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Constrained Ensemble Kalman Filter for Distributed
Electrochemical State Estimation of

Lithium-Ion Batteries
Yang Li, Member, IEEE, Binyu Xiong, Member, IEEE, Don Mahinda Vilathgamuwa, Fellow, IEEE,
Zhongbao Wei, Member, IEEE, Changjun Xie, Member, IEEE, and Changfu Zou Member, IEEE

Abstract—This article proposes a novel model-based estimator
for distributed electrochemical states of lithium-ion (Li-ion)
batteries. Through systematic simplifications of a high-order
electrochemical-thermal coupled model consisting of partial
differential-algebraic equations, a reduced-order battery model
is obtained that features an equivalent circuit form and captures
local state dynamics of interest inside the battery. Based on the
physics-based equivalent circuit model, a constrained ensemble
Kalman filter (EnKF) is pertinently designed to detect internal
variables such as the local concentrations, overpotential, and
molar flux. To address slow convergence issues due to weak
observability of the battery model, the Li-ion’s mass conservation
is judiciously considered as constraints in the estimation algo-
rithm. The estimation performance is comprehensively examined
under a wide operating range. It demonstrates that the proposed
EnKF-based nonlinear estimator is able to accurately reproduce
the physically-meaningful state variables at a low computational
cost and is significantly superior to its prevalent benchmarks for
online applications.

Index Terms—Ensemble Kalman filter (EnKF), lithium-ion (Li-
ion) batteries, physics-based equivalent circuit model (PB-ECM),
state estimation.

I. INTRODUCTION

DUE to the distinct advantages of high power and energy
densities, low self-discharge rate, favorable modularity,

and recent fast decline in cost, lithium-ion (Li-ion) batteries
have become the leading electrochemical energy storage tech-
nology. Consequently, they are widely used in applications
ranging from portable electronic devices to electric vehicles
(EVs) and modern power systems [1]–[3]. The increasing
need for wider operating ranges, higher safety and longer
service life of the Li-ion batteries demands health-aware
battery management systems (HBMS). To achieve HBMS,
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a fundamental step is to accurately monitor health-related
states of the batteries, such as the Li-ion concentrations,
overpotentials, internal resistances, and internal temperatures.
However, none of these variables are physically measurable
using available commercial sensing technology [3].

Model-based state estimation is one of the most effective
techniques to predict the internal dynamic behaviors, which
requires an accurate and efficient mathematical model of the
Li-ion batteries. Having simple structure, the equivalent circuit
models (ECMs) are easy to implement and preferable for
engineers without much prior knowledge on electrochemistry
[4]. The lumped parameters of ECMs are easy to identify
and numerous well-developed model analysis methods have
been integrated into existing tools to facilitate the design of
the control system. However, conventional ECMs are lack of
physical insights and, therefore, are not applicable to estimate
the above health-related states.

In contrast, derived from the underlying electrochemical and
thermodynamic principles, physics-based models are capable
of providing more valuable and essential information for
predicting battery health [5], [6] and for designing optimal
control strategies [7], [8]. The pseudo two-dimensional (P2D)
model has been widely accepted as the most accurate physics-
based Li-ion battery model in the BMS field [9]. However,
as P2D model is described by a set of coupled and highly
nonlinear partial differential-algebraic equations (PDAEs), it
is impractical to implement such a model in HBMS for online
operation due to the prohibitively high computational cost.

To avoid such difficulty, extensive research efforts have
been made to simplify the P2D model for battery state
estimation purpose. For example, the single particle model
(SPM) describes each electrode of the cell in a lumped manner
with the electrolyte and temperature dynamics ignored [10],
and it has been used for various state of charge (SOC)
estimators design [11]–[14]. For improved accuracy, such
a model was then extended to incorporate the electrolyte
dynamics in [15], [16] and capture thermal dynamics in [17],
respectively. However, the “lumped particle” assumption for
each electrode underpinning these models holds only under
low to moderate current rates but can be largely violated under
other conditions, particularly when the battery has thick elec-
trodes. The limitation of SPM and its variants has motivated
the development of simplified P2D models with distributed
electrode behaviors, such as the spatially discretized models
[18]–[20], and the polynomially approximated model [21].
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However, these models are described by differential-algebraic
equations, and iterative methods are needed to solve them. To
mitigate the computational burden, transfer functions togeth-
er with the residual grouping [22] or a discrete realization
algorithm [23] were used to develop reduced physics-based
models. Nevertheless, linearization based on certain SOC
and state values has to be performed before transferring all
governing equations from time domain to frequency domain.
The accuracy of the obtained models is significantly reduced
for applications with a wide SOC range and high current rates,
such as for EV fast charging. Furthermore, these physics-
based models commonly have a large number of parameters
which are difficult to identify. Hence, the practicability and
applicability of the reduced P2D models have not been fully
justified for battery state estimation.

To address the problems of electrochemical models, re-
searchers have recently revisited ECMs and proposed physics-
based ECMs (PB-ECMs) with the capability of describing
the distributed battery characteristics [24]–[26]. The physical
natures, including Li-ion diffusion, mass conservation, and
temperature and degradation dynamics, can be well explained
using PB-ECMs [24]. In general, ECMs have much less
parameters than electrochemical models, and consequently,
its identification procedure can be less tedious [25]. Inspired
by this, a general PB-ECM framework has been developed
and exhibited high efficiency and accuracy [26]. However,
the model adaptation and order reduction criteria for PB-
ECMs have not yet been established and demonstrated for
the distributed state estimation.

