, but in GSW, all downward IC constraints should be taken into account.
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Remember that Theorems 1 and 2 require that the GSW equilibrium does not achieve

the first best. In the language of this section, it means that the set of RSW allocations

have an empty intersection with ex-post efficient allocations. Interestingly, all requirements

of Theorems 1 and 2 on the LHS of the arrow are independent of the distribution of types.

Hence, Theorem 1 (2) basically states that any RSW allocation is inefficient for all (some)

type distributions in the respective sense. Theorem 3 states that under certain conditions,

any ex-ante incentive efficient allocation is ex-post efficient; that is, adverse selection is

basically irrelevant. Theorem 4 provides some necessary conditions for ex-ante incentive

efficient allocations.

To the best of my knowledge, Theorems 1 and 2 have not been established by Maskin

and Tirole (1992) or other papers in the literature in their generality: no restriction on the

number of types or dimensions of contract space (except being finite) and no restriction on

the concavity of the payoff or matching functions. Not only are these results more general,

but they also extend the basic intuitions regarding adverse selection environments to those

with search frictions.

Maskin and Tirole (1992) characterize RSW allocation and show that any RSW alloca-

tion is weakly interim incentive efficient and that any such allocation is interim incentive

efficient relative to some beliefs. They imply that any RSW allocation is interim incentive

efficient relative to some beliefs. However, Theorem 2 here states that, again in the lan-

guage of this section, any RSW allocation is not interim incentive efficient relative to some

beliefs. Furthermore, they characterize the equilibrium of informed principal game, in which

an informed principal offers a mechanism to an uninformed agent. They show that the equi-

librium is unique if and only if RSW allocation is interim incentive efficient. As a byproduct

of my analysis, Theorem 2 provides sufficient conditions for the equilibrium of the informed

principal game to be not unique.21

6.2 Role of Search Frictions

First, as pointed out by GSW, introducing search frictions with capacity constraints solves

the equilibrium non-existence problem that is present in standard adverse selection models

such as Rothschild and Stiglitz (1976).22 This is probably the most important role of search

frictions. Second, search allows us to model several phenomena, which are otherwise hard

21For the informed principal problem with common values, see Myerson (1983), Cella (2008), Severinov

(2008), and Balkenborg and Makris (2015).
22Similar to GSW, Gale (1996), Inderst and Wambach (2001) and Inderst and Wambach (2002) use

capacity constraints to guarantee equilibrium existence. Other papers such as Wilson (1977), Miyazaki

(1977), Riley (1979), and more recently Lester et al. (2015), have modified the game to guarantee existence.

Some others have used the competitive markets framework in which agents take the price and composition

of types as given not only for on- but also off-the-equilibrium-path prices. See Gale (1992), Dubey and

Geanakoplos (2002) and Dubey et al. (2005).
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to study with standard economic theory, such as liquidity in financial and other markets,

unemployment and the time it takes for a house to sell.

Why do we use a directed search model as opposed to, perhaps, a random search model?

Directed search models have some advantages: First, directed search allows economic agents

to compete in offering terms of trade to attract agents on the other side of the market. This

feature is absent in random search models where agents are more passive in attracting a trade

partner. As shown in the literature already cited, equilibrium in directed search models with

complete information is usually efficient, thanks to the competition between agents in posting

contracts. Second, directed search may be more realistic in many contexts, such as wage

posting in the labor markets, than random search. Third, directed search is more suitable

for handling heterogeneity. For example, it is difficult to generate different trading delays

for heterogeneous agents in financial markets or heterogeneous extensive (firms entry) and

intensive (number of hires) margins in labor markets using a random search model, but it is

easy to do so using a directed search model.23

Which results in this paper are solely due to search frictions? Except equilibrium exis-

tence, which is guaranteed by search frictions (and perhaps more precisely by search frictions

and capacity constraints), it is possible to incorporate the dependence of the payoff functions

of agents to search technology into modified payoff functions for buyers and sellers, as in this

section, and work with them. In that case, matching probability is simply another dimen-

sion of contract space, and my results will be easily comparable with other adverse selection

models, regardless of whether they have search frictions or not. In fact, this allows me to

draw a perfect comparison between my results and other classic results in this literature,

and I can clearly show that GSW equilibrium is equivalent to RSW or least-cost separating

allocation.

7 Asset Market with a Continuous Type Space

In Section 4, the optimal tax, the tax schedule that implements the constrained efficient

allocation, requires high-price assets to be taxed and low-price assets to be subsidized. An

interesting question is whether the optimal tax is generally monotone in the price of assets.

To study this question, the model of Section 4 is extended to a continuous type space.

Studying this extension allows me to consider cases in which the value of assets to sellers

does not have the same order as the value of assets to buyers. Moreover, various policy

23Also, directed search can feature block recursively (Menzio and Shi (2011), Menzio et al. (2013) and Shi

(2009)), which proves to be convenient in tracking the evolution of the distribution in dynamic models with

heterogeneous agents.
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questions can be addressed about the optimal taxation in the asset markets.24 The setting

in this section can be seen as a static version of Chang (2014) (or a static version of Guerrieri

and Shimer (2014a) with only one asset and some minor adjustments), so I study constrained

efficiency in their environments using the analysis in this section. Fortunately, the main ideas

regarding equilibrium and constrained efficiency are captured in this static model.25

The main ideas discussed in previous sections are used in this section as well, and all

main results go through, but the mathematical tools used in the continuous case are different.

Some definitions need to be introduced again (counterparts of Definitions 2 and 3), but for

the sake of brevity, I only define implementable and constrained efficient allocations here

and relegate the discussion of many details to the Appendix.

7.1 Environment

There is a continuum of measure one of heterogeneous sellers indexed by z ∈ Z ≡ [zL, zH ] ⊂

R, with F (z) denoting the measure of sellers with types below z. F is continuously dif-

ferentiable and strictly increasing in z and F ′ is its derivative. Type z is seller’s private

information. Similar to the original setting, buyers’ and sellers’ payoffs are quasi-linear in

the numeraire good. A buyer’s payoff who enters the market and matches with a type z

is h(z) − p − k, where p ∈ R denotes the amount of the numeraire good that he produces,

h(z) denotes the value of the asset to the buyer and k is the entry cost, all in terms of the

numeraire good. His payoff is −k if unmatched. The payoff of a type z seller matched with a

buyer is p− c(z), where p ∈ R denotes the amount of the numeraire good that he consumes

and c(z) is the value of the asset to the seller in terms of the muneraire good. His payoff is

0 if unmatched. Functions h : Z → R and c : Z → R are twice continuously differentiable.

Matching function m(.) is increasing, strictly concave and twice differentiable.

As a benchmark, I characterize the complete information allocation or first best here,

exactly following the discussion in Section 3: UFB(z) = maxθ{m(θ)(h(z)− c(z))− kθ}, and

θFB(z) ≡ argmaxθ{m(θ)(h(z)− c(z))− kθ}, so

m′(θFB(z))(h(z)− c(z)) = k, (4)

24I could do the same exercise with a discrete type space with more than two types, but the technical

analysis with a continuous type space is simpler.
25 In a dynamic setting, the planner would have some inter-temporal considerations, because the distri-

bution of types does not necessarily remain the same over time, as some types match more quickly than

others and exit the market. The interesting tradeoff is whether the planner wants low-type sellers to find

a match early and exit the market, or he wants all sellers to exit the market with approximately the same

rate all the way to the end. The analysis of the dynamic setting is beyond the scope of this paper. Since the

equilibrium allocation is distribution-free, the equilibrium analysis in the dynamic case is much easier than

the analysis of the planner’s problem in the dynamic case. However, if one assumes in the dynamic setting

that when sellers sell their assets, an offspring is born and endowed with a new asset of the same quality,

the same results can be obtained in the dynamic setting, too, as the distribution remains constant.
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for both the planner and the market economy with complete information. I assume for

simplicity that there are positive gains from trade for all types, i.e., UFB(z) > 0 for all

z. Similarly to the discrete type space, it turns out that all types will be active both in

equilibrium and in the constrained efficient allocation.

7.2 Definition of the Planner’s Problem

Let an allocation, {G,P ,Θ, µ}, be a measure G on the set of all possible prices, P ≡ R+, with

support P , a tightness function, Θ : P → [0,∞], and a conditional density function of buyers’

beliefs regarding the type of sellers who would apply to any price, µ(z|p) : P × Z → [0, 1].

Let a tax function, t : P → R, denote the amount of tax levied on buyers at each submarket

conditional on trade, and finally, let t0 ∈ R+ denote the amount of the numeraire good to

be transferred to all sellers in a lump sum way.

Definition 5. An allocation, {G,P ,Θ, µ}, is implementable through policy {t, t0} if the

following conditions are satisfied:

(i) Buyers’ profit maximization and free entry

For any p ∈ P,

q(Θ(p))
(∫

h(z)µ(z|p)dz − p− t(p)
)

≤ k,

with equality if p ∈ P.

(ii) Sellers’ optimal search

Let U(z) = max

{

0,maxp′∈P
{
m(Θ(p′))(p′− c(z))

}
}

+ t0 and U(z) = t0 if P = ∅. Then, for

any p ∈ P and z, U(z) ≥ m(Θ(p))(p− c(z)) + t0 with equality if Θ(p) < ∞ and µ(z|p) > 0.

Moreover, if p− c(z) < 0, either Θ(p) = ∞ or µ(z|p) > 0.

(iii) Feasibility or market clearing

For all z,
∫

P
µ(z|p)
Θ(p)

dG(p) ≤ F ′(z), with equality if U(z) > t0.

(iv) Planner’s budget-balance condition

∫

P

q(Θ(p))t(p)dG(p) ≥ t0.
26

Using the revelation principle, I assume without loss of generality that sellers are allo-

cated to different submarkets through a direct mechanism to characterize IC schemes. Let

{θ̃(.), p̃(.), t̃(.), t̃0} be a direct mechanism where θ̃ : Z → R+, p̃ : Z → R+, t̃ : Z → R

and t̃0 ∈ R+. Whenever ˜ is used for a variable, it indicates that a direct mechanism

26I assume in this section that there are positive gains from trade for all types, so t0 is redundant in this

section and is set to 0 as it can be incorporated into t(.). I included t0 so that the model can be easily used

even if there are no gains from trade for some types.
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is concerned. In a direct mechanism if a type z seller reports ẑ, his payoff is given by:

U(z, ẑ) ≡ {m(θ̃(ẑ))(p̃(ẑ)− c(z))}+ t̃0. Therefore, the payoff to type z is given by:

U(z) = max
ẑ

U(z, ẑ). (5)

Incentive compatibility (IC) constraint implies that ẑ = z.

An equilibrium allocation, {GEQ,PEQ,ΘEQ, µEQ}, in the market economy is basically an

implementable allocation through the policy of zero taxes, t(p) = 0 for all p ∈ P and t0 = 0.

Denote by {θ̃EQ(.), p̃EQ(.)} the direct mechanism associated with the equilibrium in the mar-

ket economy, and denote by UEQ(.) the equilibrium payoff.27 Denote by {θ̃∗(.), p̃∗(.), t̃∗(.), t̃∗0}

the direct mechanism associated with the constrained efficient allocation. In the Appendix,

I state and prove the analogous of Lemma 1 to show that there is no loss of generality in

working with direct mechanisms.

Definition 6. A constrained efficient allocation is an implementable allocation that maxi-

mizes welfare among all implementable allocations. That is, a constrained efficient allocation

solves the following problem:

max
{G,P,Θ,µ},{t,t0}

∫

U(z)dF (z)

subject to {G,P ,Θ, µ} is implementable through {t, t0},

where U(z) is defined in part (ii) of Definition 5.

7.3 Constrained Efficiency versus Equilibrium

Define H1(z) ≡ −
∫ zH
z

m(θFB(ẑ))h′(ẑ)dẑ and H2(z) ≡
∫ z

zL
m(θFB(ẑ))h′(ẑ)dẑ. An allocation

is constrained Pareto efficient if there does not exist another allocation that is implementable

and gives all sellers a weakly higher payoff and a strictly positive measure of sellers a strictly

higher payoff. The results in this section are continuous-type analogous of Theorems 2 and

3. The proof ideas and the intuition are similar. Theorem 1 is easy to extend so I do not

repeat it here. A counterpart of Theorem 4 is available upon request.

Proposition 3. Suppose c′(z) > 0 and UFB(z) > 0 for all z.

(i) If h′(z) ≤ 0, then the planner achieves the first best.

(ii) If h′(z) ≤ 0 and

H̄1 ≡

∫

H1(z)dF (z) ≥

∫

(m(θ̃EQ(z))−m(θFB(z)))c′(z)dz, (6)

27Taxes are zero in the market economy, so they were simply eliminated from the description of the

mechanism.

34



then the constrained efficient allocation Pareto dominates the equilibrium allocation.

(iii) Assume h′(z) ≤ c′(z). The planner achieves the first best if and only if

H̄2 ≡

∫

H2(z)dF (z) ≥

∫

m(θFB(z))c′(z)dz − UFB(zL). (7)

(iv) If 0 ≤ h′(z) ≤ c′(z) and

H̄2 ≥

∫

(m(θFB(z))−m(θ̃EQ(z)))c′(z)dz, (8)

then the constrained efficient allocation Pareto dominates the equilibrium allocation.

It is shown in the proof of Proposition 3 that all types trade in submarkets with different

market tightness; therefore, the allocation is separating and p̃∗(z), θ̃∗(z) and t̃∗(z) are just

functions (as opposed to correspondences) of z, and are given by:

θ̃∗(z) = θFB(z) for all z,

p̃∗(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃∗(z0))c
′(z0)dz0

m(θ̃∗(z))
for all z, (9)

where U(zH) =
∫ [

m(θ̃∗(z))(h(z)− c(z))− kθ̃∗(z)−m(θ̃∗(z))c′(z) F (z)
F ′(z)

]
dF (z), and

t̃∗(z) = h(z)− p̃∗(z)−
k

q(θ̃∗(z))
for all z. (10)

Some comments are in order regarding conditions (6), (7) and (8). First, the RHS of these

conditions is independent of the distribution of types and all effects of the distribution are

captured in the LHS, so the cost of assets for sellers does not have direct interactions with the

distribution of types. That is, the average cost to the sellers is irrelevant as long as the average

value of the respective Hi (not h) over the population is sufficiently high. Second, it is easy

to see that (7) is stronger than (8). Third, (7) is equivalent to
∫ [

m(θFB(z))
(
h(z)− c(z)−

c′(z) F (z)
F ′(z)

)
− kθFB(z)

]
F ′(z)dz ≥ 0, or

∫ (h(z)− c(z)

c′(z)
η(θFB(z))−

F (z)

F ′(z)

)

m(θFB(z))c′(z)F ′(z)dz ≥ 0, (11)

where η(θ) ≡ − θq′(θ)
q(θ)

. See the derivation in the proof of Proposition 3(iii) in the Appendix.

For the latter inequality to hold, it is sufficient that the terms inside the brackets are positive

for all z. Fourth, (6) and (8) are hard to verify, because they have been stated in terms of

θ̃EQ(.), for which the closed-form solution is not generally available. Rather, it is available in

the form of a differential equation, as shown in (14). In Example 3 in the Appendix, I adopt

a specific matching function, solve for θ̃EQ(.), and give explicit conditions equivalent to (6)

and (8). Fifth, technically speaking, part (i) of the proposition is redundant, as it is implied
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by part (iii). This is because if h′(z) ≤ 0, then both h′(z) ≤ c′(z) and (7) are satisfied. I

included part (i) to have a clear characterization.

Here is an outline of the proof for parts (i) and (iii) regarding how the first best can

be achieved. This proof is similar to that of Theorem 3. The assumption that c′(.) > 0

is kept throughout this section. To characterize incentive compatible allocations, note that

the seller’s payoff function can be written as −m(θ)c(z) plus some transfers. This function

satisfies the single crossing condition in (θ, z) (Theorem 7.3 in Fudenberg and Tirole (1991)).

Therefore, θ̃(z) being decreasing in z implies that there exists a set of transfers to sellers

that satisfies IC constraints. Now assume h′(z) ≤ 0 for all z or h′(z) ≤ c′(z) for all z.

In either case, θFB(z) ≡ m′−1( k
h(z)−c(z)

) is decreasing in z according to (4). Therefore, if

θ̃∗(z) = θFB(z) for all z, one can find such transfers. The envelope theorem can then be

applied to (5) to obtain:

U∗(z)− U∗(zH) = −

∫ z

zH

m(θ̃∗(z))c′(z)dz, (12)

which together with (5) and the fact that ẑ = z yields to (9).

