
Constrained Evolutionary Optimization
by Approximate Ranking and Surrogate Models

Thomas Philip Runarsson

Science Institute, University of Iceland tpr@hi.is

Abstract. The paper describes an evolutionary algorithm for the gen-
eral nonlinear programming problem using a surrogate model. Surrogate
models are used in optimization when model evaluation is expensive. Two
surrogate models are implemented, one for the objective function and
another for a penalty function based on the constraint violations. The
proposed method uses a sequential technique for updating these models.
The quality of the surrogate models is determined by their consistency
in ranking the population rather than their statistical accuracy. The
technique is evaluated on a number of standard test problems.

1 Introduction

In engineering design optimization expensive mathematical or physical models
are common. Surrogate models are numerical or physical simplifications of these
models, respectively. These simplifications are essentially inexpensive models.
Surrogate models have been used in optimization [11], also known as approximate
models [1] and meta-models [9]. In optimization surrogate models are based on
scarce samples of the expensive model.

In evolutionary optimization there is an increased interest in applying sur-
rogate models in place of expensive fitness models. A recent survey of fitness
approximation in evolutionary computation is presented in [2] and a framework
for evolutionary optimization established in [3]. Engineering design optimization
problems commonly include constraints which are often more costly to evaluate
than the objective. The handling of general nonlinear constraints in evolutionary
optimization using surrogate models has not received much attention. This prob-
lem is tackled here by introducing two surrogate models: one for the objective
function and another for a penalty function based on the constraint violations.
The proposed method uses a sequential technique for updating these models. The
quality of the surrogate models are determined by their consistency in ranking
the population rather than their statistical accuracy or confidence. At each
generation the surrogate models are updated and at least one expensive model
evaluation is performed. The key new idea here is to evaluate the accuracy of the
model by observing how it changes the behavior of the evolutionary algorithm
(EA). That is, how does the surrogate model influence selection?

The paper is organized as follows. In section 2 an effective EA for the general
nonlinear programming problem is described. In section 3 the surrogate models

implemented are presented. The performance of these models is evaluated on
the sphere model. In section 4 the most effective way of sampling an expensive
model is investigated. In section 5 the heuristic method of approximate ranking
is described which will help determine how often the expensive model needs to
be sampled. This is followed by a detailed experimental study of the proposed
method on 13 benchmark functions in section 6. The paper concludes with a
discussion and summary.

2 Constrained evolutionary optimization

Consider the general nonlinear programming problem formulated as

minimize f(x), x = (x1, . . . , xn) ∈ Rn, (1)

where f(x) is the objective function, x ∈ S∩F , S ⊆ Rn defines the search space
bounded by the parametric constraints xi ≤ xi ≤ xi, and the feasible region F
is defined by

F = {x ∈ Rn | gj(x) ≤ 0 ∀ j}, (2)

where gj(x), j = 1, . . . ,m, are inequality constraints (equality constraints may
be approximated by inequality constraints). Using a penalty function approach
the constraint violations are treated as a single function,

φ(x) =
m∑

j=1

max[0, gj(x)]2. (3)

In [7] an effective algorithm for solving nonlinear programming problems was
introduced. This algorithm is described by the pseudocode in fig. 1. The algo-
rithm is essentially an improved version of the (µ, λ) evolution strategy (ES)
using stochastic ranking presented in [6]. The algorithm in fig. 1 also uses
stochastic ranking, which balances the influence of the penalty and objective
function in determining the overall ranking of the population. In particular
the population of individuals, of size λ, are ranked from best to worst, de-
noted (x1;λ, . . . ,xµ;λ, . . . ,xλ;λ), and only the best µ are selected. The further
modification, presented here, is simply the attempt to replace both φ(x) and
f(x) by surrogate models. The surrogate models only influence the ranking, the
remainder of the algorithm is unchanged.