The first contribution of the present work is to extend the
PB-ECM framework of [26] from three aspects for estimating
the distributed electrochemical states of Li-ion batteries. First,
a generalized sub-circuit for solid-phase diffusion processes
will be developed by applying Padé approximation. This will
offer extra freedom to the model framework through which the
model validity can be maintained at different operating ranges
by tuning parameters of Padé approximation. Second, by fully
considering the smallness of temperature gradient across the
cell thickness direction [27], a lumped heat transfer model and
a distributed heat generation model will be fused to describe
the coupled electrochemical-thermal behaviors. In addition, the
criteria to determine the system order will be established for
low-cost and high-fidelity estimator design.

Building upon distributed parameter models, research efforts
have been devoted to battery state estimation. To predic-
t the local state behaviors, Smith et al. [22] designed a
linear Kalman filter based on an impedance model derived
by linearizing a reduced P2D model at 50% SOC. To cap-
ture battery nonlinear dynamics, different kinds of extended
Kalman filters (EKFs) have been deployed together with
various reduced-order P2D models [19]–[21], [23]. However,
the implementation of EKFs requires labor-intensive derivation
and computationally heavy calculation of high-dimensional
Jacobian matrices of the physics-based models. To sidestep the
Jacobian matrices, Tulsyan et al. [28] proposed a particle filter
(PF) based on a reformulated P2D model, while Marelli and
Corno [29] designed a unscented Kalman filter (UKF) based
on a discretized P2D model and the finite different method.

Nevertheless, due to the requirement to online calculate a
large number of particles/sigma points and high-dimensional
covariance matrices, as well as resampling, PF and UKF are
still intractable for many HBMS.

The ensemble Kalman filter (EnKF) is a data assimilation
technique proposed by Evensen [30] and has been successfully
applied, such as in weather forecast, image reconstruction,
and ocean modeling. In these fields, EnKF is capable of deal-
ing with high-dimensional spatially-discretized models, where
there are more state variables than measurements. It applies
Monte Carlo method to the conventional Kalman filter, and
the basic idea is to use a low-rank approximation of the large-
size covariance matrix. Because there is no need to derive
separate covariance matrices as in UKF and PF, and no need
to calculate Jacobian as in EKF, EnKF is very computationally
efficient [31]. In addition, EnKF has demonstrated excellent
performance in robustness and addressing model nonlineari-
ties. These advantages make EnKF a promising candidate to
solve the battery estimation problem.

To estimate the distributed electrochemical states of a Li-ion
cell, a particular concern is how to maintain mass conservation
of Li-ions. Process and measurement noises inherently existed
in battery operation can lead to the loss of mass conserva-
tion. Consequently, the estimation accuracy can be reduced
significantly, potentially leading to biased estimates [32]. To
address this problem, nonlinear constrained Kalman filters
have established, in which complex optimization problems are
solved online to obtain the Kalman gain [33]. To avoid online
nonlinear optimization, Strum et al. [21] considered a con-
straint of mass conservation in the initialization step of their
EKF-based estimators, and Marelli and Corno [29] proposed
a soft-constrained UKF to maintain the mass conservation.
Considering the drawbacks of EKF and UKF for PB-ECMs,
it is of great importance to investigate how to efficiently
incorporate physical constraints into the EnKF algorithm.

The second contribution of this work is to bridge the iden-
tified research gap by proposing an EnKF-based estimation
algorithm for the distributed electrochemical states based on an
adaptive and control-oriented PB-ECM. Physical constraints
will be incorporated into the EnKF to ensure the satisfaction
of Li-ion mass conservation in both the electrolyte and solid
phase. This will also ameliorate the model observability.
Furthermore, based on the initial guess of the SOC range,
a simple ensemble initialization approach will be proposed to
speed up the convergence process for Li-ion battery estimation.

II. DEVELOPMENT OF THE CONTROL-ORIENTED
PB-ECM-T FOR LI-ION BATTERIES

In this section, a control-oriented PB-ECM will be devel-
oped for distributed state estimation. To begin with the model
development, the model framework from [26] is recapped in
Section II-A.

A. A Distributed-Parameter PB-ECM Framework

The circuit structure of the distributed-parameter PB-ECM
framework is shown in Fig. 1. It was developed by applying the
approaches, including change of variables, electrical analogy,
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Fig. 1. Schematic of the physics-based equivalent circuit derived from P2D
model of Li-ion cells. The circuit elements such as the resistors and capacitors
are not shown.
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Fig. 2. A generic ES of the PB-ECM of the Li-ion battery model. The
conduction (charge conservation) sub-circuit (green lines) and the electrolyte
diffusion (mass conservation) sub-circuit (red lines) are connected via an ideal
transformer with turns ratio 1:1.

and finite volume method (FVM) to an electrochemical P2D
model of Li-ion cells. This circuit emulates the sandwich
structure of the Li-ion cell, including the positive electrode, the
negative electrode, and the separator in between. As indicated
in Fig. 1, it consists of sub-circuits which present internal
processes such as diffusion, migration, conduction, charge
transfer, etc. Standard circuit elements such as resistors (R),
capacitors (C), and ideal transformers are used to construct
the PB-ECM. As shown in Fig. 1, the PB-ECM is divided
into N = N pos +N sep +N neg elementary sections (ESs) as a
consequence of spatial discretization along the horizontal axis
(x-direction). Here, N pos, N sep, and N neg are the numbers of
ESs for the positive electrode, the separator, and the negative
electrode, respectively. A generalized circuit structure for the
ith ES is depicted in Fig. 2.