As mentioned earlier, the environment here is basically the static version of Chang (2014),

so I take the characterization of equilibrium from her paper.

Proposition 4 (Equivalent to Proposition 1 in Chang (2014)). Suppose c′(z) > 0, h′(z) ≥ 0

and UFB(z) > 0 for all z. Given the policy of zero taxes, a unique implementable allocation

(equilibrium) exists. The equilibrium is separating. The market tightness solves the differ-

ential equation (14). The initial condition and prices are given by θ̃EQ(zL) = θFB(zL) and

p̃EQ(z) = h(z)− k
q(θ̃EQ(z))

.

Similar to the discrete-type case, whenever I use equilibrium without any reference, I mean

an allocation that is implementable through the policy of zero taxes. The IC constraints faced

by agents in the market economy are the same as those faced by the planner; therefore, (5)

can be used to describe IC constraints in equilibrium too. However, the amount of transfers

that each type receives is different in equilibrium than the constrained efficient allocation,

because they are pinned down by the free-entry condition absent of any cross-subsidization

in equilibrium.

Following GSW, Chang shows that the equilibrium under Assumption c′(.) > 0 and

h′(.) ≥ 0 is separating, so free entry implies that p̃EQ(z) = h(z)− k
q(θ̃EQ(z))

for all z. Therefore,

the payoff to type z in the market economy, denoted by UEQ(z), is calculated as follows:

UEQ(z) = max
ẑ

{m(θ̃EQ(ẑ))(h(ẑ)− c(z))− kθ̃EQ(ẑ)}, (13)

where the objective function is the payoff to type z if he reports type ẑ. FOC with respect

to ẑ (together with the assumption of differentiability of θ̃(z) almost everywhere) yields

[

m′(θ̃EQ(z))(h(z)− c(z))− k
] dθ̃EQ(z)

dz
+m(θ̃EQ(z))h′(z) = 0, (14)
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Figure 1: Schematic diagram for sellers’ payoffs in different allocations under requirements

of Proposition 3 (iv).

where I used the fact that at the solution, ẑ = z because of IC. With respect to the initial

condition, roughly speaking, the market delivers the complete information payoff to the type

that has the most incentive to deviate. For example, when h′ ≥ 0, the lowest type has

the most incentive to deviate, so the market tightness for this type is set to the complete

information level, i.e., θ̃EQ(zL) = θFB(zL).

Now more intuition about Proposition 3, especially part (iv), can be provided. In Figure

1, the sellers’ payoffs in different allocations are illustrated for the case that (8) is satisfied

and that 0 ≤ h′(.) < c′(.). The slope of payoffs in the constrained efficient allocation and

equilibrium is pinned down by (12), where θ̃∗(.) is replaced by θ̃EQ(.) for the equilibrium

allocation. The market tightness in the equilibrium is distorted downward, i.e., θ̃EQ(.) ≤

θ̃∗(.) ≡ θFB(z) by (14), so U∗(z) is steeper than UEQ(z). As a result, in order for the

constrained efficient allocation to Pareto dominate the equilibrium allocation, the necessary

and sufficient condition is that the payoff to the highest type should be weakly higher in

the former than the latter. This gives a lower bound for the amount of the payment to

the highest type, and the slope of U∗(z) determines the payoff to other types. To finance

transfers to low-type sellers, the distribution should satisfy (8) so that that the weighted

average of the two dashed areas in Figure 1 are the same.

7.3.1 Disagreement in the Ranking of Assets Between Buyers and Sellers or

Two-dimensional Private Information

Chang (2014) extends her analysis to allow for two-dimensional private information. (See
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h′(z)− c′(z) = 0

c′(z)

h′(z)

Planner’s allocation is
separating if (c′(z), h′(z))

lies here for all z

(c′(zH), h
′(zH))

(c′(zL), h
′(zL))

(a)

h′(z)− c′(z) = 0

c′(z)

h′(z)

Equilibrium allocation is
separating if (c′(z), h′(z))

lies in one quadrant for all z

(c′(zL), h
′(zL))

(c′(zH), h
′(zH))

(b)

Figure 2: Assume (7) is satisfied. In (a), h is not monotone in z, so the equilibrium will involve some

pooling. However, since h′(.)− c′(.) ≤ 0, the planner achieves the first best through a separating allocation

(Proposition 3(iii)). In (b), equilibrium is separating because h′(.) ≥ 0. However, h− c is not decreasing, so

the planner cannot achieve the first best and the constrained efficient allocation may not be separating.

38



also Guerrieri and Shimer (2014b) for a closely related model.) What is relevant to this

discussion is that following this extension, function h may have a strict local maximum and,

therefore, full separation of types in the market is not possible (Proposition 4 in Chang

(2014)). Using the same argument and keeping the assumption c′(z) > 0 fixed, it can be

shown more generally that if h is not monotone, then full separation of types is not possible.

Characterization of the planner’s problem in the present paper, in contrast, shows that under

h′(z) ≤ c′(z) and also (7), even if h is not monotone, then the constrained efficient allocation

is separating. This case is depicted in Figure 2(a) where h′(z) is drawn in terms of c′(z) for

all z.

Suppose now that h′(z) − c′(z) ≤ 0 is violated for some z. For example, h − c has

one local minimum, but h′(z) ≥ 0 and c′(z) > 0 both hold, as depicted in Figure 2(b).

The equilibrium in this case is separating. The constrained efficient allocation, in contrast,

may involve pooling of types, because the monotonicity constraint, that θ̃∗(z) should be

decreasing in z, may not be satisfied through any separating allocation. Solving explicitly

for the planner’s allocation in this case does not give us new insights, so I skip it. The main

point is that pooling of types occurs under different conditions in the planner’s allocation

and the equilibrium allocation. Therefore, drawing conclusions about efficiency of allocation

by simply considering whether it is pooling or separating is misleading. There are cases in

which the equilibrium allocation is pooling while the efficient allocation is separating and

vice versa.

7.4 Examples of Optimal Taxation

Two examples are presented in this section to compare the first best (FB), equilibrium (EQ)

and constrained efficient (*) allocations, to identify the types who should be taxed and the

ones who should be subsidized, and to examine whether or not taxes are monotone in the

type of sellers or in the price of assets.

Example 1. Model parameters: m(θ) = 1−e−θ, Z = [1, 2], c(z) = z, h(z) = 0.5(z−1)2+4,

k = 1.85, and F (.) is uniform.

Here, c′ > 0, h′ ≥ 0 and h′ − c′ ≤ 0. It is easy to check that Proposition 3(iii) ap-

plies, so the market tightness for the constrained efficient allocation is given by θ̃∗(z) =

θFB(z) = m′−1( k
h(z)−c(z)

) = ln(h(z)−c(z)
k

), and p̃∗(z) and t̃∗(z) are given by (9) and (10).

The net payment that buyers make in the constrained efficient allocation, p̃∗(z) + t̃∗(z), is

equal to pFB(z) ≡ h(z) − k
q(θFB(z))

. For the equilibrium allocation, θ̃EQ(z) is given by (14):
[

exp(−θ̃EQ(z))(h(z)− c(z))− k
]

dθ̃EQ(z)
dz

+(1−exp(−θ̃EQ(z)))h′(z) = 0, with the initial con-

dition θ̃EQ(1) = θFB(1) and θ̃EQ(z) being decreasing in z. The price that buyers pay in

equilibrium is p̃EQ(z) = h(z)− k
q(θ̃EQ(z))

.
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Figure 3 illustrates the first best, equilibrium and constrained efficient allocations for

Example 1. Here, θ̃EQ(.) ≤ θFB(.). Market tightness is basically the tool that buyers in the

market economy use to screen high-type sellers. Low-type sellers prefer to sell their assets

more quickly, because they do not want to get stuck with their “lemons.” Consequently,

p̃EQ(z) is generally greater than pFB(z) ≡ h(z) − k
q(θFB(z)

, the price that buyers pay in the

market with complete information. Also, p̃∗(.) is higher for lower types and lower for higher

types compared with pFB(.). Since the market tightness is the same in the first best and

constrained efficient allocation, the price that buyers should pay is the same in both cases so

that buyers’ zero profit condition is satisfied.28 On the other hand, p̃∗ is the payment that

sellers should receive in the constrained efficient allocation. Therefore, the amount of tax

that buyers should pay, t̃∗(.), is just equal to the difference, pFB(.)− p̃∗(.).

Next, I study another example in which h is not monotone and, therefore, separation of

types in equilibrium is not possible, as explained in the last subsection.

Example 2. Model parameters: m(θ) = 1−e−θ, Z = [0, 2], c(z) = z, h(z) = 0.5(z−1)2+4,

k = 1.85, and F (.) is uniform.

Proposition 3(iii) applies, so the market tightness at the constrained efficient allocation is

similarly given by θ̃∗(z) = θFB(z) = m′−1(h(z)−c(z)
k

) = ln(h(z)−c(z)
k

). According to Proposition

5 in Chang (2014), I construct one semi-pooling equilibrium in which types z ∈ [0, 1) trade

in a pool with a low price but with high probability. Types z ∈ (1, 2] trade in separating

submarkets. Type z = 1 is indifferent between the pool and one of the separating submarkets.

She calls this situation fire sale of assets, in which many low-type sellers and some high-type

sellers who need liquidity sell their assets with a lower price but very quickly. Prices and

taxes are calculated similarly, as explained in Example 1.

Figure 4 is similar to Figure 3 for parameters in Example 2. Market tightness in the

constrained efficient allocation is the same as that in the first best. Market tightness in

equilibrium is higher than that in the first best for types z ∈ [0, 1) and is less for other types.

In Figure 5, the payoff to sellers of different assets is depicted for both Examples 1 and 2.

In the upper left (right) graph of Figure 6, t̃∗(z) is drawn in terms of z (in terms of p̃∗(z)).

An interesting fact here is that in both examples, even in Example 1 in which buyers and

sellers agree on the ranking of assets as h and c are both increasing, the amount of tax levied

on buyers is neither monotone in the type of sellers that buyers meet, nor in the price paid

to the sellers. The following lemma provides sufficient conditions for non-monotonicity of

28As seen in this figure, the price range in the constrained efficient allocation is smaller than that in the

equilibrium. Similarly to the rat race application, this result can provide intuition why price cap and price

floor in this market may be welfare enhancing. These policies are basically the same as levying large taxes on

very high and very low prices, thus reducing the incentives of low-type sellers to go to the markets designed

for higher types.
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sale tax schedule if buyers and sellers agree on the ranking of assets. If they don’t, deriving

sufficient conditions for non-monotonicity is even simpler.

Lemma 2. Assume 0 < c′(.) and 0 ≤ h′(.) ≤ c′(.). Also assume (7) holds, then

dt̃∗

dz
= h′(z) +

(m′(θFB(z)))2

m(θFB(z))m′′(θFB(z))

t̃∗(z)

h(z)− c(z)
(h′(z)− c′(z)).

If h′(zL) = 0 and 0 < h′(.) for a strictly positive measure of sellers, then the optimal sales

tax schedule is not monotone in the price of assets. Specifically, dt∗(p)
dp

|p=p̃∗(zL) < 0 and
dt∗(p)
dp

|p=p̃∗(z0) > 0 for some z0 ∈ (zL, zH ].

Changes in t̃∗(z) are not only influenced by changes in h(z) but also by another term that

has the same sign as t̃∗(z). Therefore, when the first term above is sufficiently small, the

second term may dominate the first term and t̃∗(z) may become decreasing. More generally

and intuitively, the free-entry condition can be written as follows, if the constrained efficient

allocation is separating:

t̃∗(z) = h(z)−
k

q(θ̃∗(z))
︸ ︷︷ ︸

decreasing

− p̃∗(z)
︸ ︷︷ ︸

increasing

.

The term k
q(θ̃∗(z))

is decreasing in z because θ̃∗(z) is decreasing in z. Also, p̃∗(.) is increasing

(formally proved in Lemma 7 in the Appendix), as high-type sellers should be compensated

for selling with lower probability. Hence, t̃∗(z) may not be generally monotone in z.

7.5 Sales Tax and Entry Tax

Implementation of a non-monotone tax schedule is difficult in a practical sense, as it requires

the planner to have precise information about the distribution of types. Although it is usually

assumed in the literature, including in this paper, that the planner has such information,

one ideally wants to reduce the dependence of what the planner should do on the details of

the economy.

Entry tax is introduced in this subsection, so buyers will be subject to two types of

taxes: sales tax, which is conditional on trade as before, and entry tax, which is conditional

on entry to each submarket. The definition of implementable allocation should be slightly

modified to include both types of taxes. See the Appendix for the details. I show in the

following proposition that, in general, any feasible mechanism can be implemented by both

a decreasing entry tax and an increasing sales tax in the price of assets.29

29 If the entry tax for a submarket is less than −k, then buyers pay this negative tax, i.e., receive a positive

subsidy of t̃e + k, and then do not participate in the matching stage that delivers them a strictly negative

payoff. Therefore, another constraint that should be added to the definition of implementable allocation is

k + t̃e(z) ≥ 0. See Definition 10 in the Appendix.
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Proposition 5 (Implementation of the direct mechanism with monotone entry and sales

tax). Take any feasible mechanism in which all types receive a strictly positive payoff, and

in which the market tightness allocated to different types is all different. Then there exists

an associated implementable allocation with monotone tax schedules in the price of assets,

decreasing entry tax and increasing sales tax, such that all types receive the same payoff as

their payoff in the feasible mechanism.

The idea to design a monotone t̃∗(z) is to add an entry tax for each submarket, t̃e
∗
(z),

so the free-entry condition can be written as follows:

t̃∗(z) = h(z)−
k + t̃e

∗
(z)

q(θ̃(z))
− p̃∗(z).

If t̃e
∗
(z) is constructed to be decreasing sufficiently fast in z, then the effect of k+t̃e

∗
(z)

q(θ̃(z))

dominates the effect of p̃∗(z), and t̃∗(z) becomes increasing in z. The following corollary is

implied directly by Proposition 5 together with the equivalent of Lemma 1 in the continuous-

type space.

Corollary 2. Take an optimal mechanism. Under requirements of Proposition 5, there exists

an associated constrained efficient allocation such that all types receive exactly the same payoff

as in the mechanism, and the associated entry tax and sales tax are, respectively, decreasing

and increasing in the price of assets.

A schedule of monotone sales and entry tax, which implements the first best allocation,

is depicted for both examples in Figure 7.
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Figure 3: Model parameters are defined in Example 1. In the upper left (right) graph, the value of type z

asset to buyers (surplus from the match) is depicted. In the lower left (right) graph, the price that sellers

receive (the market tightness) in the first best, constrained efficient and equilibrium allocation is depicted.
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Figure 4: This figure is similar to Figure 3 but with model parameters defined in Example 2.
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Figure 5: Model parameters are defined in Example 1 (2) for the left (right) graph. The expected payoff

to sellers in the first best, constrained efficient and equilibrium allocation is depicted.
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8 Conclusion

I characterized the constrained efficient allocation in an environment with adverse selection

and directed search. Under similar assumptions that GSW make to characterize the unique

equilibrium, the planner can achieve strictly higher welfare than equilibrium if equilibrium

fails to achieve the first best. Moreover, if the weight of low types in the population is

relatively low, then the equilibrium allocation is Pareto dominated by another implementable

allocation. Under some conditions, the planner can even achieve the first best. These results

highlight the role of cross-subsidization between different submarkets in such an environment.

In the market economy, the buyers do not take into account the effects of their entry on

the set of feasible submarkets available to buyers who want to attract other types of sellers.

Entry of one more buyer to a submarket changes the payoff to sellers in that submarket

and, through incentive compatibility constraints, changes the set of feasible contracts that

buyers can offer in other submarkets, and eventually changes the payoff to sellers in other

submarkets. The planner takes this externality into account and is therefore able to increase

welfare by imposing appropriate taxes and subsidies.

Guerrieri and Shimer (2014a) use a similar framework to analyze the effects of asset

purchase and subsidy programs, such as Troubled Asset Relief Program in 2008 or the Public-

Private Investment Program for Legacy Assets in 2009. They show that a sales tax schedule

monotone in the asset prices increases the price and sale probability of all assets. They do

not study the optimal policy, nor do they consider budget-balanced policies. My results

show that a monotone sales tax schedule is not generally welfare-maximizing. However, if

the planner uses entry tax as well as sales tax, then monotone tax schedules (increasing sales

tax and decreasing entry tax) can be found to implement the constrained efficient allocation.