3 Nearest neighborhood regression

Deciding on a general surrogate model for optimization, especially when taking
the no-free lunch theorems [10] into consideration, is difficult. Commonly used
surrogate models include, among others, Kriging, polynomial regression and
radial basis function [2]. Perhaps the most simple and transparent surrogate
model is the nearest neighbor (NN) regression model, that is

ĥ(xi) = h(yj) where j = argmin
k=1,...,`

‖xi − yk‖ (4)

1 Initialize: σ′k = (xk − xk)/
√

n, x′k = xk + (xk − xk)Uk(0, 1), k = 1, . . . , λ
2 for t := 1 to T do (generational loop)
3 evaluate: f(x′k), φ(x′k), k = 1 . . . , λ
4 rank the λ points and copy the best µ in their ranked order :
5 (xi, σi) ← (x′i;λ, σ′i;λ), i = 1, . . . , µ
6 for k := 1 to λ do (replication)
7 i ← mod (k − 1, µ) + 1 (cycle through the best µ points)
8 if (k < µ) do (differential variation)
9 σ′k ← σi

10 x′k ← xi + γ(x1 − xi+1) (if out of bounds retry using standard mutation)
11 else (standard mutation)
12 σ′k,j ← σi,j exp

(
τ ′N(0, 1) + τNj(0, 1)

)
, j = 1, . . . , n

13 x′k ← xi + σ′kN(0, 1) (if out of parametric bounds then retry)
14 σ′k ← σi + α(σ′k − σi) (exponential smoothing [5])
15 od
16 od
17 od

Fig. 1. The improved (µ, λ) ES using the differential variation (lines 8−11) performed
once for each of the best µ−1 points (γ ≈ 0.8). U(0, 1) is a uniform random number in
[0, 1] and N(0, 1) is normally distributed with zero mean and variance one. τ ′ ∝ 1/

√
2n,

τ ∝ 1/
√

2
√

n and α ≈ 0.2, see also [5,7].

where Y ≡ {y}`
j=1 are the set of points which have been evaluated using

the expensive model h(y). The approximate model passes exactly through the
function values at the given points Y. For this reason points evaluated using
either the surrogate or expensive model may be compared directly. An obvious
refinement of the nearest neighbor regression model is to weight the contribution
of κ neighbors according to their distance to the query point xi. This is achieved
by calculating the weighted average of the κ nearest neighbors,

ĥ(xi) =

∑κ
j=1 vih(yj)∑κ

j=1 vj
(5)

where vj = 1/‖xi − yj‖2 is the distance-weighted contribution of the κ nearest
neighbors. If there exists a neighbor j where ‖xi−yj‖ < ε (a small value), then
ĥ(xi) is assigned h(yj), that is, use (4).

The convenience in using nearest neighborhood regression is that learning
consists of simply storing points, evaluated using the expensive model, in Y.
Each time a point is added the model is improved. If all the points are used,
κ = ` in (5), the surrogate is called a global model and if only the nearest points
are used a local model. Determining which model is most appropriate is problem
dependent. For example, consider the case when the expensive model is the
sphere model (h(x) =

∑n
k=1 x2

k, n = 100) and one is interested in the surrogate
model resulting in the greatest rate of progress [8] towards the optimum. The
progress rate may be simulated as follows: sample the expensive model space `

U
n
iv

er
sa

l
ra

te
o
f
p
ro

g
re

ss
ϕ
∗

Universal standard deviation σ∗

1−NN ℓ = 100

1−NN ℓ = 200

100−NN ℓ = 100

200−NN ℓ = 200

expensive model

0

0

1

1 3 4 5

−0.5

0.5

1.5

2

2

2.5

Fig. 2. The simulated progress rates for the local and global nearest neighbor regression
models for the sphere model using a (1, 100) evolution strategy.

times, construct a surrogate model, and compute the progress. The experiment
is repeated 10.000 times and the expectation taken. The progress rates for a
(1, 100) ES using the surrogate models (4) and (5) for κ = ` is given in fig. 2.
For the sphere model the weighted average of all nearest neighbors is the better
surrogate model. Furthermore, it is clear that as the design space is sampled
more densely, ` = 200 rather than ` = 100, the better the approximation and
hence the progress. However, expensive models prohibit such an approach and
so a sequential strategy, which regularly refines the surrogate model, is more
suitable. Evolutionary algorithms are sequential (or generational) in nature and
so this approach can be readily adapted.