In Fig. 2, the subscript i ∈ {1, 2, · · · , N} represents the
variables or components at the central node of the ES, and
i± 0.5 represents the variables or components at the edges of
the ES. Φs and Φe are the solid phase and the electrolyte

potentials, respectively, Is and Ie are the solid phase and
the electrolyte currents, respectively, Uss is the equilibrium
potential of the electrode, ηs is the activation or charge trans-
fer overpotential, and II represents the intercalation current.
Furthermore, Rη , Rs, Re, and Rf are the charge-transfer
resistance, solid-phase resistance, electrolyte resistance, and
SEI film resistance, respectively.

Note that for an ES located in the separator domain, the
circuit shown in Fig. 2 can be simplified by considering zero
intercalation current (i.e., II = 0) and thus the solid-phase-
related branches and elements can be removed. In addition,
the ES at the boundaries of respective domains can also
be simplified by considering the boundary conditions of the
rigorous P2D model. When interconnecting all the N ESs
to construct the entire PB-ECM, the resistors such as Re,
Rs, and Rd can be combined with those in the adjacent
ES. Furthermore, the controlled voltage sources Ve,i+0.5 and
Ve,i−0.5 are removable as they are effectively canceled out by
those in the adjacent ES.

B. Subcircuit for the Solid-Phase Diffusion Process

In Fig. 2, the equilibrium potential Uss,i is represented as a
voltage source controlled by the intercalation current II,i. It is
originally governed by the diffusion equation of Fick’s second
law expressed in the spherical coordinate of the solid particle.
Instead of simplifying this equation using a fixed-order circuit
structure based on polynomial profile approximation proposed
in [26], a generalized subcircuit Σs,i will be developed in this
subsection for a wide range of operation based on Padé ap-
proximation. First, by applying M -order Padé approximation
to the solid-phase diffusion equation, a linear relationship can
be established between the intercalation molar flux jI,i and
the surface concentration css,i in the solid phase, i.e., [34]

css,i(s)

jI,i(s)
=
a0 + a1s+ a2s

2 · · ·+ aM−1s
M−1

1 + b2s+ b2s2 · · ·+ bMsM−1
1

s
. (1)

Here jI,i is proportional to II,i, i.e., jI,i = II,i/(Alias,iF ),
where F is the Faraday’s constant, A is the electrode cross
section area, as,i is the electrode specific area, and li is the
thickness of the ith ES. a0, a1, · · · , aM−1, and b2, · · · , bM
are the Padé coefficients. These coefficients can be determined
using the method given in [34], [35]. Note that the spatial index
i attached to the Padé coefficients is dropped in this subsection
for the sake of readability.

Similarly, a linear relationship between jI,i and the volume-
averaged concentration cs,avg,i exists [34]

cs,avg,i(s)

jI,i(s)
= − 3

Rp,is
(2)

where Rp,i is the radius of the particle at the ith ES.
In order to derive an analogy to electrical circuit, the

following realization is proposed for (1) by choosing a set
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of state variables such that the state-space representation is
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...
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 =


0 0 · · · 0
0 α22 · · · 0
...

...
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cs,avg,i
c̃s,2,i

...
c̃s,M ,i


+
[
−3/Rp,i β2 · · · βM

]>
jI ,i (3a)

css =

1×M︷ ︸︸ ︷[
1 1 · · · 1

] [
cs,avg c̃s,2 · · · c̃s,M

]>
(3b)

where c̃s,2,i, · · · , c̃s,M,i are concentration deviation terms from
the volume-averaged concentration cs,avg,i. Denoting A′, B′,
and C′ as the system matrix, the input matrix, and the output
matrix of (3), respectively, the coefficients α22, · · · , αMM and
β2, · · · , βM in (3a) can be uniquely determined by balancing
the equation css,i(s)/jI,i(s) = C′(sI−A′)−1B′ according to
(1) and (3).

Next, applying the following rule of change of state vari-
ables, the concentrations are mapped to a set of voltages

Uss,i = Vs,i +

M∑
j=2

Vj,i = fOCP,i

(
cs,avg,i +

∑M
j=2 c̃s,j,i

cs,max,i

)
(4)

where cs,max,i is the maximum theoretical concentration in the
solid phase of the ith ES.

Equation (4) consists of M subequations taking account of
the equilibrium potential vs. normalized concentration charac-
teristics fOCP,i(·). Note that function fOCP,i(·) is f pos

OCP(·) for
the positive electrode and f neg

OCP(·) for the negative electrode,
respectively. In this way, the state variables are mapped from
an M -dimensional concentration space into an M -dimensional
voltage space according to a nonlinear transformation. Note
that Vs,i in (4) equals the open-circuit potential (OCP) of the
corresponding electrode at no-load condition. The resultant
equivalent circuit Σs,i is shown in Fig. 3.

C. Thermal Model

Note that the parametric values of the circuit elements of the
PB-ECM are usually temperature-dependent. A thermal model
can be readily incorporated into the PB-ECM to dynamically
describe the thermal behaviors of the battery. The heat source
equals the heat generated by the various circuit components
of the PB-ECM, which is referred to as the heat generation
model. As the sandwich structure of Li-ion cells is very thin,
the corresponding temperature gradient is small [27]. In light

of this, a lumped heat transfer model is considered to relieve
the computational burden for online state estimation. Based
on the above discussion, the following thermal model with a
lumped heat transfer term and a distributed heat generation
term is formulated to describe the battery temperature T (t),

CT Ṫ (t) =
Tamb − T (t)

RT
+

N∑
i=1

QT,i(t) (5)

where CT is the lumped thermal capacitance, RT is the
lumped thermal resistance, Tamb is the ambient temperature,
QT,i(t) is the local heat generation. The battery temperature
T (t) is considered an additional state variable to the PB-ECM,
and thus the resultant coupled electrochemical-thermal model
is denoted PB-ECM-T, while the corresponding P2D model
with lumped thermal model is denoted P2D-T model.