There are many important related research questions that can be considered for future

work. For example, if instead of bilateral meetings discussed in this paper, one considers

many-on-one meetings, i.e., allowing several sellers to meet with a buyer so that sellers face

some competition after meeting a buyer, does it induce sellers to reveal their types in a less

costly manner, and importantly, does the equilibrium remain constrained inefficient? An-

other area for research is to investigate the shape of the optimal tax schedule in more stylized

models of asset, insurance, labor and housing markets. This should include relevant details

such as common and private values, multi-dimensional heterogeneity, dynamics, possibility of

resale, and even symmetric uncertainty shared by buyers and sellers about the value or resale

value of the good or asset. Even characterizing the optimal tax schedule in these applications

within a certain class of tax functions, such as increasing and convex functions, would be

interesting. Finally, modifying the GSW restrictions on the off-the-equilibrium-path beliefs

or looking for other equilibrium concepts so that the constrained efficient allocation can be

maintained as an equilibrium allocation would be other promising areas for research.
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Appendix

Differences Between My Environment and GSW

There are two minor differences between GSW and my environment. The first is that I

impose quasi-linearity on the payoff functions, while they do not. I do so to ensure that my

results do not come from concavity of the utility functions, and also to make the analysis

slightly simpler, as the transfers can be substituted out from the planner’s problem by using

the budget balance condition. Without quasi-linearity, two changes should be applied to the

definition of feasible mechanism (Definition 3). First, the mechanism should have two types of

payments to each type of seller: one payment conditional on meeting and one unconditional

payment. Here, because of quasi-linearity, I captured the expected payment only in one

term, si, without losing any generality. Second, the buyers’ participation constraint should

be separated from the planner’s budget-balance condition as in Definition 1. By applying

these two changes, a modified version of Lemma 1 will continue to hold.

The second difference is that I do not allow the planner to use lotteries. By lotteries,

I mean that the planner allocates type i sellers to different 3-tuples, (θ, a, s) and (θ′, a′, s′),

with positive probabilities, where these 3-tuples may deliver type i sellers different payoffs.

In contrast, GSW allow for lotteries on (a, p). However, it does not make their problem a

convex one (despite the fact that lotteries are typically used for convexification). The reason

is that in the set of problems used to characterize the equilibrium in their paper, both the

objective function and the constraint set include θ, and allowing lotteries only on (a, p) does

not generally make the constraint set convex or the objective function (quasi-)concave. For

the planner, however, allowing for lotteries on both θ and (a, p) (or equivalently on (θ, a, s))

makes sense, as the goal is to characterize the best outcome that can be achieved. It can also

make the planner’s problem a convex one. The problem, in that case, is that the comparison

between the market allocation and the planner’s allocation may not be fair, as too much

power, lotteries on both θ and (a, p), has been given to the planner while the market can

use lotteries only on (a, p). In short, allowing for lotteries only on (a, p) does not convexify

GSW’s problem nor the planner’s problem.

On the other hand, it seems arbitrary if the planner is allowed to use lotteries along only

one dimension, (a, p), and not along the other, θ. That would make the analysis a bit more

general at the cost of making the proofs more complicated and less intuitve. For this reason,

I decided not to allow for lotteries on θ nor (a, p) for both the market and the planner, to

make the exposition and proofs more intuitive and to have a fair comparison between the

market and planner’s allocation, without losing any major insights. All results will continue

to hold even without quasi-linearity or if lotteries on (a, p) are allowed for both the market

and the planner.
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Proofs of Sections 2 and 3

Before I discuss the results, note that the budget-balance condition in the optimal mechanism

is always binding. Otherwise, one can increase all si by an identical small amount so that

all other conditions continue to be met, but welfare strictly increases.

Proof of Lemma 1. Given the feasible mechanism {(θi, ai, si)}i∈{1,2,...,I}, an allocation

is constructed, shown to be implementable for a proposed policy, and shown to deliver the

same welfare as the mechanism. Define N to be the set of all types who match with a strictly

positive probability in the direct mechanism, that is, N ≡ {i|θi > 0}. Now I construct the

following objects:

yri = (ai,
si − t0
m(θi)

),Θ(yri) = θi, γi(yri) = 1, λ({yri}) = πiθi for all i ∈ N,Y =
{
yri |i ∈ N},

t(yri) = vi(ai)−
si − t0
m(θi)

−
k

q(θi)
for all i ∈ N, and t0 =

{

si if ∃i such that θi = 0

0 otherwise
.

For any other submarket, i.e., y /∈ Y , define K(y) = {j|uj(a) + p > 0} to denote the

set of types who would receive a strictly positive payoff by applying to y. If K(y) 6= ∅ and

minj∈K(y){
Uj

uj(a)+p
} ≤ m̄ ≡ limθ→∞m(θ), then set Θ(y) such thatm(Θ(y)) = minj∈K(y){

Uj

uj(a)+p
}.

If the latter equation holds for several Θ(y), then pick the smallest one. If it holds for no

real number, or if K(y) = ∅ or minj∈K(y){
Uj

uj(a)+p
} > m̄, then set Θ(y) = ∞. To define the

composition function for y /∈ Y , define no = min{argminj∈K(y){
Uj

uj(a)+p
}} and set γno

(y) = 1.

If K(y) = ∅, then Γ(y) can be chosen arbitrarily, so, for example, set γ1(y) = 1. Also for

y /∈ Y , set t(y) = max{0,maxi vi(a)− p}.

If there exist i and j 6= i such that yri = yrj , assuming without loss of generality that

θi ≤ θj, then keep only yri and remove yrj from Y and let γi(yri) =
πi

πi+πj
, γj(yri) =

πj

πi+πj
,

λ({yri}) = (πi+πj)θi and t(yri) =
πivi(ai)+πjvj(ai)

πi+πj
− si−t0

m(θi)
− k

q(θi)
.30 Now I show that if yri = yrj ,

then m(θi) = m(θj), so the above construction is well defined. According to the sellers’

incentive compatibility constraint for type i to report j, one can write: m(θi)ui(ai) + si ≥

m(θj)ui(aj) + sj = m(θj)(ui(aj) +
sj−t0
m(θj)

) + t0 = m(θj)(ui(ai) +
si−t0
m(θi)

) + t0 where the second

equality follows from the assumption that yri = yrj . This implies that (m(θi)−m(θj))(ui(ai)+
si−t0
m(θi)

) ≥ 0. If θk > 0 for all k, then t0 = 0 by construction, and due to the participation

constraint for type i, m(θi)ui(ai) + si ≥ 0. If there exists k such that θk = 0, then IC

constraint for type i to report k implies that m(θi)ui(ai) + si ≥ sk = t0 for all i. Therefore,

whether there exists k with θk = 0 or not, ui(ai)+
si−t0
m(θi)

≥ 0. Thus, m(θi) ≥ m(θj). Similarly,

by considering the sellers’ incentive compatibility constraint for j to report i, one can obtain

m(θj) ≥ m(θi). Therefore, m(θj) = m(θi).

Moreover, notice that t0 is well defined, because if there are more than one i with θi = 0,

then si must be the same for all of them, for otherwise, the sellers’ incentive compatibility

30If there are more than two types with the same yri , then keep the one with the lowest θi again, remove

the rest, and construct γi, λ({yri}) and t(yri) similarly.
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constraint in the definition of feasible mechanism is violated. Also, yri is well defined for all

i, because θi cannot be equal to 0, for all i ∈ N . Furthermore, t(y) is well defined, since no θi
can be equal to ∞. If θi goes to ∞ for some i, then the planner’s budget-balance condition

will be violated, because the planner needs to spend an infinite amount of resources to finance

entry of buyers (the LHS of the planner’s budget-balance condition goes to −∞).

I show next that {λ,Y ,Θ,Γ} is implementable through {t, t0}. Regarding sellers’ opti-

mal search, first consider i ∈ N. I need to show

Ui ≡ m(θri)(ui(ari) + pri) + t0 ≥ m(θrj)(ui(arj) + prj) + t0 for j ∈ N, (15)

m(θri)(ui(ari) + pri) ≥ 0. (16)

To show the above inequalities, note that

m(θri)(ui(ari) + pri) = m(θi)ui(ai) + si − t0 ≥ m(θi)ui(aj) + sj − t0 for all j,

where the equality follows from the construction of yri and the inequality follows from the

incentive compatibility condition in the direct mechanism. The RHS equals to 0 if j /∈ N

and equals to m(θrj)(ui(arj) + prj) if j ∈ N . Thus, (15) is established. Regarding (16),

if N 6= {1, 2, ..., I}, then consider a j ∈ {1, 2, ..., I} \ N . Since θj = 0 by definition of

N , then IC in the feasible mechanism implies (16). If N = {1, 2, ..., I}, then t0 = 0 and

m(θri)(ui(ari) + pri) ≥ 0 due to the participation constraint in the direct mechanism.

To show Ui ≥ m(Θ(y))(ui(a) + p) + t0 for all y ∈ Y and i /∈ N , I need to show t0 ≥

m(θrj)(ui(arj) + prj) + t0 for all j ∈ N , but

m(θrj)(ui(arj)+prj)+ t0 = m(θj)(ui(aj)+pj)+ sj ≤ m(θi)ui(ai)+ si = si = t0 for all j ∈ N.

The first equality follows from the construction of yrj and j ∈ N . The inequality follows

from the incentive compatibility condition in the direct mechanism. The next equality holds

because θi = 0 as i /∈ N . The last equality holds due to the construction of t0 and that

i /∈ N .

I now show formally that condition (ii) is satisfied. By construction of Θ(.) and Γ(.) and

as shown above: Ui ≥ m(Θ(y))(ui(a) + p) + t0 for all y ∈ Y with equality if Θ(y) < ∞ and

γi(y) > 0. The inequality also holds for y /∈ Y due to the construction of Θ(.) and Γ(.).

Given y, if ui(a) + p < 0 for some i, then i /∈ K(y). Thus, if K(y) = ∅, then Θ(y) = ∞. If

K(y) 6= ∅, then γno
(y) = 1 for some no ∈ K(y), therefore γi(y) = 0.

Buyers’ profit maximization and free-entry condition holds because of the following

reasons. For y ∈ Y , there exists i ∈ N such that y = yri . Thus, q(θri)(vi(ari)−pri − t(yri)) =

k by construction of t(.), so this condition holds with equality for y ∈ Y . For y /∈ Y ,

q(Θ(y))
∑

γi(y)(vi(a)−p−t(y)) < k because of the construction of t(y). Therefore, condition

(i) is satisfied.31

31It is clear from this step of the proof that the restrictions on off-the-equilibrium-path beliefs do not play

any role in my analysis. That is, any other off-the-equilibrium-path beliefs would work with the proposed

taxes. This is because the planner does not face any restriction on the tax amount that he can impose.

Moreover, one may want to add another restriction that buyers’ payoff from trade before taxation must

be positive. Otherwise, buyers may want to fake trading. Adding this restriction may be interesting in some

contexts, but it is beyond the scope of this paper.
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Feasibility condition is obviously satisfied following the construction of λ.

Planner’s budget-balance condition is satisfied because:

∫

q(Θ)t(y)dλ({y})− t0 ≥
∑

i∈N

q(θi)(vi(ai)− pi −
si − t0
m(θi)

−
k

q(θi)
)πiθi − t0

=
∑

i∈N

πi[m(θi)vi(ai)− si − kθi] +
∑

i/∈N

πi[m(θi)vi(ai)− si − kθi] ≥ 0.

The first inequality holds due to the construction of the allocation. Note that if several types

have the same yri , then it was shown that m(θri) = m(θrj) and if θri 6= θrj , then the lowest

one was chosen. The equality holds due to the fact that for i /∈ N , θi = 0 and si = t0. The

last inequality holds due to the budget-balance condition in the feasible mechanism.

Proof of Theorem 1. As stated in the text, the budget-balance constraint should be

binding in the planner’s problem, so the problem can be written as:

max
{θi,ai,si}

I∑

i=1

πi

(

m(θi)(ui(ai) + vi(ai))− kθi

)

subject to IC, PC and BB with equality.

Step 1: Constructing an allocation close to the equilibrium allocation.

I begin from the equilibrium allocation and modify it in a particular way to improve

welfare. Consider type r such that 0 < Ur < UFB
r . Such a type exists because the equilibrium

fails to achieve the first best. I use the same set of problems proposed by GSW to construct

a feasible mechanism and show that it yields strictly higher welfare for the planner than the

equilibrium allocation. According to Propositions 1-3 in their paper, GSW show that the

following set of problems characterizes the equilibrium.

Problem 1 (Pi).

max
θ∈[0,∞],(a,p)∈Ȳ

{m(θ)(ui(a) + p)}

subject to: q(θ)(vi(a)− p) ≥ k,

m(θ)(uj(a) + p) ≤ Ūj for all j < i.

More precisely, define problem P to be the set of problems Pi for all i. Denote by I∗ ⊆

{1, 2, ..., I} the set of types such that the constraint set in Pi is non-empty and Ūi is strictly

greater than 0. Let Ūi be the value of the objective function in Pi given (Ū1,Ū2,...,Ūi−1)

if i ∈ I∗, and Ūi = 0 otherwise. For any i ∈ I∗, let (θ̄i, āi, p̄i) denote the solution to Pi

given (Ū1, Ū2, ..., Ūi−1). Now, consider the following problem for type r, which is basically a

perturbation of the above problem in a specific way.
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Problem 2 (Pr(ǫ), ǫ ≥ 0).

max
θ∈[0,∞],(a,p)∈Ȳ

{m(θ)(ur(a) + p)}

subject to: q(θ)(vr(a)− p) ≥ k,

m(θ)(uj(a) + p) ≤ Ūj + ǫ for all j < r.

Let Ūr(ǫ) be the value of the objective function and let (θ̄r(ǫ), ār(ǫ), p̄r(ǫ)) denote the

solution to this problem given (Ū1(ǫ),Ū2(ǫ),...,Ūr−1(ǫ)). All Ūr(ǫ) and (θ̄r(ǫ), ār(ǫ), p̄r(ǫ)) are

functions (correspondences in general) of ǫ, and at ǫ = 0, they are equal to their equilibrium

counterparts.

Step 2: Eliminating p from Pr(ǫ) by showing that its first constraint is binding.

Assume by way of contradiction that the constraint is not binding. First note that

θ̄r(ǫ) > 0 because Ūr(0) > 0 and that the constraint set for ǫ > 0 includes that of ǫ = 0. By

Assumption 1(ii), for every τ > 0, there exists an a′ ∈ Bτ (ār(ǫ)) such that ur(a
′) > ur(ār(ǫ))

and uj(a
′) < uj(ār(ǫ)) for all j < r.

Set τ > 0 sufficiently small such that q(θ̄r(ǫ))(vr(a
′) − p̄r(ǫ)) ≥ k for all Bτ (ār(ǫ)).

Now consider (θ̄r(ǫ), a
′, p̄r(ǫ)). The first constraint in problem Pr(ǫ) is satisfied follow-

ing the choice of τ . Other constraints are satisfied because: m(θ̄r(ǫ))(uj(a
′) + p̄r(ǫ)) <

m(θ̄r(ǫ))(uj(ār(ǫ)) + p̄r(ǫ)) ≤ Ūj + ǫ for all j < r. But the value of the objective function is

now higher: m(θ̄r(ǫ))(ur(a
′) + p̄r(ǫ)) > m(θ̄r(ǫ))(ur(ār(ǫ)) + p̄r(ǫ)). This is a contradiction

with (θ̄r(ǫ), ār(ǫ), p̄r(ǫ)) being a solution to problem Pr(ǫ).

Given that the first constraint is always binding, Pr(ǫ) can be written as follows after

eliminating p:

max
θ∈[0,∞],(.,a)∈Ȳ

{m(θ)(ur(a) + vr(a))− kθ}

subject to m(θ)(uj(a) + vr(a))− kθ ≤ Ūj + ǫ for all j < r.

This is the problem that was used in the text. Since type r does not achieve the first best,

some constraints of Pr(0) must be binding in equilibrium. Following Assumption 1(iii),

m(θ)(ui(a) + vi(a)) − kθ has a single peak for all i, so locally relaxing the constraints of

the problem by increasing ǫ = 0 to a strictly positive number increases Ūr, which in turn

improves welfare.