4 Sampling strategy

In this section an attempt is made to answer the following question. Given λ
offspring which should be evaluated using the expensive model so that progress
toward the optimum is maximized? As in the previous section the answer is
sought via simulation. First of all, the individuals from previous generations are
in Y. For the (1, λ) progress rate simulation this implies that initially Y = xo.
Three different sampling strategies are investigated for selecting the offspring,
xi /∈ Y, to add to the set Y. The first simply selects the best individual according
to the surrogate model, the second selects an individual at random, and the third
strategy is to select the offspring that is the furthest distance from its closest
neighbor in Y. The last strategy is motivated by the fact that the individual
furthest from its nearest neighbor in Y is the worst approximated. The algorithm
used to perform this progress rate simulation is presented in fig. 3. The progress

1 Initialize: σ = σ∗(r/n), r = ‖x∗ − xo‖
2 for j := 1 to M do (Monte Carlo Simulation)
3 Y = xo, xi = xo + Ni(0, σ2), i = 1 . . . , λ
4 for k := 2 to (` + 1) do sample points

5 compute ĥ(xi) using (5), i = 1 . . . , λ
6 yk = xi, xi /∈ Y and i sampled according to a strategy
7 evaluate h(yk) (expensive model)
8 od
9 ϕj = r − ‖x∗ − x1:λ‖
10 od

11 Return expectation: ϕ∗ = (n/r)
∑M

j=1 ϕj/M

Fig. 3. Computer simulation used to estimate the progress rates for the different
sampling strategies. M = 10.000 and x∗ is the optimum.

U
n
iv

er
sa

l
ra

te
o
f
p
ro

g
re

ss
ϕ
∗

Universal standard deviation σ∗

Standard
Max. distance

Best

Random

0

0

1

1 3 4 5

−0.5

0.5

1.5

2

2

2.5

ℓ = 1

ℓ = 2

ℓ = 5

ℓ = 10

ℓ = 100

Fig. 4. (1, 2`) progress rate for the three different sampling strategies, compared with
standard method (1, `), and different values of `. M = 10.000.

rate simulations using λ = 2` are presented in fig. 4 using the three different
sampling strategies and various values of ` (λ = 2`) on the sphere model (n =
100). Furthermore, the standard progress rate is given for the (1, `) strategy
using the expensive model directly. For small values of ` and λ all sampling
strategies result in a greater progress than the standard method. However, as `
and λ increase sampling the best point, according to the surrogate, is the only
sampling strategy which results in greater progress than the standard approach.

1 approximate: f̂(x′k), φ̂(x′k), k = 1 . . . , λ
2 rank and determine the parent set X1 ≡ {x′i:λ}µ

i=1

3 yj ← argminx′
i:λ

i for x′i:λ /∈ Y, j ← j + 1 (approximated best point)

4 evaluate: f(yj), φ(yj) (expensive model evaluation)
5 for i := 2 to λ do

6 approximate: f̂(x′k), φ̂(x′k), k = 1 . . . , λ
7 determine new parent set Xi ≡ {x′i:λ}µ

i=1

8 if Xi−1 6= Xi do (the parent set has changed)
9 yj ← argminx′

i:λ
i for x′i:λ /∈ Y, j ← j + 1

10 evaluate: f(yj), φ(yj)
11 else (parent set remains unchanged)
12 break (exit for loop)
13 od
14 od

Fig. 5. The approximate ranking procedure where initially Y 6= ∅.

5 Approximate ranking

In the previous section different sampling strategies were investigated. The re-
sults suggest that it would be most beneficial, in terms of progress, to evaluate the
best individuals. Therefore, this is the strategy adopted. However, the number of
samples to be evaluated using the expensive model was not established. Clearly
one would like to minimize the total number of expensive model evaluations and
yet retain a good quality surrogate model.

From the EA’s perspective as long as a good approximate estimate of the
parent set is found there is no need to call the expensive model. Therefore, the
simple heuristic proposed is that the surrogate model is approximately correct
as long as the parent set does not change when the surrogate model is improved.
As a result the following approximate ranking method, shown in fig. 5, is used
to determine indirectly the number expensive fitness evaluations needed at any
given generation. The maximum number evaluations per generation is therefore
λ and the minimum number is 1.

6 Experimental study

In the following experiment 13 nonlinear programming problems from the liter-
ature [6,7] are studied. The improved ES in fig 1, denoted ιES, is compared with
a surrogate version of the same algorithm, denoted ι̂ES. In the surrogate version
lines 3–4 in fig. 1 are replace with the approximate ranking described in fig. 5.
The only additional modification is that the set Y has a fixed size ` so that any
new point added to the set automatically overwrites the oldest point. The idea
here is that the old points are furthest away from the current population. The
set Y should, however, be large enough to accept all new point at any given

generation, that is ` ≥ λ. Clearly, the smaller ` becomes the faster the surrogate
model is evaluated. There exist also a number of fast implementations of the NN
algorithm, see for example [4].