D. Determination of Model Complexity of PB-ECM-T
The PB-ECM-T is subject to a complicated mathematical

structure, and thus the corresponding model-based estimation
algorithms could be computationally intractable when imple-
mented in HBMS. It is interesting to see that the model
complexity is completely controlled by the number of ES
(N pos, N sep, N neg) and the order M of the Padé approxi-
mation. The system order n of this PB-ECM-T is thus the
number of the capacitors plus one (temperature state), i.e.,
n = (M + 1)(N pos + N neg) + N sep + 1. In this regard, this
subsection discusses the underpinning assumptions made on
the properties of the battery for further model reduction.

Denoting the ES index sets Spos = {1, 2, ..., N pos},
Ssep = {N pos + 1, N pos + 2, ..., N pos +N sep} and Sneg =
{N pos +N sep + 1, ..., N}, the two assumptions are

Assumption 1: Given ε1 > 0, ∃M∗ ∈ Z+ such that ∀M ≥
M∗ and ∀i ∈ Spos ∪ Sneg , the local equilibrium potential
satisfies∣∣∣∣∣∣

Uss(x, t)−
(
Vs,i(t) +

∑M
j=2 Vj,i(t)

)
Uss(x, t)

∣∣∣∣∣∣ < ε1, ∀t > 0 (6)

where , and Uss(x, t) represents the local equilibrium potential
at horizontal position x of the P2D-T model.

For example, applying the second-order Padé approximation
(M = 2) according to (1)–(2), and based on (3)–(4), following
second-order RC system can be obtained

Cs,iV̇s,i(t) = II,i(t) (7a)

C2,iV̇2,i(t) = −V2,i(t)/R2,i + II,i(t) (7b)
Uss,i(t) = Vs,i(t) + V2,i(t). (7c)

Assumption 2: Given ε2 > 0 and M > 0, ∃N pos∗ ∈ Z+,
∃N sep∗ ∈ Z+, ∃N neg∗ ∈ Z+, such that ∀N pos ≥ N pos∗,
∀N sep ≥ N sep∗, and ∀N neg ≥ N neg, potential Φe satisfies∣∣∣∣∣ Φe(x, t)|L

tot

0 − (Φe,1(t)− Φe,N (t))

Φe(x, t)|L
tot

0

∣∣∣∣∣ < ε2, ∀t > 0 (8)

where Ltot = Lpos + Lsep + Lneg is the thickness of the
battery cell, Φe(x, t) represents the local electrolyte potential
at position x of the P2D-T model, and Φe,1 and Φe,N are two
potentials indicated in Fig. 1 for i = 1 and i = N , respectively.
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E. Summary of the PB-ECM-T

Based upon the results from the above subsections, the de-
tailed description of the PB-ECM-T is determined. According
to Kirchhoff’s circuit laws, the PB-ECM-T can be readily
expressed in a compact continuous-time state-space form, i.e.,

ẋ(t) = A(x,u) · x(t) + B(x,u) · u(t) =: F(x,u) (9a)
z(t) = C(x,u) · x(t) + D(x,u) · u(t) =: H(x,u) (9b)

where the state vector x = [v>s ,v
>
e ,v

>
2 , · · · ,v>M , T ]>

includes all the capacitor voltages and the battery tem-
perature, where vs = [Vs,1, Vs,2, · · · , Vs,N ]>, ve =
[Ve,1, Ve,2, · · · , VN ]>, v2 = [V2,1, V2,2, · · · , V2,N ]>, · · · , and
vM = [VM,1, VM,2, · · · , VM,N ]>. The input u(t) is the
applied current Iapp(t), and the measurable output z(t) is
the battery terminal voltage Vbat(t). Note that according to
Kirchhoff’s laws, the matrices A, B, C, and D in (9) are linear
functions of the circuit RC parameters. However, as these RC
parameters are also functions of the state vector x and the
input u, the RHS of (9a) and (9b) shall be generally expressed
using two nonlinear operators F and H, respectively. The
detail of the PB-ECM-T is provided in the supplementary
material. As no algebraic constraints exists in this model,
well-established circuit theories can be used for solving the
model in computationally efficient ways to obtain all the nodal
voltages, branch currents, as well as the terminal voltage.

Many important electrochemical variables can be obtained
by solving the PB-ECM-T for HBMS design. For example, the
local solid-phase surface concentration css,i(t), local volume-
averaged concentration cs,avg,i(t), local electrolyte concentra-
tion ce,i(t), local activation overpotential ηs,i(t), local interca-
lation molar flux jI,i(t), and SOC of the battery can be used
to estimate the rate of side reaction which is considered one
of the main causes of capacity fade and increase of internal
resistance [26]. These information are considered to be the
unmeasurable output variables of the PB-ECM-T, i.e.,

y =
[
c>ss , c

>
s,avg, c

>
e ,η

>
s , j
>
I ,SOC

]>
=: L(x,u) (9c)

where L is a nonlinear operator, css, cs,avg, ηs, and jI are
the column vectors that contain css,i, cs,avg,i, ηs,i, and jI,i,
respectively, for i ∈ Spos∪Sneg, while ce is the column vector
that contains ce,i for i ∈ Spos ∪ Ssep ∪ Sneg. Each of the
unmeasurable output variables can be calculated based on the
branch currents and nodal voltages of the PB-ECM-T, i.e., [26]

css,i(t) = cs,max,if
−1
OCP,i (Uss,i(t)) (10a)

cs,avg,i(t) = cs,max,if
−1
OCP,i (Vs,i(t)) (10b)

ce,i(t) = c0e exp

(
F

2Rgt0aT (t)
Ve,i(t)