Since continuity in ǫ is needed later, in the next step I apply the theorem of the maximum

to this problem and show that Ūr(ǫ) is continuous in ǫ and ār(ǫ), θ̄r(ǫ) and p̄r(ǫ) are all upper-

hemi-continuous (UHC) in ǫ.

Step 3: Continuity in ǫ.

Claim 1. There exists ǫ0 > 0 such that Ūr(ǫ) is continuous and ār(ǫ), θ̄r(ǫ) and p̄r(ǫ) are

UHC for ǫ ∈ [0, ǫ0].

Claim 2. There exists ǫj > 0 for any j > r such that ej(ǫ) > 0 for ǫ ∈ [0, ǫj] where

ej(ǫ) ≡ Ūj −m(θ̄r(ǫ))(uj(ār(ǫ)) + pr(ǫ)) for all j > r.
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Intuitively, ej(ǫ) is the net loss of type j by reporting type r. It is shown here that it is

strictly positive.

Proof of claim 1: First, the constraint set is compact because a ∈ Ā and Ā is compact.

Also, θ lies in a closed interval that is a subset of R+. Suppose by way of contradiction that

θ is unbounded, then the objective function goes to −∞, because m(θ) ≤ 1, ui(a) + vi(a) is

bounded, and k > 0. Therefore, it can be assumed without loss of generality that (θ, a) ∈

[0,M ]× Ā for some M ∈ R+. Second, it is easy to verify that the constraint correspondence

is continuous in ǫ following the continuity of m,ui and vi. Third, the objective function is

continuous in (θ, a) and ǫ. All requirements of the theorem of the maximum holds, so Ūr(ǫ)

is continuous in ǫ and ār(ǫ), θ̄r(ǫ) and p̄r(ǫ) are all UHC in ǫ. Both θ̄r(ǫ) and ār(ǫ) are UHC

in ǫ, and m(.) and ui(.) are continuous functions, therefore, m(θ̄r(ǫ)) and ui(ār(ǫ)) are UHC

in ǫ. (See Theorem 17.23 in Aliprantis and Border (1986).)

Proof of claim 2: Since ej(ǫ) is just the sum of UHC correspondences, ej(ǫ) is also UHC.

But ej(ǫ)
∣
∣
ǫ=0

> 0 according to Lemma 3. I show below that because ej(ǫ) is UHC in an

interval close to 0 and its value at 0 is strictly positive, there must exist a neighborhood [0, ǫj]

for some ǫj > 0 such that ej(ǫ) is strictly positive, too. Suppose by way of contradiction

that such a neighborhood does not exist. This implies that there exists j > r such that for

any ǫ > 0, there exists a function e(ǫ) ∈ ej(ǫ) with e(ǫ) ≤ 0. Consider {ǫs}s∈N where ǫs =
1
s
.

Since ej(.) is UHC and because ǫs → 0, there exists a convergent sub-sequence {es}s∈N of

{e(ǫs)}s∈N such that its limit point is in ej(0). This is a contradiction, because ej(0) > 0

and es ≤ 0 for all s, so its limit point cannot be a strictly positive number.

Step 4: Proposing a direct mechanism.

I propose the following direct mechanism, {(θi, ai, si)}i∈{1,2,...,I}, such that

(θi, ai, si) =







(θ̄i, āi,m(θ̄i)p̄i + ǫ− ǫ̃) if 1 ≤ i < r or i /∈ I∗

(θ̄iāi,m(θ̄i)p̄i − ǫ̃) if i ∈ {r + 1, r + 2, ..., I} ∩ I∗

(θ̄i(ǫ)āi(ǫ),m(θ̄i(ǫ))p̄i(ǫ)− ǫ̃) if i = r

(17)

where ǫ̃ ≡ (
∑r−1

i=1 πi +
∑I

i=r+1,i/∈I∗ πi)ǫ. Note that for i /∈ I∗, θ̄i = 0, and āi and s̄i are chosen

arbitrarily.

I show below that if ǫ > 0 is sufficiently close to 0, then this mechanism is feasible and

yields strictly higher welfare than the equilibrium.

Step 5: The proposed mechanism is incentive compatible.

Due to my construction method, it is rather obvious that all IC constraints hold, because

all downward IC constraints are slack in the original allocation and the new allocation was

constructed in the neighborhood of that, while keeping all upward IC constraints satisfied.

Now I formally prove that IC constraints hold for all possible cases and show that no seller

of type i gains by reporting type j for sufficiently small ǫ > 0 for all i, j.

Case 1: i /∈ I∗ or i < r; j /∈ I∗ or j < r

m(θi)ui(ai) + si = m(θ̄i)(ui(āi) + p̄i) + ǫ− ǫ̃ ≥ m(θ̄j)(ui(āj) + p̄j) + ǫ− ǫ̃ = m(θj)ui(aj) + sj,
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where the inequality holds following the sellers’ optimal search in the equilibrium allocation.

Case 2: i /∈ I∗ or i < r; j = r

m(θi)ui(ai)+si = m(θ̄i)(ui(āi)+p̄i)+ǫ−ǫ̃ ≥ m(θ̄j(ǫ))(ui(āj(ǫ))+p̄j(ǫ))−ǫ̃ = m(θj)ui(aj)+sj,

where the inequality is basically the same as one of the constraints in problem Pr(ǫ) if i ∈ I∗.

If i /∈ I∗, then the inequality holds because 0 ≥ m(θ̄j)(ui(āj) + p̄j).

Case 3: i /∈ I∗ or i < r; j ∈ I∗ and j > r

m(θi)ui(ai) + si = m(θ̄i)(ui(āi) + p̄i) + ǫ− ǫ̃ ≥ m(θ̄j)(ui(āj) + p̄j)− ǫ̃ = m(θj)ui(aj) + sj,

where, again, the inequality holds because in the equilibrium allocation: m(θ̄i)(ui(āi)+ p̄i) ≥

m(θ̄j)(ui(āj) + p̄j) if i ∈ I∗, and 0 ≥ m(θ̄j)(ui(āj) + p̄j) if i /∈ I∗.

Case 4: i = r; j /∈ I∗ or j < r

m(θi)ui(ai) + si = m(θ̄i(ǫ))(ui(āi(ǫ)) + p̄i(ǫ))− ǫ̃ > m(θ̄i(0))(ui(āi(0)) + p̄i(0))− ǫ̃

≥ m(θ̄j)(ui(āj) + p̄j) + ǫ− ǫ̃ = m(θj)ui(aj) + sj.

The first inequality follows from the fact that by making strictly positive transfers to types

below r, type r receives a strictly higher payoff due to the relaxation of the constraints of

Pr. The second inequality follows from Lemma 3 stating that higher types are strictly worse

off by reporting lower types in the equilibrium, i.e., when ǫ = 0. Therefore, the inequality

holds for ǫ > 0 sufficiently small. For j /∈ I∗, the inequality follows from the fact that

UEQ
i > 0 = UEQ

j and ǫ is sufficiently small.

Case 5: i = r; j ∈ I∗ and j > r

m(θi)ui(ai) + si = m(θ̄i(ǫ))(ui(āi(ǫ)) + p̄i(ǫ))− ǫ̃ > m(θ̄i(0))(ui(āi(0)) + p̄i(0))− ǫ̃

≥ m(θ̄j)(ui(āj) + p̄j)− ǫ̃ = m(θj)ui(aj) + sj.

The first inequality is the same as the first one in the previous case.The second inequality is

the same as one of the constraints in Pj.

Case 6: i ∈ I∗ and i > r; j /∈ I∗ or j < r

m(θi)ui(ai) + si = m(θ̄i)(ui(āi) + p̄i)− ǫ̃ ≥ m(θ̄j)(ui(āj) + p̄j) + ǫ− ǫ̃ = m(θj)ui(aj) + sj,

where the inequality holds for the same reason as in the second inequality in case 4.

Case 7: i ∈ I∗ and i > r; j = r

m(θi)ui(ai)+ si = m(θ̄i)(ui(āi)+ p̄i)− ǫ̃ ≥ m(θ̄j(ǫ))(ui(āj(ǫ))+ p̄j(ǫ))− ǫ̃ = m(θj)ui(aj)+ sj,

where part 2 of claim 2 is used here to establish the inequality for sufficiently small ǫ.

Case 8: i ∈ I∗ and i > r; j ∈ I∗ and j > r

m(θi)ui(ai) + si = m(θ̄i)(ui(āi) + p̄i)− ǫ̃ ≥ m(θ̄j)(ui(āj) + p̄j)− ǫ̃ = m(θj)ui(aj) + sj,
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where the inequality holds following from the sellers’ optimal search in the equilibrium allo-

cation.

Step 6: The proposed mechanism satisfies PC and BB with equality.

The budget-balance condition is obviously satisfied with equality due to the construction

of ǫ̃. Regarding PC, consider the following cases. If i /∈ I∗ or i < r, then type i is better off

by the amount of ǫ− ǫ̃ > 0. If i = r, then m(θi)ui(ai)+ si = m(θ̄i(ǫ))(ui(āi(ǫ))+ p̄i(ǫ))− ǫ̃ >

m(θ̄i(0))(ui(āi(0)) + p̄i(0)) − ǫ̃ > 0 where the last inequality holds following the facts that

type r gets a strictly positive payoff in equilibrium and ǫ > 0 is small. If i ∈ I∗ and i > r,

m(θi)ui(ai) + si = m(θ̄i)(ui(āi) + p̄i) − ǫ̃ > 0 where the inequality holds true following the

same reasons as in the previous case.

Step 7: The proposed mechanism achieves higher welfare than equilibrium.

The surplus created by types i ∈ I \ {r} is the same as that in equilibrium but type r

has created strictly more surplus, so the total amount of surplus has increased.

Lemma 3. There exist I∗ ⊆ {1, 2, .., I}, {Ūi}i∈{1,2,..,I} and {(θ̄i, āi, p̄i)}i∈I∗ that solve problem

P . The following holds at any solution to Pi for i ∈ I∗:

q(θ̄i)(vi(āi)− p̄i) = k,

m(θ̄i)(uj(āi) + p̄i) < Ūj for all j > i.

Proof. For the existence proof and also the fact that the first constraint in Pi is binding, see

Lemma 1 in GSW. Here, I prove only the last part, stating that higher types are strictly

worse off if they apply to submarkets designed for lower types. GSW show only that IC

constraints are satisfied, but they do not show whether they are binding or not. I show that

downward IC constraints are satisfied and never binding following the assumption that vi(a)

is strictly increasing in i for all a ∈ Ā, while they simply assume weak monotonicity.

Fix i ∈ I∗. Assume by way of contradiction that there exists r such that r > i and

m(θ̄i)(ur(āi) + p̄i) ≥ Ūr. Denote the smallest such r by h. That is, m(θ̄i)(uj(āi) + p̄i) <

Ūj for all i ≤ j < h, and m(θ̄i)(uh(āi) + p̄i) ≥ Ūh. Now I show that (θ̄i, āi, p̄i) is feasible for

Ph. The first constraint in Ph is satisfied because q(θ̄i)(vh(āi)− p̄i) > q(θ̄i)(vi(āi)− p̄i) ≥ k,

where the first inequality follows from the fact that q(θ̄i) > 0 as i ∈ I∗ and from Assumption

1(i) as ai ∈ Ā. The latter holds true for the following reason: (θ̄i, āi, p̄i) is feasible for Pi, so

q(θ̄i)(vi(āi) − p̄i) ≥ k and θ̄i ≥ 0, thus q(0)(vi(āi) − p̄i) ≥ k. Also m(θ̄i)(ui(āi) + p̄i) = Ūi,

but Ūi > 0 by construction of I∗, therefore, ui(āi) + p̄i ≥ 0, thus āi ∈ Ā. Regarding other

constraints, m(θ̄i)(uj(āi) + p̄i) ≤ Ūj holds true for any j with i < j < h by construction of

h, and holds true for any j with j ≤ i, because (θ̄i, āi, p̄i) is feasible for Pi.

Choose (a′, p′) ∈ Ā× R sufficiently close to (āi, p̄i) such that

max

{

max
j<h

{uj(a
′)− uj(āi)}, p̄i − vh(a

′) +
k

q(θ̄i)

}

< p̄i − p′ < uh(a
′)− uh(āi).
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Such (a′, p′) exists because the LHS is strictly less than the RHS for a′ sufficiently close to

āi owing to Assumption 1(ii) and because q(θ̄i)(vh(āi)− p̄i) > k. The above inequalities can

be written in the following simpler form:

uh(a
′) + p′ > uh(āi) + p̄i,

uj(a
′) + p′ < uj(āi) + p̄i for all j < h,

and q(θ̄i)(vh(a
′)− p̄i) ≥ k.

The claim is that (θ̄i, a
′, p′) is feasible for Ph but delivers a strictly higher utility for type

h. The first constraint in Ph is satisfied by the choice of a′. All incentive compatibility

constraints are satisfied because m(θ̄i)(uj(a
′) + p′) < m(θ̄i)(uj(āi) + p̄i) ≤ Ūj for all j < h,

where the weak inequality follows from the fact that (θ̄i, āi, p̄i) is feasible for Ph. The value of

the objective function is strictly greater than Ūh because m(θ̄i)(uh(a
′)+p′) > m(θ̄i)(uh(āi)+

p̄i) ≥ Ūh ≥ 0. Therefore, the constraint set of Ph is non-empty and (θ̄i, a
′, p′) delivers a

strictly positive value for the objective function. Thus h ∈ I∗, but it was just shown that Ūh

is not the maximized value for Ph. This is a contradiction.

Proof of Theorem 2. Suppose such r exists. I propose the following direct mecha-

nism, which implements an allocation in the neighborhood of the equilibrium allocation:

(θi, ai, si) =







(
θ̄i, āi,m(θ̄i)p̄i + ǫ− ǫ̃

)
if 1 ≤ i < r

(
θ̄i, āi,m(θ̄i)p̄i

)
if r < i ≤ I

(
θ̄i(ǫ), āi(ǫ),m(θ̄i(ǫ))p̄i(ǫ)− ǫ̃

)
if i = r

, (18)

where ǫ̃ ≡
∑r−1

j=1
πj

∑r
j=1

πj
ǫ. First, types 1, 2, ..., r− 1 are given ǫ units of the numeraire good. Next,

the problem for type r is solved again to characterize new θ, a and p to be allocated to type

r and then types 1, 2, ..., r are taxed in the lump sum way by amount ǫ̃. Note that in the

proof of Theorem 1, to finance the transfers to types 1, 2, ..., r − 1, the planner taxed all

types, but here, types above r are not taxed as we do not want them to become worse off

relative to the equilibrium allocation, because Pareto efficiency is concerned here.32 Finally,

it is shown that this mechanism is feasible and all types are weakly better off and some types

are strictly better off than equilibrium.

As shown in Lemma 3, the free-entry condition is always binding, so the problem for type

r can be written as

max
θ∈[0,∞],(.,a)∈Ȳ

{
m(θ)(ur(a) + vr(a))− kθ

}

subject to m(θ)(uj(a) + vr(a))− kθ ≤ Ūj + ǫ for all j < r,

32There are positive gains from trade for all types, so all types are active in equilibrium. I use this fact in

the proof to ensure that when making ǫ transfers to types lower than r, there is no need to make transfers to

the types above r who are inactive. Even if this assumption fails to hold, as long as all types with positive

gains from trade are active in equilibrium, the same logic as in the proof of Theorem 1 will go through, but

types higher than r with no gains from trade should be treated similarly to those types below r. To simplify

the exposition and save space, I focus on this simpler case where UFB
i > 0 for all i in this proof.
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where ǫ is the amount of transfers given to types below r. The Lagrangian can be written as

L = m(θ)(ur(a) + vr(a))− kθ −
r−1∑

j=1

λjr

(
m(θ)(uj(a) + vr(a))− kθ − Ūj − ǫ

)
.

By assumptions in part (i), (ii) and (iii) in Theorem 2, all requirements of envelope theorem

are satisfied (as stated in Theorem 1 in Milgrom and Segal (2002)), so

∂L

∂ǫ
=

r−1∑

j=1

λjr.

We need to ensure that if ǫ > 0 is sufficiently close to 0, no type is worse off and some types

are strictly better off than equilibrium. Types 1, 2, ..., r − 1 are strictly better off by the

amount of ǫ −
∑r−1

j=1
πj

∑r
j=1

πj
ǫ. Types r + 1, r + 2, ..., I receive the same payoff as in equilibrium.