The experimental setup is the same as in [6,7] where all experiments are
run for a fixed number of generations, T = 350000/λ with the exception of
problem g12 which is run for T = 35000/λ generations. As a first experiment the
improved (15, 100)ιES is compared with its surrogate counterpart using ` = 100
and ` = 200 respectively. In table 1 the results, for 30 independent runs, using
the simple nearest neighbor regression (4) as the surrogate model is given. The
quality of solutions found by surrogate version are similar to the one using the
expensive model evaluations. The mean number of expensive model evaluations
needed to locate the best solution may be found in the column labeled feval
along with its standard deviation. The number of expensive model evaluation
has been reduced for all problems, but only significantly for functions g01, g08,
g09 and g12. Using a set size of ` = λ is also sufficiently large.

It is interesting to observe how the number of expensive fitness evaluations
changes per generation due to the approximate ranking. This is shown in fig. 6
for two test functions based on an average of 100 independent runs. Also shown
is the corresponding mean best objective value. For g01 the entire population
must be evaluated using the expensive model at the beginning of the run. The
number is reduced once the population enters the feasible region, then remains
constant for some time at 40% of the population and then falls again toward the
end of the run. For g02 the number of expensive function evaluations increases
towards the end of the run.

When using the surrogate model (5) with κ = ` a poor global search per-
formance is observed. For this reason it is decided to use κ = 10 and the entire

g01

m
ea

n
#

ev
al

u
at

io
n
s

m
ea

n
b
es

t
f
(y

)

generation (g)
0

0

50

100

−5

−10

−15

−20
1000 2000

g02

m
ea

n
#

ev
al

u
at

io
n
s

m
ea

n
b
es

t
f
(y

)

generation (g)

0

0

0

50

100

−1

−0.5

1000 2000 3000

Fig. 6. Top plots shows the mean number of expensive model evaluation per generation
and the bottom the corresponding mean best objective function value.

Table 1. Statistics for 30 independent runs using a (15, 100) ES and its surrogate
version using 1−NN.

objective feval
best median mean st. dev. worst mean std

g01 – ιES −15.000 −15.000 −15.000 3.6E−16 −15.000 122163 5062
ι̂ES(` = λ) −15.000 −15.000 −15.000 0.0E+00 −15.000 67341 6116
ι̂ES(` = 2λ) −15.000 −15.000 −15.000 3.2E−16 −15.000 61783 7283

g02 – ιES −0.803619 −0.760456 −0.753209 3.7E−02 −0.609330 348606 2578
ι̂ES(` = λ) −0.803617 −0.708854 −0.707586 5.7E−02 −0.570960 209416 36582
ι̂ES(` = 2λ) −0.803619 −0.744804 −0.731058 6.4E−02 −0.527944 211497 37225

g03 – ιES −1.001 −1.001 −1.001 1.7E−05 −1.001 324206 27783
ι̂ES(` = λ) −1.001 −1.001 −1.001 3.2E−06 −1.001 275094 7661
ι̂ES(` = 2λ) −1.001 −1.001 −1.001 5.7E−07 −1.001 278894 6373

g04 – ιES −30665.539 −30665.539 −30665.539 2.2E−11 −30665.539 68023 6004
ι̂ES(` = λ) −30665.539 −30665.539 −30665.539 7.3E−12 −30665.539 53815 2669
ι̂ES(` = 2λ) −30665.539 −30665.539 −30665.539 7.3E−12 −30665.539 53216 2479

g05 – ιES 5126.497 5126.497 5126.497 5.8E−12 5126.497 62976 3388
ι̂ES(` = λ) 5126.497 5126.497 5126.497 2.0E−12 5126.497 60844 3174
ι̂ES(` = 2λ) 5126.497 5126.497 5126.497 1.4E−07 5126.497 62814 3783

g06 – ιES −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 55203 2900
ι̂ES(` = λ) −6961.814 −6961.814 −6961.814 3.6E−12 −6961.814 46524 3349
ι̂ES(` = 2λ) −6961.814 −6961.814 −6961.814 3.6E−12 −6961.814 46424 2305

g07 – ιES 24.306 24.323 24.337 4.1E−02 24.635 347393 12789
ι̂ES(` = λ) 24.308 24.336 24.375 7.6E−02 24.591 237195 41850
ι̂ES(` = 2λ) 24.307 24.326 24.337 3.5E−02 24.450 231089 44286