)
(10c)

ηs,i(t) = Rη,iII,i(t) (10d)
jI,i(t) = II,i(t)/(Alias,iF ) (10e)

SOC(t) =
1

N neg

N neg∑
i=1

cs,avg,i(t)− cneg
s,0%

cneg
s,100% − c

neg
s,0%

(10f)

where f−1OCP,i(·) is the inverse function of fOCP,i(·), Rg is the
universal gas constant, and t0a is the transference number. The
width of the ES li can be lpos, lsep and lneg, depending on
the domain of the ES. Furthermore, cneg

s,100% and cneg
s,0% are

the negative electrode solid-phase concentrations at the fully-
charged and the fully-discharged states, respectively.

By discretizing (9) in the time domain, e.g. using standard
Euler method, a discrete-time nonlinear representation of the
PB-ECM-T can be obtained for the controller implementation,

xk = Fd(xk−1,uk,∆t) (11a)
zk = H(xk−1,uk) (11b)
yk = L(xk−1,uk) (11c)

where k is the discrete time index, ∆t is the time step, Fd =:
∆t × F + xk−1 is a nonlinear operator derived from F in
(9a), while operators H and L are the same as those in (9b)
and (9c), respectively. With the initial state vector x0 and the
input sequence uk = Iapp,k, (11) can be efficiently solved.

III. STATE ESTIMATION USING CONSTRAINED ENKF

A. Ensemble Kalman Filter

In this section, a distributed state estimator is designed
to observe the internal variables (10) of the Li-ion batteries
using the PB-ECM-T developed in Section II. Depending on
the selection of N pos, N sep, N neg, and M , however, the PB-
ECM-T (11) may still exhibit much higher-order nature than
the conventional lumped-parameter ECMs, especially for high
current applications, such as fast charging of EVs. As such,
EnKF is introduced in the following to alleviate the design
difficulty and reduce the computational burden.

At the kth time step, an n×m matrix X̂k is defined as an
ensemble of state estimates with m samples of the states, i.e.,

X̂k =:
[
x̂k,1, x̂k,2, · · · , x̂k,m

]
.

The ensemble size m can be much smaller than the dimen-
sion n of the state variables, i.e., m � n. Carrying out the
following two steps, the ensemble of the state estimates at the
kth time step can be generated:

Step 1 Predict: According to the system equation (11a),
predict the ensemble of prior state estimates X̂−k of the current
time step based on the ensemble of posterior state estimates
X̂+
k−1 of the previous time step, the ensemble of the input

vector Uk, and the perturbed process error matrix Wk, i.e.,

X̂−k = Fd(X̂+
k−1,Uk,∆t) + Wk. (12a)

Each column of Uk equals the input vector uk, and each
column of Wk is a randomly generated vector that is normally
distributed according to N (0,Q).

Step 2 Update: Calculate the ensemble of the measurement
estimates Ẑk according to output equation (11b) of the model,
based on the ensemble of prior state estimates X̂−k and Uk,

Ẑk = H(X̂−k ,Uk). (12b)
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Next, calculate the ensemble Kalman gain Ke,k,

Ke,k =

1
m−1

m∑
p=1

(
x̂−k,p − x̄−k

)
(ẑk,p − z̄k)

>

1
m−1

m∑
p=1

(ẑk,p − z̄k) (ẑk,p − z̄k)
>

+ R
(12c)

where R is the measurement error covariance, x̂−k,p is the pth
column of X̂−k , ẑk,p is the pth column of Ẑk, while x̄−k and
z̄k are the ensemble means of X̂−k and Ẑk, respectively, i.e.,

x̄−k =
1

m

m∑
p=1

x̂−k,p, z̄k =
1

m

m∑
p=1

ẑk,p. (12d)

Next, generate the perturbed measurement ensemble Z′k by

Z′k = Zk + Γk (12e)

where each column of Zk equals the measurement vector zk
and each column of Γk is a randomly generated vector and
normally distributed according to N (0,R).

The ensemble of the posterior state estimates can thus be
updated by

X̂+
k = X̂−k + Ke,k(Z′k − Ẑk). (12f)

Finally, the unmeasurable variables yk can be estimated by
substituting X̂+

k and Uk into (11c), i.e.,

Ŷk = L(X̂+
k ,Uk), ȳk =

1

m

m∑
p=1

ŷk,p (12g)

where ŷk,p is the pth column of Ŷk.
It can be seen that the EnKF algorithm of (12) is very simple

to design and implement, with the following salient merits:
1) Compared to EKF, there is no need to perform sequential

linearization, in which calculating a set of large-size (n × n)
Jacobian matrices online can be extremely heavy for the highly
nonlinear coupled battery model.

2) The generation of ensemble is much simpler than that of
the sigma points in the UKF, and the ensemble size can also
be much smaller than that of the sigma points in the UKF.

3) High-dimensional error covariance matrix Pk ∈ Rn×n
does not need to be estimated and updated. Denoting the
dimension of measurement nz , the complexity of EnKF
is O(n3z + n2zm+ nzm

2 + nm2), which is much less than
O(n3) of EKF and UKF for nz � n and m� n [36].