Finally, type r receives

Ūr(ǫ)− ǫ̃ ≈ Ūr(0) + ǫ
∂L

∂ǫ
−

∑r−1
j=1 πj

∑r
j=1 πj

ǫ = Ūr(0) + (
r−1∑

j=1

λjr −

∑r−1
j=1 πj

∑r
j=1 πj

)

︸ ︷︷ ︸

>0 due to (1)

ǫ,

so if ǫ > 0 is chosen sufficiently small, type r will be weakly better off.

In the proposed mechanism, PC is satisfied, because no type is worse off than in equilib-

rium and PC is satisfied in equilibrium. Budget-balance is obviously satisfied by construction

of ǫ̃. The line of argument for verifying IC constraints is exactly the same as that in the

proof of Theorem 1, so I do not repeat it here. Briefly speaking, all types are strictly worse

off if they report a lower type in the equilibrium allocation, according to Lemma 3. Thus,

if ǫ is sufficiently small, the proposed allocation satisfies IC constraints. Reporting higher

types is not profitable either owing to the construction method.

Proof of Theorem 3. I construct a feasible mechanism in which type i sellers match

with probability m(θFB
i ) and produce aFB

i for all i.

Under Assumption 2(i) and 4(i) or 4(ii), it can be easily shown that UFB
i is increasing

in i. Let î denote the highest type of sellers without gains from trade. Then all types 1, 2,

..., î should be inactive, i.e., matched with probability 0. In this case, the same construction

method can be used to establish the proof with only one adjustment: the lowest type who

should receive a positive payoff is the type î + 1. Since this adjustment is straightforward,

to make the exposition simpler, I assume without loss of generality that there are positive

gains from trade for all types, i.e., UFB
i > 0 for all i, and then I construct a feasible direct

mechanism that achieves the first best for all these types.

Define Ki(θ, a) ≡ m(θ)ui(a), x ≡ (θ, a) and x∗
i ≡ (θ∗i , a

∗
i ). Construct the direct mecha-

nism {(θ∗i , a
∗
i , s

∗
i )}i∈{1,2,...,I} as follows: (θ

∗
i , a

∗
i ) = (θFB

i , aFB
i ) for all i, s∗1 = −m(θ∗1)u1(a

∗
1)+s0,

s∗i is defined recursively for i > 1:

m(θ∗i )ui(a
∗
i ) + s∗i = m(θ∗i−1)ui(a

∗
i−1) + s∗i−1, (19)
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and

s0 ≡
I∑

i=1

πi

[

m(θ∗i )(vi(a
∗
i ) + ui(a

∗
i ))− kθ∗i −

i∑

j=2

[
Kj(θ

∗
j−1, a

∗
j−1)−Kj−1(θ

∗
j−1, a

∗
j−1)

]
]

. (20)

The proposed allocation achieves the maximum welfare, so one simply needs to verify con-

ditions for feasibility.

Incentive Compatibility of Sellers

I prove that this condition is satisfied in four steps. Figure 8 illustrates the steps used to

establish the global incentive compatibility.

SM and
IDP of
u+ v

M+S

L+M

aFB
i is

↑ in i

ui + vi is

↑ in i

θFB
i is

↑ in i

IDP of u

Downward
local IC

Global

IC

Figure 8: Schematic diagram indicating the proof steps of Theorem 3. SM and IDP refer to super-

modularity and increasing differences property, respectively. M+S refers to Milgrom and Shannon (1994),

L+M refers to Laffont and Martimort (2009).

Step 1: (θ∗i , a
∗
i ) is increasing in i.

First, a∗i = aFB
i is increasing in i because ui(a) + vi(a) is super-modular in a and has

increasing differences in (a; i) under Assumption 3 (according to Theorem 5 in Milgrom and

Shannon (1994)). Furthermore, m(θ)(ui(a
FB
i )+ vi(a

FB
i ))− kθ satisfies increasing differences

property in (θ; i) for the following reason. Suppose θ′ > θ and i > j, then m(θ′)fi(a
FB
i ) −

m(θ)fi(a
FB
i ) ≥ m(θ′)fj(a

FB
j )−m(θ)fj(a

FB
j ) is equivalent to (fi(a

FB
i )−fi(a

FB
j ))+(fi(a

FB
j )−

fj(a
FB
j )) ≥ 0 since m is increasing. But the latter is true because aFB

i is a maximizer of

maxa fi(a) so fi(a
FB
i ) ≥ fi(a

FB
j ), and fi(a) is increasing in i under Assumption 2(i) and 4(i)

or under Assumption 4(ii) , so fi(a
FB
j ) ≥ fj(a

FB
j ). Consequently, θ∗i = θFB

i is increasing in i.

Step 2: Local IC constraints are satisfied.

Construction of s∗i is such that all local downward incentive compatibility constraints are

satisfied and binding. That is, type i is indifferent between reporting i and i− 1 for all i > 1.

Now I show that all local upward incentive compatibility constraints are also satisfied, i.e.,

57



type i− 1 weakly prefers to report i− 1 over i. The payoff to type i− 1 by reporting i is:

m(θ∗i )ui−1(a
∗
i )+s∗i = m(θ∗i−1)ui−1(a

∗
i−1)+s∗i−1+m(θ∗i−1)(ui(a

∗
i−1)−ui−1(a

∗
i−1))−m(θ∗i )(ui(a

∗
i )−ui−1(a

∗
i ))

≤ m(θi−1)ui−1(a
∗
i−1)+s∗i−1+m(θ∗i )(ui(a

∗
i−1)−ui−1(a

∗
i−1)−ui(a

∗
i )+ui−1(a

∗
i )) ≤ m(θ∗i−1)ui−1(a

∗
i−1)+s∗i−1

The first equality follows from the construction of s∗i . The first inequality follows from the

fact that θ∗i and ui(.) are both increasing in i. The second inequality follows from increasing

differences property of ui in (a; i) and also from the fact that a∗i−1 ≤ a∗i .

Step 3: Other upward IC constraints are satisfied.

I show that type r does not gain by reporting i for all r and i with r < i:

m(θ∗r)ur(a
∗
r) + s∗r − (m(θ∗i )ur(a

∗
i ) + s∗i )

=
i−1∑

j=r

[

m(θ∗j )uj(a
∗
j)+s∗j−(m(θ∗j+1)uj(a

∗
j+1)+s∗j+1)+Kj(x

∗
j+1)−Kj(x

∗
j)−Kr(x

∗
j+1)+Kr(x

∗
j)

]

≥
i−1∑

j=r

[

Kj(x
∗
j+1)−Kj(x

∗
j)−Kr(x

∗
j+1) +Kr(x

∗
j)

]

≥
i−1∑

j=r

[

m(θ∗j )(uj(a
∗
j+1)− uj(a

∗
j)− ur(a

∗
j+1) + ur(a

∗
j))

]

≥ 0.

The first equality is derived by using the telescoping technique. The first inequality uses the

fact that type i− 1 weakly prefers to report i− 1 over i (see step 2). The second inequality

uses θ∗j+1 ≥ θ∗j and also the fact that ui is increasing in i for a ∈ Ā. The last inequality is

implied by the increasing differences property of u and the fact that a∗j+1 ≥ a∗j .

Step 4: Other downward IC constraints are satisfied.

Similarly as above, I show that type r does not gain by reporting i < r:

m(θ∗r)ur(a
∗
r) + s∗r − (m(θ∗i )ur(a

∗
i ) + s∗i )

=
r∑

j=i+1

[

m(θ∗j )uj(a
∗
j)+s∗j−(m(θ∗j−1)uj(a

∗
j−1)+s∗j−1)+Kj(x

∗
j−1)−Kj(x

∗
j)−Kr(x

∗
j−1)+Kr(x

∗
j)

]

≥
r∑

j=i+1

[

Kj(x
∗
j−1)−Kj(x

∗
j)−Kr(x

∗
j−1) +Kr(x

∗
j)

]

≥
r∑

j=i+1

[

m(θ∗j−1)(uj(a
∗
j−1)− uj(a

∗
j)− ur(a

∗
j−1) + ur(a

∗
j))

]

≥ 0.

The reasoning is exactly the same as that in step 3 and thus omitted here.

PC constraints, U∗
i ≡ m(θ∗i )ui(a

∗
i ) + s∗i ≥ 0 for all i
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PC is verified by induction. For i = 1, I show below that U∗
1 ≥ 0. For i > 1, note that

U∗
i+1 = Ki+1(x

∗
i+1) + s∗i+1 = Ki+1(x

∗
i ) + s∗i = U∗

i + Ki+1(θ
∗
i , a

∗
i ) − Ki(θ

∗
i , a

∗
i ) ≥ 0 where the

second equality holds because of the construction of s∗i+1 and the inequality holds by the

induction hypothesis and due to the fact that ui is increasing in i.

But U∗
1 = s0 because of the construction of s∗1, so the important step is to show that

s0 ≥ 0. I consider two cases separately. In the first case, I prove it under Assumption 4(a),

and in the second case, under Assumptions 4(ii) and 4(iii) .

Case 1: s0 ≥ 0 under Assumption 4(i).

I show that each term in the RHS of (20) is positive. That is,m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−

kθFB
i −

∑i
j=2

[
Kj(θ

FB
j−1, a

FB
j−1)−Kj−1(θ

FB
j−1, a

FB
j−1)

]
≥ 0 for all i. I proceed by induction on i.

For i = 1, the term is positive because UFB
1 ≥ 0.

For i = 2, one can write: m(θFB
2 )(v2(a

FB
2 ) + u2(a

FB
2 )) − kθ2 ≥ m(θFB

1 )(v2(a
FB
1 ) +

u2(a
FB
1 )) − kθFB

1 ≥ m(θFB
1 )(u2(a

FB
1 ) − u1(a

FB
1 )) + m(θFB

1 )(v1(a
FB
1 ) + u1(a

FB
1 )) − kθFB

1 ≥

K2(θ
FB
1 , aFB

1 )−K1(θ
FB
1 , aFB

1 ). The first inequality holds true due to the fact that θFB
1 and

aFB
1 are feasible for the type 2 maximization problem (maxθ,a{m(θ)(v2(a) + u2(a)) − kθ}).

The second one holds because vi(.) is increasing in i. The third one holds because UFB
1 ≥ 0.

For i ≥ 2, one hasm(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i ≥ m(θFB
i−1)(vi(a

FB
i−1)+ui(a

FB
i−1))−kθFB

i−1

≥ m(θFB
i−1)(vi−1(a

FB
i−1) + ui−1(a

FB
i−1))− kθFB

i−1 +m(θFB
i−1)(ui(a

FB
i−1)− ui−1(a

FB
i−1))

≥
i−1∑

j=2

[
Kj(θ

FB
j−1, a

FB
j−1)−Kj−1(θ

FB
j−1, a

FB
j−1)

]
+Ki(θ

FB
i−1, a

FB
i−1)−Ki−1(θ

FB
i−1, a

FB
i−1)

=
i∑

j=2

[
Kj(θ

FB
j−1, a

FB
j−1)−Kj−1(θ

FB
j−1, a

FB
j−1)

]
,

where the reasoning is exactly similar to the case of i = 2.

Case 2: s0 ≥ 0 under Assumptions 4(ii) and 4(iii).

I cannot show here that the terms inside the sigma in (20) are positive for each i, so I

simplify the summation algebraically:

s0 =
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i )+ui(a

FB
i ))−kθFB

i

]

−
I∑

i=1

πi

[ i∑

j=2

[
Kj(θ

FB
j−1, a

FB
j−1)−Kj−1(θ

FB
j−1, a

FB
j−1)

]
]

=
I∑

i=1

πi

[

m(θFB
i )(vi(a

FB
i ) + ui(a

FB
i ))− kθFB

i −
[
Ki+1(θ

FB
i , aFB

i )−Ki(θ
FB
i , aFB

i )
]Πi

πi

]

≥ 0.

For the second equality, I changed the order of summations for the double sigma term and

then used the definition of Πi. Assumption 4(iii) is used to establish the last inequality.

Planner’s budget-balance condition

It is algebraically easy to verify this condition due to the construction of s0.
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Proof of Theorem 4.
Step 1: Constructing a relaxed problem.

First, I maximize the planner’s objective function given only the budget-balance condition

and local downward IC constraints. Remember the planner’s original problem:

max
{(θi,ai,si)}i∈{1,2,...,I}

I∑

i=1

πi(m(θi)ui(ai) + si) subject to: IC, PC and BB with equality.

BB with equality can be written as
∑I

i=1 πi[m(θi)(ui(ai)+vi(ai))−kθi] =
∑I

i=1 πi[m(θi)ui(ai)+

si]. Therefore, the planner’s problem is equivalent to:

max
{(ai,si,θi)}i∈{1,2,...,I}

I∑

i=1

πi[m(θi)(ui(ai) + vi(ai))− kθi]

subject to: IC, PC, and
I∑

i=1

πi[m(θi)(ui(ai) + vi(ai))− kθi] =
I∑

i=1

πiUi.

To remind the reader of the notation, we have Πi ≡
∑I

j=i+1 πj, Ui ≡ m(θi)ui(ai) + si,

xi = (θi, ai), Ki(θ, a) ≡ m(θ)ui(a), so Ki(xj) ≡ m(θj)ui(aj).

Now I use local downward IC constraints to simplify the last constraint in the problem:

I∑

i=1

πiUi = U1+
I∑

i=1

Πi(Ui+1−Ui) ≥ U1+
I∑

i=1

Πi(Ki+1(xi)−Ki(xi)) ≥
I∑

i=1

Πi(Ki+1(xi)−Ki(xi)),

where the equality is derived by using the telescoping technique. The first inequality is

implied by the local downward IC constraint: Ui+1 = Ki+1(xi+1) + si+1 ≥ Ki+1(xi) + si =

Ki+1(xi) + Ui −Ki(xi), so Ui+1 − Ui ≥ Ki+1(xi) −Ki(xi). The last inequality follows from

PC for type 1. Therefore, if BB together with local downward IC constraints and PC for

type 1 are satisfied, then the following should hold:
∑I

i=1 πi(m(θi)(ui(ai) + vi(ai)) − kθi
≥

∑I
i=1 Πi(Ki+1(θi, ai)−Ki(θi, ai)). Taking into account only the above constraint, a more

relaxed problem is given by:

max
{(θi,ai)}i∈{1,2,...,I}

I∑

i=1

πi

[

m(θi)(ui(ai) + vi(ai))− kθi

]

(21)

subject to:
I∑

i=1

πi

[

m(θi)(ui(ai) + vi(ai))− kθi − (Ki+1(θi, ai)−Ki(θi, ai))
Πi

πi

]

≥ 0. (22)

Step 2: Finding necessary conditions for optimality.

Let {(θ′i, a
′
i)}i∈{1,2,...,I} denote the solution to the relaxed problem. The Lagrangian for

this problem can be written as L =
∑I

i=1 πiLi(θi, ai, ζ) where

Li(θ, a, ζ) ≡
(
m(θ)(ui(a) + vi(a))− kθi

)
(1 + ζ)− ζm(θ)

(
ui+1(a)− ui(a)

)Πi

πi

,
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and ζ is the Lagrangian multiplier associated with the constraint. FOC is necessary at the

optimal solution, so

∂Li(θ
′
i, a

′
i, ζ

∗)

∂θ
= 0 and

∂Li(θ
′
i, a

′
i, ζ

∗)

∂al
= 0 for all i ∈ {1, 2, ..., I} and l ∈ {1, 2, ..., n}

I∑

i=1

πiLi(θ
′
i, a

′
i, ζ

∗) ≥ 0 with equality if ζ∗ > 0,

with the Lagrangian at the optimal solution denoted by ζ∗. In the lemma below, I show that

any optimal mechanism is a solution to the relaxed problem, so the claim is established.

Lemma 4. Suppose Assumptions 2, 5 and 6 hold and all ui(a),vi(a) and m(θ) are continu-

ously differentiable. The optimal mechanism {(θ∗i , a
∗
i , .)} solves (21) subject to (22).

Proof. I call the planner’s problem with all IC, PC and BB constraints the original problem,

and call (21) subject to (22) the relaxed problem. Denote the solution to the relaxed problem

by {(θ′i, a
′
i)}i∈{1,2,...,I}. The objective function is the same for both problems. The constraint

set of the relaxed problem includes that of the original problem, so it is sufficient to show

that for any solution to the relaxed problem, there exists a feasible mechanism associated

with that. It will then follow that the value of objective function for both problems should

be the same. As a result, {(θ∗i , a
∗
i )}i∈{1,2,...,I}, an arbitrary solution to the original problem,

must be associated with a solution to the relaxed problem, too.