g08 – ιES −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 64863 41349
ι̂ES(` = λ) −0.095825 −0.095825 −0.095825 8.8E−18 −0.095825 2504 1957
ι̂ES(` = 2λ) −0.095825 −0.095825 −0.095825 7.6E−18 −0.095825 2634 1766

g09 – ιES 680.630 680.630 680.630 7.4E−04 680.635 264120 82602
ι̂ES(` = λ) 680.630 680.631 680.632 2.4E−03 680.638 145955 23840
ι̂ES(` = 2λ) 680.630 680.630 680.631 1.8E−03 680.637 133523 17545

g10 – ιES 7049.404 7064.109 7082.227 4.2E+01 7258.540 304066 86127
ι̂ES(` = λ) 7050.290 7071.520 7086.310 4.0E+01 7191.870 283637 75378
ι̂ES(` = 2λ) 7049.620 7099.250 7118.900 7.1E+01 7367.780 295030 65746

g11 – ιES 0.750 0.750 0.750 1.8E−15 0.750 47046 2968
ι̂ES(` = λ) 0.750 0.750 0.750 1.1E−16 0.750 39289 2453
ι̂ES(` = 2λ) 0.750 0.750 0.750 1.1E−16 0.750 38566 3004

g12 – ιES −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 19726 1462
ι̂ES(` = λ) −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 4200 900
ι̂ES(` = 2λ) −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 4216 921

g13 – ιES 0.053942 0.053942 0.111671 1.4E−01 0.438804 197606 117774
ι̂ES(` = λ) 0.053942 0.053942 0.143746 1.6E−01 0.438902 93302 14605
ι̂ES(` = 2λ) 0.053942 0.053942 0.182229 1.8E−01 0.181425 90768 12624

experiment is repeated. This result is given in table 2. Using the 10-NN regression
reduces the number of expensive function evaluations for test function g12 even
further but now there are some difficulties in locating feasible solutions for test

Table 2. Statistics for 30 independent runs using a (15, 100) ES and its surrogate
version using 10−NN.

objective feval
best median mean st. dev. worst mean std

g01 – ιES −15.000 −15.000 −15.000 3.6E−16 −15.000 122163 5062
ι̂ES(` = λ) −15.000 −15.000 −15.000 0.0E+00 −15.000 64320 6219
ι̂ES(` = 2λ) −15.000 −15.000 −15.000 3.2E−16 −15.000 60522 7030

g02 – ιES −0.803619 −0.760456 −0.753209 3.7E−02 −0.609330 348606 2578
ι̂ES(` = λ) −0.792608 −0.731221 −0.706970 6.8E−02 −0.552092 254828 9817
ι̂ES(` = 2λ) −0.785266 −0.679370 −0.679007 5.6E−02 −0.564173 257185 8281

g03 – ιES −1.001 −1.001 −1.001 1.7E−05 −1.001 324206 27783
ι̂ES(` = λ) −1.000 −1.001 −1.001 6.8E−05 −1.001 259112 19095
ι̂ES(` = 2λ) −1.000 −1.001 −1.001 1.1E−04 −1.001 257262 15739

g04 – ιES −30665.539 −30665.539 −30665.539 2.2E−11 −30665.539 68023 6004
ι̂ES(` = λ) −30665.539 −30665.539 −30665.539 7.3E−12 −30665.539 51369 3354
ι̂ES(` = 2λ) −30665.539 −30665.539 −30665.539 7.2E−12 −30665.539 50733 3361

g05 – ιES 5126.497 5126.497 5126.497 5.8E−12 5126.497 62976 3388
ι̂ES(` = λ) 5126.497 5126.497 5126.497 8.8E−08 5126.497 59657 2555
ι̂ES(` = 2λ) 5126.497 5126.497 5126.497 5.6E−12 5126.497 58923 3288

g06 – ιES −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 55203 2900
ι̂ES(` = λ) −6961.814 −6961.814 −6961.814 3.6E−12 −6961.814 41787 2773
ι̂ES(` = 2λ) −6961.814 −6961.814 −6961.814 3.6E−12 −6961.814 43462 2574