The efficiencies of the EnKF-based estimators will be
investigated quantitatively and compared with the UKF-based
estimators in Section IV.

B. Proposed EnKF Initialization Method

The selection of the initial ensemble of the state estimates
X̂+

0 largely affects the performance of EnKF. Improper guess
of the initial ensemble can lead to slow convergence to the
optimal level of the estimator [37]. The prior knowledge about
the SOC level is useful to speed up the convergence process.
Although the exact initial mean and covariance of the state is
difficult to obtain, a proper guess of the possible range of the
initial SOC is normally much more practical. Different from

the other types of Kalman-filter based estimators which only
one set of initial state variables can be specified, m different
initial state vectors can be selected in the initial state ensemble.
If no other prior statistical information is available, the initial
state ensemble is assumed uniformly covers an estimated range
of SOC from SOCmin

0 to SOCmax
0 . The element in the qth row

and the pth column in X̂+
0 is set to

X̂+
0 (q, p) =


f pos

OCP

(
cpos
s0,p

cpos
s,max

)
, q ∈ {1, 2, ..., N pos}

f neg
OCP

(
cneg
s0,p

cneg
s,max

)
, q ∈ {N pos + 1, ..., N pos +N neg}

T0, q = n
0, otherwise

(13a)
where T0 is the initial temperature, and the initial concentra-
tions cpos

s0,p and cneg
s0,p are

cpos
s0,p = (cpos

s,0% − c
pos
s,100%)SOC0,p + cpos

s,100% (13b)

cneg
s0,p = (cneg

s,100% − c
neg
s,0%)SOC0,p + cneg

s,0% (13c)

SOC0,p = SOCmin
0 +

p

m
(SOCmax

0 − SOCmin
0 ). (13d)

C. Extension of EnKF to Incorporate Physical Constraints

By examining the observability of the battery states based
on the nonlinear model (11) using the method presented in
[17], the model states are found weakly observable in a linear
sense. An effective approach to enhance the observability is
to incorporate algebraic constraints on the state variables into
the estimator algorithm, so that the number of independent
states can be reduced [29]. As discussed in [26], the PB-
ECM-T preserves the feature of mass conservation of the P2D
model. That is, the total number of lithium ions in the solid
phase as well as in the electrolyte shall be constant when
battery degradation is assumed ignorable during time period
under investigation. However, as the ensemble is obtained
using random generated perturbed states and measurement in
in (12a) and (12b), the total amount ns of lithium ions in the
solid phase may differ from the initial value ns0. Similarly,
the total amount of the lithium ions ne may differ from the
initial value ne0. To incorporate these physical constraints to
the EnKF, ∀p ∈ {1, 2, · · · ,m} and ∀k > 0, the solid phase and
electrolyte concentrations are examined and updated following
a scaling rule described below. For the sake of readability, the
ensemble index p and the discrete time index k are dropped
in the remaining part of this section.

First, for the solid phase concentrations, ∀i ∈ Spos ∪ Sneg,
the scaling rule (14) is applied after each step of (12f):

1) Calculate the local average lithium ion concentration of
the solid phase based on (10b),

ĉ+s,avg,i = cs,max,if
−1
OCP,i(V̂

+
s,i) (14a)

where V̂ +
s,i is the ith member of x̂+

k,p for the positive electrode,
and the (N pos +i)th member of x̂+

k,p for the negative electrode.
2) Calculate the total amount of lithium ions ns in the solid

phase:

n̂+s =
∑
i∈Spos

ĉ+s,avg,iε
pos
s Alpos+

∑
i∈Sneg

ĉ+s,avg,iε
neg
s Alneg (14b)
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where εs is the volume fraction of the solid phase, and Al
represents the volume of corresponding ES.

3) Update the local average concentration by scaling:

ĉ+s,avg,i,update = ĉ+s,avg,i ×
ns0

n̂+s
. (14c)

4) Update the capacitor voltage

V̂ +
s,i,update = fOCP,i

(
ĉ+s,avg,i,update/cs,max,i

)
(14d)

where V̂ +
s,i,update is the updated V̂ +

s,i considering the mass
conservation. Similarly, the total amount of lithium ions ne
in the electrolyte is examined and updated via the scaling rule
(15), i.e., ∀i ∈ Spos ∪ Ssep ∪ Sneg, based on (10c),

ĉ+e,i = c0e exp

(
F

2Rgt0aT
V̂ +
e,i

)
(15a)

where V̂ +
e,i is the (N pos +N neg + i)th member of x̂+

k,p, and

n̂+e =
∑
i∈Spos

ĉ+e,iε
pos
e Alpos+

∑
i∈Ssep

ĉ+e,iε
sep
e Alsep

+
∑
i∈Sneg

ĉ+e,iε
neg
e Alneg (15b)

ĉ+e,i,update = ĉ+e,i ×
ne0

n̂+e
(15c)

V̂ +
e,i,update =

2Rgt
0
aT

F
ln

(
ĉ+e,i,update

c0e

)
(15d)

where εe is the porosity or the volume fraction of the elec-
trolyte. The proposed EnKF (12) with the battery physical
constraints (14) and (15) is hereafter denoted EnKF-c.