Take an arbitrary solution to the relaxed problem, {(θ′i, a
′
i)}i∈{1,2,...,I}, and set s0 ≡

∑I
j=1 πi

[
m(θ′i)(vi(a

′
i)+ui(a

′
i))−kθ′i−

∑i
j=2

[
Kj(θ

′
j−1, a

′
j−1)−Kj−1(θ

′
j−1, a

′
j−1)

]]
, s′1 = −m(θ′1)u1(a

′
1)+

s0, and for i ≥ 2:

m(θ′i)ui(a
′
i) + s′i = m(θ′i−1)ui(a

′
i−1) + s′i−1, (23)

or equivalently,

m(θ′i)ui(a
′
i) + s′i = m(θ′1)u1(a

′
1) + s1 +

i∑

j=2

[Kj(x
′
j−1)−Kj−1(x

′
j−1)], (24)

where x′
i ≡ (θ′i, a

′
i).

Claim 1: Mechanism {(θ′i, a
′
i, s

′
i)}i∈{1,2,...,I} satisfies PC in the original problem.

PC is verified by a simple induction. For i = 1, U1 = s0 ≥ 0 from (22). For i > 1:

Ui+1 = Ui +Ki+1(θ
′
i, a

′
i)−Ki(θ

′
i, a

′
i) ≥ 0, where the inequality holds by induction hypothesis

and the fact that ui is increasing in i.

Claim 2: Mechanism {(θ′i, a
′
i, s

′
i)}i∈{1,2,...,I} satisfies IC constraints in the original

problem.

IC constraints are verified in claims 2-a to 2-d:

Claim 2-a: (θ′i, a
′
i) is increasing in i.

(θ′i, a
′
i) satisfies FOC of the relaxed problem, specially the first one. Therefore, a′i is

increasing in i because rρi (a) is super-modular in a and has increasing differences in (a; i)
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by Assumption 5 (according to Theorem 5 in Milgrom and Shannon (1994)), where ρ =
ζ

ζ+1
∈ [0, 1]. Furthermore,

{
(m(θ)(ui(a)+vi(a))−kθ)(1+ζ)−ζ(Ki+1(θi, ai)−Ki(θi, ai))

Πi

πi

}
,

which is equal to (m(θ)rρi (a
′
i) − kθ)(1 + ζ), satisfies increasing differences property in (θ; i)

for the same reason as in step 1 in Theorem 3 (only fi should be replaced by rρi ). Hence,

θ′i ≡ argmaxθ(m(θ)rρi (a
′
i)− kθ), is increasing in i.

Claim 2-b: Local IC constraints are satisfied.

Claim 2-c: Other upward IC constraints are satisfied.

Claim 2-d: Other downward IC constraints are satisfied.

Since s′i has been recursively constructed similar to the construction of s∗i in the proof of

Theorem 3, and since (θ′i, a
′
i) is increasing in i, claims 2-b to 2-d can be proved exactly as in

steps 2 to 4 in the aforementioned proof, thus they are omitted here.

Claim 3: Mechanism {(θ′i, a
′
i, s

′
i)}i∈{1,2,...,I} satisfies BB in the original problem.

It is algebraically easy to verify BB following from the constraint in the relaxed problem and

because of the construction of {s′i}i∈{1,2,...,I}.

Proofs of Section 4

I suppress superscript ∗ for the proofs in the asset market with lemons to make the notation

simpler, unless there is a danger of confusion.

Proof of Proposition 1: Optimal mechanism if π1b1 + π2b2 ≥ c2.
Consider the following direct mechanism: {(θ∗i , a

∗
i , s

∗
i )}i∈{1,2} with a∗i = 1, s∗i = π1b1 + π2b2,

θ∗i = 1 for all i. Incentive compatibility of sellers is clearly satisfied, because both types

receive the same (θi, ai, si). Also, PC and BB can be easily verified. The objective function

is maximized because the θ and a allocated to both types are the same as what they receive

under complete information.

Proof of Proposition 1: Optimal mechanism if π1b1 + π2b2 < c2.
Here, the planner cannot achieve the first best by using a pooling allocation, because type

two gets a strictly negative payoff in the pooling allocation. It is not possible to use Theorem

3, because if b2 − c2 > b1 − c1, then Assumption 4(ii) is violated. If b2 − c2 ≤ b1 − c1, then

Assumption 4(iii) requires π1b1+π2b2 ≥ c2. Therefore, the planner’s problem shall be solved

directly by taking all constraints into account.

Step 1: Formulating the planner’s problem.

Let {(θi, ai, si)}i∈{1,2} denote the direct mechanism. As explained before, the planner’s

budget-balance condition must be binding, so
∑2

i=1 πisi =
∑2

i=1 πi[min{θi, 1}aihi − kθi],

thus the planner’s problem can be summarized as follows:

Problem 3.

max
{(θi,ai,si)}i=1,2

2∑

i=1

πi(min{θi, 1}ai(hi − ci)− kθi)

subject to : s1 −min{θ1, 1}a1c1 ≥ s2 −min{θ2, 1}a2c1 (IC-12),
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s2 −min{θ2, 1}a2c2 ≥ s1 −min{θ1, 1}a1c2 (IC-21),

s1 −min{θ1, 1}a1c1 ≥ 0 (PC-1), s2 −min{θ2, 1}a2c2 ≥ 0 (PC-2),

2∑

i=1

πi(min{θi, 1}aihi − kθi − si) = 0 (BB).

Step 2: θ1 > 0 and θ2 > 0.

If both θ1 and θ2 are 0, then the welfare level equals 0, but this is not possible because

the equilibrium allocation is feasible and delivers a strictly positive value. To rule out the

case that one of them is 0, note that IC-12 and IC-21 together imply that:

(m(θ1)a1 −m(θ2)a2)c1 ≤ s1 − s2 ≤ (m(θ1)a1 −m(θ2)a2)c2. (25)

But c1 < c2, therefore,

m(θ1)a1 ≥ m(θ2)a2. (26)

If θ1 = 0, then θ2 must be 0 as well, and this leads to 0 level of welfare, which is not

possible as mentioned above, thus θ1 > 0. If θ2 = 0, then it is easy to check that the

maximum possible welfare in this case, even if θ1 = 1, is less than the welfare level under

the proposed solution. Therefore, θ2 > 0.

Step 3: θ1 ≤ 1 and θ2 ≤ 1.

Suppose θi > 1 for some i. Then consider the following: θ′i = 1, s′i = si + k(θi − 1)πi and

s′j = sj + k(θi − 1)πi where j 6= i. If (θi, s1, s2) is replaced by (θ′i, s
′
1, s

′
2), the new solution

satisfies all the constraints: Obviously, IC-12 and IC-21 constraints are still satisfied, because

the change in s1 is the same as the change in s2 and also min{θ1, 1} and min{θ2, 1} have not

changed. PC-1 and PC-2 are satisfied because s′1 > s1 and s′2 > s2. BB is also satisfied by

construction of s′1 and s′2. This is a contradiction because the value of the objective function

has increased by k(θi − 1). Therefore, for all i ∈ {1, 2}, θi ≤ 1.

Step 4: a1 = a2 = 1.

Suppose ai < 1 for some i. Let a′i ≡
aiθi
θi−ǫ

where 0 < ǫ < θi(1 − ai). Fix ǫ and consider

the following: θ′i = θi − ǫ, s′i = si + kǫπi and s′j = sj + kǫπi where j 6= i. Now, replace

(θi, ai, s1, s2) by (θ′i, a
′
i, s

′
1, s

′
2). The proposed solution satisfies all the constraints: Obviously,

IC-12 and IC-21 constraints are still satisfied, because min{θi, 1}ai = min{θ′i, 1}a
′
i. PC-1

and PC-2 are satisfied because s′1 > s1 and s′2 > s2. BB is satisfied by construction of s′1
and s′2. This is a contradiction, because the value of the objective function has increased by

kǫ. Therefore, ai = 1 for all i ∈ {1, 2}. I write the planner’s problem again incorporating

the results so far:

Problem 4.

max
{(θi,si)}i=1,2

2∑

1

πi(θi(hi − ci)− kθi),

s. t.: s1 − θ1c1 ≥ s2 − θ2c1 (IC-12), s2 − θ2c2 ≥ s1 − θ1c2 (IC-21),
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s1 − θ1c1 ≥ 0 (PC-1), s2 − θ2c2 ≥ 0 (PC-2),

2∑

1

πi(θihi − kθi − si) = 0 (BB).

Step 5: θ1 = 1.

According to step 4, a1 = a2 = 1, so θ1 ≥ θ2 following (26). By way of contradiction,

assume that at the solution θ1 < 1. Two cases are considered. First, assume that PC-2

is not binding. Consider the following: θ′i = θi + ǫ and s′i = si + (π1b1 + π2b2)ǫ for all i

where ǫ ∈ (0,min{1− θ1,
s2−θ2c2

c2−π1b1−π2b2
}). It is easy to check that all constraints are satisfied,

but the value of the objective function has now increased by (π1(b1 − c1) + π2(b2 − c2))ǫ, a

contradiction. Note that (26) was used to ensure that θ2 + ǫ < 1.

Second, assume that PC-2 is binding. Consider the following: θ′1 = θ1+ǫ where ǫ < 1−θ1,

s′1 = s1+b1ǫ. It is again easy to check that all constraints are satisfied. The only tricky thing

here is to check that IC-21 is satisfied: the LHS in IC-21 is fixed, but the RHS increases

by ǫ(b1 − c2), which is negative, so IC-21 is not violated. (Note that b1 − c2 < 0, otherwise

π1b1+π2b2 > π1c2+π2c2 = c2, which contradicts the assumption.) The value of the objective

function now has increased by π1b1ǫ, a contradiction.

Step 6: Calculating θ2 and the rest of unknowns.

I write s1 from the budget-balance condition in terms of other variables: s1 = b1 +
π2

π1

θ2b2 −
π2

π1

s2. After substituting s1 from the above equation, (25) turns into:

(1− θ2)c1 ≤ b1 +
π2

π1

θ2b2 −
s2
π1

≤ (1− θ2)c2. (27)

First, note that PC-1 is implied by IC-12 and PC-2. Second, I argue that PC-2 must be

binding at the solution. By way of contradiction, suppose it is not. Then only (27) is sufficient

to determine θ2. But to maximize the objective function, I need to choose the highest possible

θ2 consistent with (27), which is θ2 = 1. But according to (27), s2 = π1b1 + π2b2 and s2 > c2
from PC-2, which is a contradiction with π1b1+π2b2 < c2. Therefore, PC-2 must be binding.

Third, since PC-2 is binding, I replace s2 by θ2c2 and rewrite (27) again:

(1− θ2)c1 ≤ b1 +
θ2
π1

(π2b2 − c2) ≤ (1− θ2)c2. (28)

It is easy to see that the right inequality in (28) is satisfied for any θ2 ∈ [0, 1], because

b1 < c2. To maximize the objective function, I need to find the maximum value for θ2 under

which the left inequality in (28) is satisfied. This implies that

θ2 =
π1(b1 − c1)

c2 − π2b2 − π1c1
.

The proof is complete, because I have found the values for ai, θi and si.
33

33To find an associated implementable allocation and policy, values of pi from θi and si can be calculated

to ensure that they are the same as those in Table 1. Note that ti in Table 1 is calculated such that buyers’

free-entry condition is satisfied for each submarket in the decentralized economy.
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Proof of Proposition 1: Pareto inefficiency of equilibrium if π1c1 + π2b2 ≥ c2. In

equilibrium, UEQ
1 = b1− c1 and UEQ

2 = b1−c1
b2−c1

(b2− c2). If π1c1+π2b2 ≥ c2, then π1b1+π2b2 ≥

c2. In the proposed allocation for the case of π1b1 + π2b2 ≥ c2, U
∗
1 = π1b1 + π2b2 − c1,

U∗
2 = π1b1 + π2b2 − c2. Therefore, if π1c1 + π2b2 ≥ c2, then UEQ

1 < U∗
1 and UEQ

2 ≤ U∗
2 . The

proof is complete.

As an illustration of how the proof of Theorem 2 works, one can obtain the same sufficient

condition for constrained Pareto inefficiency of equilibrium using Lagrangian as described

below. GSW show that a is always equal to 1, and I showed the same is true in the planner’s

problem, so I fix a = 1 for both types. Type 1 solves the following problem in equilibrium:

Ū1 = maxθ,p m(θ)(p − c1) subject to q(θ)(h1 − p) ≥ k. At the solution, θEQ
1 = 1, pEQ

1 =

h1 − k = b1 and Ū1 = b1 − c1. For type 2, the problem is as follows, taking into account that

the free-entry condition is always binding:

max
θ

{m(θ)(h2 − c2)− kθ}

subject to m(θ)(h2 − c1)− kθ ≤ Ū1 + ǫ,

where ǫ = 0 in equilibrium. Here is the Lagrangian:

L = m(θ)(h2 − c2)− kθ − λ1(m(θ)(h2 − c1)− kθ − Ū1 − ǫ).

The constraint is binding and θ < 1, so m(θ) is continuously differentiable in the neigh-

borhood of the solution, thus FOC implies h2 − c2 − k − λ1(h2 − c1 − k) = 0. Therefore,

λ1 = b2−c2
b2−c1

and θ2 = b1−c1+ǫ
b2−c1

. In equilibrium, the allocation for type 2 is distorted. The

planner relaxes the incentive constraint by paying ǫ > 0 to type 1 and taxing both types

by π1ǫ. The required condition in Theorem 2 is that λ1 = b2−c2
b2−c1

> π1

π1+π2

= π1, which is

equivalent to c2 < π1c1 + π2b2. The payoff to type 2 net of transfers is:

b1 − c1 + ǫ

b2 − c1
(b2 − c2)− π1ǫ =

b1 − c1
b2 − c1

(b2 − c2) + (
b2 − c2
b2 − c1

− π1)ǫ > Ū2(0) = UEQ
2

for ǫ > 0, where the inequality holds true because λ1 > π1.

No gains from trade for type 1, and π1b1 + π2b2 − c2 < 0 imply θ1 = θ2 = 0.
I characterize the solution to the planner’s problem when b1 < c1 < c2 < b2 and π1b1+π2b2−

c2 < 0. The proof is similar to the previous proof up to step 5, so I do not repeat those steps

here and begin from Problem 4. First, (26) implies that θ1 ≥ θ2. Second, PC-1 is implied

by IC-12 and PC-2, so PC-1 can be ignored. Third, if θ1 = 0, then 0 ≤ θ2 ≤ θ1 = 0 and the

proof is complete. Therefore, by way of contradiction, assume that θ1 > 0. I proceed in 4

steps.
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Step 1: θ2 < θ1.

Suppose to the contrary that θ2 ≥ θ1, but θ2 cannot exceed θ1 as mentioned above,

so θ2 = θ1. IC-12 and IC-21 together imply that s1 = s2. Then, BB implies that s2 =

(π1b1 + π2b2)θ2. The latter together with PC-2 implies that (π1b1 + π2b2 − c2)θ2 ≥ 0. But

π1b1 + π2b2 − c2 < 0, therefore, θ2 = 0, so θ1 = 0. This is a contradiction with θ1 > 0.

Step 2: IC-21 is binding.

By way of contradiction, suppose IC-21 is not binding. Consider θ′1 = θ1 − ǫ and s′1 =

s1 − b1ǫ with ǫ > 0. Since θ1 > 0 and IC-21 is not binding, one can find a sufficiently small

ǫ such that θ′1 > 0 and IC-21 still holds using the fact that b1 − c1 < 0. Now, it is easy to

check that {(θ′1, s
′
1), (θ2, s2)} is feasible for Problem 4, but it leads to a higher value for the

objective function than {(θ1, s1), (θ2, s2)}.

Step 3: IC-12 is not binding.

Suppose by way of contradiction that IC-12 is binding. Then, following step 2, it is easy

to check that s1 = s2 and θ1 = θ2. Then BB implies that s2 = (π1b1 + π2b2)θ2. According

to PC-2, (π1b1 + π2b2 − c2)θ2 ≥ 0. But π1b1 + π2b2 − c2 < 0, so θ1 = θ2 = 0. This is a

contradiction, so IC-12 is not binding.