g07 – ιES 24.306 24.323 24.337 4.1E−02 24.635 347393 12789
ι̂ES(` = λ) 24.308 24.334 24.358 6.2E−02 24.531 234441 50231
ι̂ES(` = 2λ) 24.307 24.325 24.331 3.0E−02 24.476 209696 43488

g08 – ιES −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 64863 41349
ι̂ES(` = λ) −0.095825 −0.095825 −0.095825 1.3E−17 −0.095825 18801 17018
ι̂ES(` = 2λ) −0.095825 −0.095825 −0.095825 1.1E−17 −0.095825 14188 12716

g09 – ιES 680.630 680.630 680.630 7.4E−04 680.635 264120 82602
ι̂ES(` = λ) 680.630 680.630 680.630 8.1E−04 680.634 124675 15821
ι̂ES(` = 2λ) 680.630 680.630 680.631 2.3E−03 680.643 122770 16603

g10 – ιES 7049.404 7064.109 7082.227 4.2E+01 7258.540 304066 86127
ι̂ES(` = λ) 7054.928 7952.319 7697.312 9.1E+02 10282.820 170499 76428
ι̂ES(` = 2λ) 7119.248 7545.843 7373.358 5.2E+01 8909.700 160202 64015

g11 – ιES 0.750 0.750 0.750 1.8E−15 0.750 47046 2968
ι̂ES(` = λ) 0.750 0.750 0.750 1.1E−16 0.750 39148 2469
ι̂ES(` = 2λ) 0.750 0.750 0.750 1.1E−16 0.750 39894 2493

g12 – ιES −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 19726 1462
ι̂ES(` = λ) −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 2742 598
ι̂ES(` = 2λ) −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 2536 477

g13 – ιES 0.053942 0.053942 0.111671 1.4E−01 0.438804 197606 117774
ι̂ES(` = λ) 0.053942 0.053942 0.18223 1.8E−01 0.438836 102921 31912
ι̂ES(` = 2λ) 0.053942 0.053942 0.20789 1.9E−01 0.438809 93012 13840

function g10 where only 18/30 and 26/30 feasible solutions are found for ` = 100
and 200 respectively. In general there is no improvement over using just the
simple nearest neighbor regression, i.e. 1-NN.

7 Summary

A new approach using surrogate models for global optimization has been pre-
sented and tested on some general nonlinear programming problems. A simple
heuristic is proposed where the surrogate model is said to be sufficiently accurate
if any improvement in the surrogate does not change the parent set {x′i;λ}µ

i=1 at
any given generation.

It is clear that the best surrogate model will depend on the properties of the
expensive model. For the sphere model the distance-weighted NN regression
model is more appropriate than a simple nearest-neighbor model. However,
for the general nonlinear programming problems the 1−NN model seems more
appropriate. The sampling methods also influence search performance. It was
found that expensive model evaluation of the best approximated points was the
best strategy for the sphere model. This is not necessarily the best strategy for
other surrogate and expensive models. The idea of using approximate ranking is,
however, equally applicable to other surrogate models and sampling strategies.
This and applications to real world problems will be the topic of future research.

References

1. J.-F. M. Barthelemy and R.T. Haftka. Approximation concepts for optimum
structural design – A review. Stuctural Optimization, 5:129–144, 1993.

2. Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing, 2003.

3. Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization
with approximate fitness functions. IEEE Transactions on Evolutionary Compu-
tation, 6(5), October 2002.

4. J. McNames. A fast neartest neighbor algorithm based on a principle axis search
tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9),
September 2001.

5. T. P. Runarsson. Reducing random fluctuations in mutative self-adaptation. In
Parallel Problem Solving from Nature VII (PPSN-2002), volume 2439 of LNCS,
pages 194–203, Granada, Spain, 2002. Springer Verlag.

6. T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294,
September 2000.

7. T. P. Runarsson and X. Yao. Search biases in constrained evolutionary optimiza-
tion. IEEE Transactions on System, Man, and Cybernetics: Part C, (to appear,
see http://www.hi.is/˜ tpr), 2004.

8. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New-York, 1995.
9. T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen. On the use of statistics

in design and the implications for deterministic computer experiments. In Design
Theory and Methodology - DTM’97, number DETC97/DTM-3881, Sacramento,
CA, 1997. ASME.

10. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

11. S. Yesilyurt and A. T. Patera. Surrogates for numerical simulations; optimization
of eddy-promoter heat exchangers. Comp. Methods Appl. Mech. Engr., 121:231–
257, 1995.