IV. RESULTS AND DISCUSSION

A. Model Validation

The model accuracy of the developed PB-ECM-T (11) in
predicting battery behaviors shall first be examined. As the in-
ternal states and variables are difficult to be measured directly,
the developed model was compared against the P2D-T model
via simulation, as the rigorous P2D-based model has been
widely accepted as a benchmark model for electrochemical
Li-ion model validation. The detail of the P2D-T model is
given in the supplementary material and the model parameters
are from [26], [38]. The charge/discharge cycle is specified
using an urban dynamometer driving schedule (UDDS) test
relating to electric vehicle applications [39], with the original
currents being scaled by a factor of about three. The resulted
profile covers a large operating range for Li-ion batteries with
a maximum current rate of 5.6 C. The model parameters are
taken from [26], corresponding to a 1.8-Ah lithium-cobalt-
oxide (LCO) battery cell. The rigorous P2D-T model was
established in COMSOL Multiphysics 5.3a while the PB-
ECM-T was implemented in MATLAB R2016a environment.

The simulation results from using these models are pre-
sented in Fig. 4 and Fig. 5. Padé approximation order is
M = 1. The results using different number of ES, denoted
(N pos, N sep, N neg), are shown in Fig. 4. Clearly, the PB-
ECM-T is able to match its high-order counterparts closely in
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terms of the terminal voltage and temperature across the entire
operating process. Unsurprisingly, the accuracy of the model
decreases when reducing (N pos, N sep, N neg), i.e., the number
of ES. However, even at (N pos, N sep, N neg) = (3, 1, 3), the
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root-mean-square error (RMSE) of the terminal voltage is as
low as 10.74 mV, and the maximum absolute error (MAE) is
only about 37.9 mV. Interestingly, although not displayed in
the figure, for the lowest ES number (1, 1, 1), the MAE of the
battery voltage can reach high up to 0.15 V, which outperforms
many of the empirical models in literature for such high-
current rate profile. The error is due to the fact that the linear
approximation of the derivative terms when implementing
FVM becomes less valid when the number of control volumes
reduces. The relationship between the number of ES and the
simulated voltage errors are given in Table I. As mentioned
earlier, to the structure of the PB-ECM-T, the number of states
n = (M + 1)(N pos + N neg) + N sep + 1. It can be seen that
as the number of ES increases, voltage error can be reduced
significantly, while the CPU time increases in a less radical
manner. This shows the high computational efficiency of the
PB-ECM even under large number of state variables thanks
to the high sparsity of the state matrices of the circuit. Based
on the results, we assume that (N pos, N sep, N neg) = (3, 1, 3)
and M = 1 is the selection of the model complexity for the
design of state estimator in the latter section.

Fig. 5 shows the results of the simulated internal variables
which is related to internal limitation and degradation, where
ES number is (N pos, N sep, N neg) = (3, 1, 3) and Padé order
M = 1. The surface concentration in the negative electrode
affect the rate of side reactions, while the overpotential has
significant impact on the lithium plating during the period of
overcharging. It is also observed that the most severe cases
occur at the boundaries of each electrodes, and those variables
shall be carefully considered in the design of optimal control
of a battery system for real-time applications.

B. Performance of EnKF

In order to demonstrate the efficacy of the proposed dis-
tributed state estimator, the UDDS test with the current
profile presented in Fig. 4(a) was used again. In the test,
different ensemble sizes m are tested under both standard
EnKF and EnKF-c estimators. The process noise covariance
Q is assumed to be diagonal matrix and each of the element
on the main diagonal equals 10−6. The measurement noise
covariance is assumed to be R = 1×10−4, which corresponds
to ±10 mV voltage sensor error. To test the robustness and
convergence speed of the employed estimation algorithm, the
SOC are initialized with SOCmin

0 = 0.5 and SOCmax
0 = 1.

In the simulations, the reference measurements are again
generated by the PDAE-based battery model implemented in

TABLE I
MODEL ACCURACY AND SPEED OF THE PB-ECM WITH DIFFERENT

NUMBERS OF ES

Number of ES Number of RMSE MAE CPU Time
(Npos, N sep, Nneg) States n (mV) (mV) (s)

(2, 1, 2) 10 10.74 76.7 1.4
(3, 1, 3) 14 4.86 37.9 1.6
(5, 2, 5) 23 1.73 14.6 1.9
(7, 3, 7) 32 0.83 7.3 2.1

(10, 5, 10) 46 0.35 3.1 2.9
(20, 10, 20) 91 0.09 0.93 5.1
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Fig. 6. Effect of ensemble size and constraint on mass conservation: (a) SOC
estimation error based on EnKF; (b) SOC estimation error based on EnKF-c;
(c) total amount of lithium ions in the solid phase based on EnKF; (d) total
amount of lithium ions in the solid phase based on EnKF-c; (c) total amount
of lithium ions in the electrolyte based on EnKF; (d) total amount of lithium
ions in the electrolyte based on EnKF-c.

COMSOL Multiphysics. The sampling time for EnKF design
is chosen to be ∆t = 1 s. The performances of the EnKF
estimators with different m are shown in Table II. It can be
seen that there is an approximately linear relationship between
the ensemble size and the execution time for both EnKF and
EnKF-c. For EnKF-c, the 9.5 s execution time for this 4000 s
UDDS profile (i.e., 2.4 ms per time-step) is affordable for
online operation.