Step 4: Getting a contradiction.

To get a contradiction, consider {(θ′1, s
′
1), (θ2, s

′
2)} where θ′1 = θ1 − ǫ with ǫ > 0, s′1 =

s1− (π1b1+π2b2)ǫ and s′2 = s2+π1(c2− b1)ǫ. Since θ1 > 0 and IC-12 is not binding, one can

find a sufficiently small ǫ such that θ′1 > 0 and IC-12 still holds. It is now easy to check that

{(θ′1, s
′
1), (θ2, s

′
2)} is feasible for Problem 4, but it leads to a higher value for the objective

function than {(θ1, s1), (θ2, s2)}, a contradiction. The proof is complete.

Proofs of Section 7

First, I define a feasible mechanism that is exactly similar to its counterpart in the discrete

type space, Definition 3. The planner allocates each seller a market tightness, θ̃ : Z → R+, a

transfer conditional on finding a match, p̃ : Z → R, and an unconditional transfer, t0 ∈ R+.

Also, the planner charges each buyer who matches t̃ : Z → R units of the numeraire good

based on the type of the seller that the buyer is matched with.

Definition 7 (Feasible Mechanism for Continuous Type Space). A feasible mechanism is a

set {(θ̃(.), p̃(.), t̃(.), t̃0)} such that the following conditions hold:

(i)Incentive compatibility of sellers: For all z and ẑ,

U(z) ≡ m(θ̃(z))(p̃(z)− c(z)) + t̃0 ≥ U(z, ẑ) ≡ m(θ̃(ẑ))(p̃(ẑ)− c(z)) + t̃0.

(ii) Participation constraint of sellers: For all z,

U(z) ≥ 0.
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(iii) Buyers’ zero profit condition: For all z,

q(θ̃(z))(h(z)− p̃(z)− t̃(z))− k = 0.

(iv) Planner’s budget-balance condition

∫

m(θ̃(z))t̃(z)dF (z)− t̃0 ≥ 0.

It is straightforward to see, and important to note, that although the definition of feasible

mechanism here looks different than the direct mechanism in the discrete type space, but

with a change in variable, s̃(z) ≡ m(θ̃(z))p̃(z) + t̃0, and combining the buyers’ zero profit

condition with the planner’s budget-balance condition, one will obtain a description of the

mechanism completely analogous to that in Definition 3:

Definition 8 (Feasible mechanism for continuous type space-equivalent definition). A fea-

sible mechanism is a set {(θ̃(.), s̃(.))} such that the following conditions hold:

(i) Incentive compatibility of sellers: For all z and ẑ,

U(z) ≡ −m(θ̃(z))c(z) + s̃(z) ≥ U(z, ẑ) ≡ −m(θ̃(ẑ))c(z) + s̃(ẑ).

(ii) Participation constraint of sellers: For all z,

U(z) ≥ 0.

(iii) Planner’s budget-balance condition

∫

[m(θ̃(z))h(z)− kθ̃(z)− s̃(z)]dF (z) ≥ 0.

I still work with the first definition above since p and t have natural interpretations of

submarket-specific price and sales tax, respectively.

Definition 9. An optimal mechanism is a feasible mechanism that maximizes the planner’s

objective function among all feasible mechanisms.

The implementable allocation with two types of taxes on buyers, not only sales tax but

also entry tax, is defined here similarly to the definition of implementable allocation in

Definition 5.

Definition 10 (Implementable allocation for continuous type space with sales and entry

tax). An allocation, {G,P , θ, µ}, is implementable through policy {t, te, t0} if the following

conditions are satisfied:

(i) Buyers’ profit maximization, free entry and no commitment

For any p ∈ P,

q(θ(p))[

∫

h(z)µ(z|p)dz − t(p)] ≤ k + te(p),
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with equality if p ∈ P. Also, 0 ≤ k + te(p) for any p ∈ P.

(ii) Sellers’ optimal search: the same as Definition 5(ii).

(iii) Feasibility or market clearing: the same as Definition and 5(iii),

(iv) Planner’s budget-balance condition

∫

P

[q(θ(p))t(p) + te(p)]dG(p) ≥ t0.

Lemma 5 (Counterpart of Lemma 1 for continuous type space). Assume c′(z) > 0 for all

z. Take any feasible mechanism in which all types receive a strictly positive payoff, and in

which the market tightness allocated to different types is all different. Then there exists an

associated implementable allocation under which all types receive exactly the same payoff as

in the direct mechanism.

Proof of Lemma 5(i). Consider a feasible mechanism {θ̃(.), p̃(.), t̃(.), t̃0}. Denote by U(z) the

payoff to type z in this mechanism. I construct an allocation {G,P ,Θ, µ} as follows:

P ≡ [pL, pH ] ⊆ P ≡ R+ where pL ≡ p̃(zL) and pH ≡ p̃(zH)

and p̃ is given by (9) (where θ̃ should replace θ̃∗).34 Define m̄ = limθ→∞ m(θ). The market

tightness for this allocation is given by:







Θ(p) = ∞ for p ≤ c(zL)

m(Θ(p)) = min{m̄, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

Θ(p) = θ̃(p̃−1(p)) for p ∈ [pL, pH ]

m(Θ(p)) = min{m̄, U(zH)
p−c(zH)

} for p > pH

G(p) =







0 for p < pL
∫ p

pL
Θ(p)F ′(p̃−1(p))dp for p ∈ [pL, pH ]

1 for p > pH

∫

µ(z|p)dz = 1 for all p, and µ(z|p) =







0 for p < pL and z 6= zL

0 for p 6= p̃(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

.

The policy is given by:

t0 = 0, t(p) =







h(zL)− p for all p < pL

h(p̃−1(p))− p− k
q(Θ(p))

and p ∈ [pL, pH ]

h(zH)− p for p > pH

.

34According to Lemma 7, p̃(z) is strictly increasing in z. Also, p̃(z) is continuous; therefore, the set of

prices in the constructed implementable mechanism is P ≡ [pL, pH ].
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The construction is straightforward. We allocate all types the same market tightness and

transfer that they were given in the direct mechanism. For construction of off-the-equilibrium-

path beliefs, if p < pL, then the only type attracted to this post is zL. Therefore, µ(z|p) = 0

for all z 6= zL, and µ(z|p) has a mass point at z = zL. Similarly, if p > pH , then the only

type attracted to this price is zH . Therefore, µ(z|p) = 0 for all z 6= zH . Given the above

beliefs, the tax amount for all p is constructed such that buyers receive a net profit of exactly

0 for p ∈ P and −k for p /∈ P . Note that the choice of t is not unique for p /∈ P . We could

construct t differently such that buyers receive any non-positive amount of profit for p /∈ P .

G(p) is easily constructed given the construction of Θ(.).

The conditions for implementability should be verified now. It is easy to check that

the buyers’ zero profit condition is satisfied because of the construction of t. Feasibility or

market clearing condition is satisfied because of the construction of G. The budget-balance

condition is satisfied because of the choice of U(zH).

Regarding the sellers’ optimal search condition, first note that the restriction on off-the-

equilibrium-path beliefs is equivalent to:35

m(Θ(p)) = min
{
m̄, inf z∈{z|c(z)<p}

U(z)

p− c(z)

}
,

if {z|c(z) < p} is non-empty. Otherwise, set Θ(p) = ∞. Now it is easy to see that sellers’

optimal search is satisfied because of the construction of Θ(p). The only thing worth ex-

plaining here is why only zL is attracted to any price less than pL (and similarly, why only

zH is attracted to any price greater than pH). To see why, I begin by writing the incentive

compatibility condition for any feasible mechanism: m(θ̃(zL))(p̃(zL) − c(z)) ≤ U(z) for all

z. Remember that the payoff to type z is the same in the mechanism and in the proposed

allocation. After using the fact that U(zL) = m(θ̃(zL))(p̃(zL)− c(zL)), one can write:

U(zL)− U(z) ≤ m(θ̃(zL))(c(z)− c(zL)) for all z.

⇒ U(zL)− U(z) ≤ m(θ̃(zL))(c(z)− c(zL)) =
U(zL)

p̃(zL)− c(zL)
(c(z)− c(zL))

≤
U(zL)

p− c(zL)
(c(z)− c(zL)) for all z and for p ∈ (c(zL), p(zL)),

or equivalently,

U(zL)

p− c(zL)
≤

U(z)

p− c(z)
for all z and for p ∈ (c(zL), p(zL)).

Therefore, for the above choice of m(Θ(p)), the restriction on off-the-equilibrium-path beliefs

is satisfied.

35See Chang (2014) for a more detailed discussion.
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Proof of Proposition 3: Preliminaries

Proposition 3 is proved using a guess-and-verify approach. I guess that the first best is

achievable, and then I verify the conditions for feasibility. One problem is that if the first

best is not achievable, then this approach does not work. To be able to use my character-

ization method for a general case, I first characterize the incentive compatible schemes, as

is common in the mechanism design literature. Next, I work with a modified problem in

which the incentive compatibility constraint of sellers has been replaced by other constraints,

monotonicity and envelope condition.

Similar to the discrete type space, the budget-balance condition must be satisfied with

equality at the optimal mechanism. Furthermore, t̃(z) can be substituted from part (iii) of

Definition 7 in the budget-balance condition. The planner’s problem turns into:

Problem 5.

max
θ̃(z),p̃(z)

∫ [

m(θ̃(z))(h(z)− c(z))− kθ̃(z)

]

dF (z)

subject to: z ∈ argmax
ẑ

U(z, ẑ) (IC), U(z) ≥ 0 (PC),

∫ [

m(θ̃(z))(h(z)− p̃(z))− kθ̃(z)− t̃0

]

dF (z) = 0 (BB).

Note that no transfer appears in the objective function, because it has been assumed

that all types participate in the mechanism. Also,
∫
[m(θ̃(z))t̃(z)]dF (z) has been replaced

by
∫
[m(θ̃(z))h(z)− kθ̃(z)]dF (z) from the budget-balance condition.

Lemma 6 (Necessary and sufficient condition for incentive compatibility). Assume c′(.) > 0.

(i) Take any mechanism {(θ̃(z), ., ., .)} that satisfies IC. If θ̃(z) is a piecewise C1 function, then
dθ̃(z)
dz

≤ 0 wherever θ̃(z) is differentiable at z.

(ii) Consider any piecewise C1 function θ̃(z) satisfying dθ̃(z)
dz

≤ 0. Then there exists transfer

schedules p̃(.) such that the mechanism {(θ̃(z), p̃(.), ., .)} satisfies IC.

(iii) If mechanism {(θ̃(z), ., ., .)} satisfies IC, then U(z) = U(zH) +
∫ zH
z

m(θ̃(z0))c
′(z0)dz0.

Proof. Define V (W,R, z) ≡ Wc(z) + R, w(z) ≡ −m(θ(z)) and r(z) ≡ m(θ̃(z))p̃(z) + t̃0.

Obviously, U(z, ẑ) = V (w(ẑ), r(ẑ), z). A necessary condition for w(.) to satisfy IC is
∂
∂z

( ∂V
∂W
∂V
∂R

)
dw
dz

≥ 0, whenever w(.) is differentiable at z, according to Theorem 7.1, Fudenberg

and Tirole (1991). But ∂
∂z

( ∂V
∂W
∂V
∂R

)
dw
dz

= ∂
∂z
( c(z)

1
)(−m′(θ̃(z)))dθ̃(z)

dz
. Also c′(.) > 0 and m′(.) ≥ 0;

therefore, the necessary condition is equivalent to

c′(z)
dθ̃(z)

dz
≤ 0. (29)

According to Theorem 7.3 in Fudenberg and Tirole (1991), a sufficient condition for w(.)

to satisfy IC is that dw(z)
dz

≥ 0, or equivalently, c′(z)dθ̃(z)
dz

≤ 0.
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For the third part of the lemma, I use Corollary 1 in Milgrom and Segal (2002). Their

result states that if θ̃(z) satisfies IC, then U(.) can be written as follows:

U(z) = U(zH)−

∫ zH

z

∂U(z0, z0)

∂z
dz0 = U(zH) +

∫ zH

z

m(θ̃(z0))c
′(z0)dz0. (30)

This equation is derived from the envelope theorem and is standard in the mechanism design

literature. The requirements of the result of Milgrom and Segal (2002) are as follows:

1. U(z, ẑ) is differentiable and absolutely continuous in z. This is satisfied because c is

assumed to be twice differentiable.

2. supẑ

∣
∣∂U(z,ẑ)

∂z

∣
∣ is integrable. This is satisfied because supẑ

∣
∣∂U(z,ẑ)

∂z

∣
∣ ≤

∣
∣c′(z)

∣
∣ < M for

some M ∈ R+, because c′(.) is continuous and is defined over a compact set [zL, zH ].

3. θ̃(z) is obviously non-empty.

From IC, U(z) = m(θ̃(z))(p̃(z)−c(z))+t̃0 for all z. From now on it is assumed that t̃0 = 0,

which is without loss of generality if all types are active, i.e., θ̃(z) > 0, because then p̃(z) can

be changed to p̃(z) + t̃0
m(θ̃(z))

. It can be easily verified that all types should be active under

requirements of Proposition 3. I substitute U(.) from (30) into U(z) = m(θ̃(z))(p̃(z)− c(z))

to derive transfers:

p̃(z) = c(z) +
U(zH) +

∫ zH
z

m(θ̃(z0))c
′(z0)dz0

m(θ̃(z))
. (31)

Now, budget-balance condition is used to derive U(zH):

0 =

∫ [

m(θ̃(z))[h(z)− p̃(z)]− kθ̃(z)
]

F ′(z)dz

=

∫ [

m(θ̃(z))[h(z)− c(z)]− kθ̃(z)−m(θ̃(z))(p̃(z)− c(z))
]

F ′(z)dz

=

∫ [

m(θ̃(z))(h(z)− c(z))− kθ̃(z)−

∫ zH

z

m(θ̃(z0))c
′(z0)dz0 − U(zH)

]

F ′(z)dz.

The second equality follows from (31). The third equality uses the relationship between U(z)

and p̃(z) and also (30). Using integration by parts, one yields:36

U(zH) =

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz (32)

According to (30) and because c′(.) > 0, if U(zH) ≥ 0, then U(z) ≥ 0 for all z. Hence,

U(zH) ≥ 0 implies that the planner’s budget-balance condition and participation constraint

of all types are satisfied. The IC constraint in the planner’s problem has been reduced to (29)

and (31). The planner’s budget-balance condition and participation constraint of all types

are also summarized in U(zH) ≥ 0. Therefore, thanks to Lemma 6, the planner’s problem

can be written as follows to derive θ̃(z), and p̃(z) will be automatically given by (31).

36For any differentiable functions F and G, if G(zH) = 0, and F (zL) = 0 one will have:
∫ zH

zL
F ′(z)G(z)dz =

−
∫ zH

z
F (z)G′(z)dz using integration by parts. In the above equality, set G(z) =

∫ zH

z
m(θ̃(z0))c

′(z0)dz0.
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Problem 6.

max
θ̃(z)

∫ [

m(θ̃(z))[h(z)− c(z)]− kθ̃(z)

]

F ′(z)dz

subject to c′(z)
dθ̃(z)

dz
≤ 0( monotonicity constraint; MC),

U(zH) ≡

∫ [

m(θ̃(z))(h(z)− c(z)− c′(z)
F (z)

F ′(z)
)− kθ̃(z)

]

F ′(z)dz ≥ 0.

For all parts of Proposition 3, the following direct mechanism is proposed:

θ̃∗(z) = θFB(z), (33)

p̃∗(z) = c(z) +
U∗(zH) +

∫ zH
z

m(θ̃∗(z0))c
′(z0)dz0

m(θFB(z))
, (34)

where U∗(zH) =
∫ [

m(θ̃∗(z))(h(z)− c(z))−m(θ̃∗(z))c′(z) F (z)
F ′(z)

]

F ′(z)dz,

t̃∗0 = 0 and t̃∗(z) = h(z)− p̃∗(z)−
k

q(θ̃∗(z))
for all z.

Proof of Proposition 3(i). I need to check that the two constraints of Problem

6 are satisfied for the proposed mechanism under the respective assumptions. The first

best level of market tightness, θFB(z), is given by m′(θFB(z))(h(z) − c(z)) − k = 0. By

differentiating it with respect to z, one yields dθFB(z)
dz

= − k(h′(z)−c′(z))
m′′(θFB(z))(h(z)−c(z))2

≤ 0, where the

inequality is due to the fact that h′(.) − c′(.) ≤ 0 and m′′(.) ≤ 0. Hence, MC in problem 6

is satisfied. Moreover, U∗(zH) =
∫ [

m(θ̃(z))(h(z)− c(z)− c′(z) F (z)
F ′(z)

)− kθ̃(z)
]

F ′(z)dz

=

∫ [(

−

∫ zH

z

m(θFB(z))(h′(z)− c′(z))dz + UFB(zH)

)

−m(θFB(z))c′(z)
F (z)

F ′(z)

]

F ′(z)dz

= −

∫
[
m(θFB(z))(h′(z)− c′(z)) +m(θFB(z))c′(z)

]
F (z)dz + UFB(zH)

= −

∫

m(θFB(z))h′(z)F (z)dz + UFB(zH) ≥ 0. (35)

The second equality uses the fact that θ̃(z) = θFB(z) and also the fact that dUFB(z)
dz

=
d[maxθ{m(θ)(h(z)−c(z))−kθ}]

dz
= m(θFB)(h′(z)− c′(z)). The third equality is derived by using inte-

gration by parts. The inequality holds because h′(z) < 0 by assumption, and UFB(zH) ≥ 0

because there are positive gains from trade for all types. Both constraints in Problem 6

are satisfied. Finally, the proposed mechanism achieves the first best, which is the highest

possible welfare, so it is not needed to check whether any other allocation achieves higher

welfare.37

37The proposition and its proof can be written in the same fashion if c(.) is strictly decreasing, instead.

To save space, these results are not reported.
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Proof of Proposition 3(ii). By part (i), the planner achieves the first best. By

IC, U ′∗(z) = −m(θFB(z))c′(z), and U ′EQ(z) = −m(θEQ(z))c′(z) almost everywhere. Since

h′(z) ≤ 0 < c′(z), then the boundary condition in the equilibrium is θEQ(zH) = θFB(zH).

Equilibrium condition (14) implies that θEQ(z) ≥ θFB(z) for all z. Therefore, U ′∗(z) ≥

U ′EQ(z) almost everywhere. To show that the equilibrium allocation is Pareto dominated

by the allocation implemented by the proposed mechanism, it is necessary and sufficient to

show that U∗(zL) ≥ UEQ(zL). But U
∗(zL) = U∗(zH) +

∫ zH
zL

m(θFB(z))c′(z)dz = UFB(zH)−
∫ zH
zL

m(θFB(z))h′(z)F (z)dz +
∫ zH
zL

m(θFB(z))c′(z)dz. Moreover,

UEQ(zL) = UEQ(zH) +

∫ zH

zL

m(θEQ(z))c′(z)dz = UFB(zH) +

∫ zH

zL

m(θEQ(z))c′(z)dz

Hence, it is necessary and sufficient to show that

−

∫ zH

zL

m(θFB(z))h′(z)F (z)dz ≥

∫

(m(θEQ(z))−m(θFB(z)))c′(z)dz.

The proof is now complete, because the LHS is exactly the same as the LHS of (6) using

integration by parts.

Proof of Proposition 3(iii), “if” part. Again, I need to show that the pro-

posed mechanism is feasible. But h′(z) − c′(z) ≤ 0, so dθFB(z)
dz

≤ 0, thus the first constraint

in Problem 6 is satisfied. Furthermore,

U∗(zH) =

∫ [

m(θFB(z))[h(z)− c(z)]− kθFB(z)−m(θFB(z))c′(z)
F (z)

F ′(z)

]

dF (z)

=

∫ [∫ z

zL

m(θFB(z̃))(h′(z̃)− c′(z̃))dz̃ + UFB(zL)−m(θFB(z))c′(z)
F (z)

F ′(z)

]

dF (z)

=

∫

H2(z)dF (z)−

∫ ∫ z

zL

m(θFB(z̃))c′(z̃)dz̃dF (z)−

∫

m(θFB(z))c′(z)F (z)dz + UFB(zL)

=

∫

H2(z)dF (z)−

(∫

m(θFB(z))c′(z)dz − UFB(zL)

)

≥ 0

where the last equality is derived using integration by parts and the last inequality is derived

using (7).38

Proof of Proposition 3(iii), “only if” part. The planner achieves the FB,

so θFB(z) must solve Problem 6, thus the second constraint, specifically, must hold. Exactly

similar to the last part, one can manipulate the integral to show that condition (7) must be

satisfied, too.

38To show that (7) and (11) are equivalent, begin from the integral in the first line above. That is positive

if and only if (7) is satisfied. Now notice that the integrand is equal to m(θFB(z))[h(z)− c(z)]− kθFB(z)−

m(θFB(z))c′(z) F (z)
F ′(z) = − θFB(z)q′(θFB(z))

q(θFB(z))
(h(z)−c(z))m(θFB(z)) −m(θFB(z))c′(z) F (z)

F ′(z) , where (4) is used for

the equality. But the latter expression is the same integrand as in (11).
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Proof of Proposition 3(iv). Since h′(z) ≥ 0, it is easy to see that (8) is stronger

than (7); therefore, the planner achieves the first best in this case too, according to part (iii).

Similarly as above, by IC we have U ′∗(z) = −m(θFB(z))c′(z) and U ′EQ(z) = −m(θEQ(z))c′(z)

almost everywhere. Since h′(z) ≥ 0, then the boundary condition in the equilibrium is

θEQ(zL) = θFB(zL). Equilibrium condition (14) implies that θEQ(z) ≤ θFB(z) for all z.

Therefore, U ′∗(z) ≤ U ′EQ(z) almost everywhere.

To show that the equilibrium allocation is Pareto dominated by the constrained efficient

allocation, it is necessary and sufficient to show that U∗(zH) ≥ UEQ(zH). From (35), one

yields U∗(zH) = UFB(zH)−
∫ zH
zL

m(θFB(z))h′(z)F (z)dz. Moreover,

UEQ(zH) = UEQ(zL)−

∫ zH

zL

m(θEQ(z))c′(z)dz = UFB(zL)−

∫ zH

zL

m(θEQ(z))c′(z)dz

= UFB(zH)−

∫ zH

zL

m(θFB(z))(h′(z)− c′(z))dz −

∫ zH

zL

m(θEQ(z))c′(z)dz.

Hence, it is necessary and sufficient to show that

∫ zH

zL

m(θFB(z))h′(z)(1− F (z))dz ≥

∫

(m(θFB(z))−m(θEQ(z)))c′(z)dz.

The proof is now complete, because the LHS is exactly the same as the LHS of (8) after

integrating by parts.

Proof of Lemma 2. Again, I suppress the superscript ∗ in this proof to reduce the

notation when there is no danger of confusion. Proposition 3(iii) applies, so θ̃(z) = θFB(z)

for all z. I calculate m(θ̃(z))t̃(z) and take its derivative with respect to z:

m(θ̃(z))t̃(z) = m(θFB(z))(h(z)− c(z))− kθFB(z)− U(zH)−

∫ zH

z

m(θFB(z0))c
′(z0)dz0

= UFB(z)− U(zH)−

∫ zH

z

m(θFB(z0))c
′(z0)dz0

⇒
∂

∂z
[m(θ̃(z))t̃(z)] =

dUFB(z)

∂z
+m(θFB(z))c′(z) = m(θFB(z))h′(z) ≥ 0. (36)

The second equality is derived by applying envelope theorem to the following maximization

problem: UFB(z) = maxθ{m(θ)(h(z)− c(z))− kθ}. The inequality holds by assumption.

Since θFB(.) is strictly decreasing, the associated implementable allocation must be sep-

arating. I show below that t̃(z) is decreasing in z at z = zL. Furthermore, dt
dp

= dt̃/dz
dp̃/dz

, and as

shown in Lemma 7 that the denominator is always positive, dt
dp

must be negative for p = pL.

Notice that Lemma 7 holds with strict monotonicity for almost all z because allocation is

separating. According to (36), d[m(θ̃(z))t̃(z)]
dz

= m(θ̃(z))h′(z); therefore,

dt̃

dz
= h′(z)−

m′(θ̃(z))

m(θ̃(z))

dθ̃(z)

dz
t̃(z).
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Also, dθ̃(z)
dz

can be calculated from (4) to obtain dt̃
dz

as in Lemma 2. Consider this equality

for z = zL. Given the assumption that h′(zL) = 0 and given the fact that θ̃′(z) < 0 for

all z, it is sufficient to show that t̃(zL) < 0. It will follow that t̃′(zL) < 0. To calculate

t̃(z), I use the planner’s budget-balance condition to write:
∫
m(θ̃(z))t̃(z)dF (z) = 0. Let

χ(.) ≡ m(θ̃(z))t̃(z), then 0 =
∫
χ(z)dF (z) = −χ(z)(1 − F (z))

∣
∣
zH

zL
+

∫
χ′(z)(1 − F (z))dz by

using integration by parts. Therefore, χ(zL) = −
∫
χ′(z)(1 − F (z))dz < 0. The inequality

holds because χ′(z) = m(θ̃(z))h′(z) from (36) and the fact that h′(z) ≥ 0. Also, the inequality

is strict because h′(z) > 0 for a positive measure of z. But t̃(zL) =
χ(zL)

m(θ̃(zL))
< 0 by definition

of χ(.).

Finally, I show that dt
dp

> 0 for some p. The facts that
∫
m(θ̃(z))t̃(z)dF (z) = 0, t̃(zL) < 0,

t̃(z) is continuous, and F has full support, together imply that t̃(z) must be strictly positive

for a strictly positive measure of z, therefore, t̃′(z) > 0 for for a strictly positive measure of

z. Finally, dt
dp

= dt̃/dz
dp̃/dz

. Again, according to Lemma 7, dt
dp

must be strictly positive for some

p.

Lemma 7. Assume c′(.) > 0. Take any feasible mechanism in which all types receive a

strictly positive payoff, and in which the market tightness allocated to different types is all

different. Price function in this mechanism, p̃(z), is strictly increasing for almost all z.

Proof of Lemma 7. According to (9), d[m(θ̃(z))p̃(z)]
dz

= m′(θ̃(z))dθ̃(z)
dz

c(z), so

dp̃(z)

dz
= −

m′(θ̃(z))

m(θ̃(z))

dθ̃(z)

dz
(p̃(z)− c(z)) ≥ 0. (37)

The inequality holds because θ̃(z) is decreasing in z following the fact that the mechanism

satisfies IC. Moreover, p̃(z)− c(z) is positive for all types following the fact that the mech-

anism satisfies the participation constraint. Moreover, the inequality is strict for almost all

types as p̃(z)− c(z) = U(z)

m(θ̃(z))
=

U(zH)+
∫ zH
z

m(θ̃(z0))c′(z0)dz0

m(θ̃(z))
> U(zH)

m(θ̃(z))
≥ 0 for z < zH .

Proof of Proposition 5. This proof is similar to the proof of Lemma 5. One differ-

ence is that here the set of admissible prices, P, is assumed to be [c(zL),∞) as opposed to

(0,∞). This assumption is not restrictive (and made only to avoid some technical difficul-

ties), as no seller would have incentives to apply to p < c(zL).

Consider again a feasible mechanism {θ̃(.), p̃(.), t̃(.), t̃0}. I construct the allocation {G,P ,Θ, µ}

and policy {t, te, t0} and show that if M ∈ R+ and M ′ ∈ R+, defined below, are chosen suf-

ficiently large, then this allocation is implementable and te(p) is strictly decreasing and t(p)

is strictly increasing in p. The allocation is constructed as follows:

P ≡ [pL, pH ] ⊆ P ≡ R+ where pL ≡ p̃(zL) and pH ≡ p̃(zH)
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and p̃∗ is given by (9) (where θ̃ should replace θ̃∗). Moreover,







Θ(p) = 1 for p = c(zL)

m(Θ(p)) = min{m̄, U(zL)
p−c(zL)

} for p ∈ (c(zL), pL)

Θ(p) = θ̃(p̃−1(p)) for p ∈ [pL, pH ]

m(Θ(p)) = min{m̄, U(zH)
p−c(zH)

} for p > pH

G(p) =







0 for p ∈ [c(zL), pL)
∫ p

pL
Θ(p)F ′(p̃−1(p))dp for p ∈ [pL, pH ]

1 for p > pH

∫

µ(z|p)dz = 1 for all p, and µ(z|p) =







0 for p < pL and z 6= zL

0 for p 6= p̃(z) and p ∈ [pL, pH ]

0 for p > pH and z 6= zH

.

The policy is given by:

t̃0 = 0, te(p) =

{

−k +M(pH − p) for p ∈ [c(zL), pH ]

−k for p > pH

t(p) =







h(zL)− p− k+te(p)
q(Θ(p))

for all p ∈ [c(zL), pL)

h(p̃−1(p))− p− k+te(p)
q(Θ(p))

and p ∈ [pL, pH ]

t(pH) +M ′(p− pH) for p > pH

.

The conditions for implementability can be verified in a similar fashion as in the proof of

Lemma 5(i), so I do not repeat them here.

Regarding monotonicity of taxes, it is obvious that te(p) is decreasing in p for all p ∈

[pL, pH ] if M > 0. It is just left to show that t(p) is increasing in p for p ∈ [pL, pH ]. I take a

derivative of t(p) with respect to p:

t′(p) = h′(p̃−1(p))
d(p̃−1(p))

dp
− 1 +M

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)

q(Θ(p))2
.

Now, define

M1 ≡ max

{

1, sup
p∈[pL,pH ]

(1− h′(p̃−1(p))d(p̃
−1(p))
dp

)q(Θ(p))2

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)
, sup
p∈[c(zL),pL]

q(Θ(p))2

q(Θ(p)) + q′(Θ(p))Θ′(p)(pH − p)

}

.

M1 is a lower bound for M and 1 is merely an arbitrary positive number. I want to show that

M1 < ∞, so the second and third expressions in the max have to be less than ∞. Consider

the second one. If q(Θ(p)) → 0, then the expression goes to 0; therefore, I simply need to

show that d(p̃−1(p))
dp

> −∞. But dp̃
dz

has been already calculated in Lemma 7, so d(p̃−1(p))
dp

,

which is merely the inverse of dp̃
dz
, is always positive too. Since z lies in a compact interval,
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1− h′(.)dp̃
dz

is not greater than 1 and the proof in this part is complete. The same argument

applies to the third expression but for p ∈ [c(zL), pL].

Therefore, if M > M1 and M ′ > 0, then t(p) is strictly increasing over each separate

interval. Since t(p) is continuous by construction, it is therefore increasing over the entire

domain.

Example 3 (Characterizing equilibrium and constrained efficient allocation form(θ) = µmin{θ, 1}).

Assume 0 < h′(z) ≤ c′(z) and µ(h(z)− c(z)) > k for all z. According to differential equation

(14), θ̃EQ(z) solves:

θ̃EQ(z)exp

(∫ z

zL

q(θ̃EQ(ẑ))h′(ẑ)

m′(θ̃EQ(ẑ))(h(ẑ)− c(ẑ))− k
dẑ

)

= const.

But 0 < h′(.) ≤ c′(.), so θ̃EQ(zL) = θFB(zL), thus const = θFB(zL). The equilibrium market

tightness is distorted downward for all z > zL, so q(.) and m′(.), given by q(θ) = m′(θ) = µ

for all θ < 1, are both differentiable almost everywhere. Therefore,

θ̃EQ(z) = θFB(zL)exp

(

−

∫ z

zL

h′(ẑ)

h(ẑ)− c(ẑ)− k/µ
dẑ

)

.

Moreover, θFB(z) = 1 for all z, so H2 = h(z) − h(zL) and H̄2 =
∫
h(z)dF (z) − h(zL) ≡

E(h(z))− h(zL). Therefore, (8) in this example reduces to:

E(h(z))− h(zL) ≥

∫ (

1− exp
(
−

∫ z

zL

h′(ẑ)

h(ẑ)− c(ẑ)− k/µ
dẑ

)
)

c′(ẑ)dz.

This condition is explicitly on the fundamentals of the model. Furthermore, (6) can be

given in a similar fashion.

With this special matching function, however, η(θ) = 0 for θ < 1, so condition (11),

which is equivalent to (7), is not satisfied. Hence, the planner cannot achieve the first best.

Notice that condition (8) is not satisfied either, because it is even stronger than (7), but I

derived it explicitly here to show what it looks like.
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