TABLE II
COMPARISON ENKFS WITH DIFFERENT ENSEMBLE SIZES

Ensemble Size m
RMSE of SOC (%) Execution Time (s)
EnKF EnKF-c EnKF EnKF-c

3 0.77 0.33 8.3 9.5
9 0.61 0.31 11.7 13.3

15 0.38 0.31 16.6 18.1
21 0.33 0.30 19.5 21.2
27 0.29 0.29 23.1 25.3

Fig. 6 shows the effects of varying the ensemble size and
the mass conservation constraint on the EnKF performance.
First, as the ensemble size increases, both the accuracy of SOC
prediction and the speed of convergence increase. However,
when the ensemble size is large (e.g. m = 15), the effect of
introducing this constraint is not tangible. Hence, for small-
size ensemble (e.g. m = 3) improved numerical efficiency, it is
advantageous to introduce the constraint on mass conservation.

The performance of the EnKF to predict the health-related
internal variables with m = 3 is shown in Fig. 7. It can be
seen that although a large initial deviation has been introduced,
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the solution of the EnKF-c is able to rapidly converge to its
true value. From Fig. 7(b), it can be seen that the MAE for
SOC after 100 s is 0.95%, and the RMSE is 0.33%, which
indicates the superior performance on SOC estimation. In the
meanwhile, the estimation errors on health-related variables
are also very small, which can be observed from Figs. 7(c)–
(f).

C. Comparative Studies with Other Nonlinear Estimators

Based on sequential linearization, EKF adopts the first-order
approximation of the nominal model (11) for gain calculation
and covariance propagation. By contrast, UKF executes the
second-order approximation of the nominal model via an
unscented transform. Thus, it is easy to understand that UKF
generally has higher accuracy than EKF if (11) well predicts
the battery system. As explained earlier, based upon (11), EKF
can be inferior in computational efficiency due to the need to
calculate a set of Jacobian matrices online. With this in mind,
a standard UKF estimator without any physical constraints and
a UKF estimator considering the mass conservation (UKF-c)
are designed based on PB-ECM-T to benchmark the proposed
estimator, whereas the numerical comparison with EKF will
not be considered.

TABLE III
COMPARISON OF ENKF- AND UKF-BASED STATE ESTIMATORS

EnKF EnKF-c UKF UKF-c
Ensemble Size or
No. of Sigma Points 3 3 29 29

RMSE of SOC (%) 0.77 0.33 28.5 3.1
Convergence Time (s)∗ 4 3 1135 -
Execution Time (s) 8.3 9.5 29.2 37.6
*Defined as the time when SOC estimation error reaches 1%.

0

0.5

1

S
O
C

P2D-T EnKF EnKF-c UKF UKF-c

0.6

0.8

1

S
O
C

2.25

2.3

2.35

2.4

2.45

n
s
(m

o
l)

2.25

2.3

2.35

n
s
(m

ol
)

0 1000 2000 3000 4000

Time (s)

0.08

0.09

0.1

0.11

n
e
(m

o
l)

0 2 4 6 8 10

Time (s)

0.08

0.09

0.1

0.11

n
e
(m

o
l)

(c) (d)

(e) (f)

(b)(a)

Fig. 8. Comparison of performance of different nonlinear state estimators:
(a)(b) SOC; (c)(d) total amount of lithium ions in the solid phase; (e)(f) total
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For the UKF-c, the constraint of mass conservation is also
taken into consideration during the generation of the sigma
points of the standard UKF algorithm following the steps
similar to (14) and (15). The ensemble sizes for the EnKF
and the EnKF-c are both m = 3. The simulation results
under UDDS test are shown in Fig. 8, where the left column
compares the performance over the 4000 s simulation time and
the right column shows the initialization processes. It can be
seen from Fig. 8(a) that there are large persistent estimation
errors for the standard UKF estimator, and the UKF-c esti-
mator requires a long period of time (>1000 s) to converge
to the true SOC value. In contrast, for the EnKF and EnKF-
c, the convergence time is very short, thanks to the proposed
ensemble initialization method (13). Furthermore, as can be
observed in Fig. 8(d) and Fig. 8(f), the application of the
physical constraints guarantees the mass conservation for both
EnKF-c and UKF-c. However, while UKF-c algorithm requires
2n + 1 = 29 sigma points, the EnKF-c estimator requires an
ensemble with only three samples. The execution time given
in Table III shows that the execution time 37.6 s of the UKF-c
is about four times longer than that of the EnKF-c estimator.
Moreover, EnKF-c can provide much faster convergence and
higher estimation accuracy than its counterpart. Hence, it
can be concluded that the proposed EnKF-c is effective and
efficient in the presence of a range of common uncertainties
from modeling, initialization, and persistent noise.

V. CONCLUSIONS

This work proposes a novel distributed electrochemical
state estimation method for lithium-ion (Li-ion) batteries us-
ing a sophisticated physics-based equivalent circuit model
derived from an electrochemical-thermal coupled pseudo-two-
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dimensional model. A nonlinear state-space representation of
the battery model is obtained by reformulating the system
into a circuit network with simplified thermal behavior for
the ease of control system implementation. The developed
model is capable of accurately reflecting the internal behaviors
and operating limitations of the Li-ion battery with low
computational cost. A constrained ensemble Kalman filter
(EnKF) is designed to monitoring the internal distributed states
with low computational burden for online operation. A simple
ensemble initialization method and physical constraints on
mass conservation are incorporated into the EnKF algorithm
to address the problem of slow convergence due to the weak
observability of the battery model. The performance of the
proposed distributed state estimator is validated and compared
with unscented Kalman filter based approaches. Simulation
results show that the proposed EnKF-based estimator pro-
vides much superior performance, while model’s capability
to accurately monitor the internal variables can be utilized
for the design of optimal control schemes in the future
development of health-aware battery management systems.
Further improvement of the proposed method can be achieved
by incorporating the degradation dynamics and estimating the
unknown error covariance adaptively in the future works.
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