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Abstract We analyze the constraints of gauge theories on
Kerr and Kerr-de Sitter spacetimes, which contain one or
more horizons. We find that the constraints are modified on
such backgrounds through the presence of additional surface
terms at the horizons. As a concrete example, we consider the
Maxwell field and find that the Gauss law constraint involves
surface corrections at the horizons. These surface contribu-
tions correspond to induced surface charges and currents on
the horizons, which agree with those found within the mem-
brane paradigm. The modification of the Gauss law constraint
also influences the gauge fixing and Dirac brackets of the the-
ory.

1 Introduction

The horizons of black holes are a profound consequence of
the General Theory of Relativity. Black holes present to the
universe a closed surface of finite size, completely charac-
terized by macroscopic parameters such as mass, charge and
spin [1]. Information about the internal structure of a black
hole is unobservable from the outside due to the presence
of the horizon, at least classically. The seminal discovery
by Hawking [2] that a black hole radiates like a black body
with a finite temperature, following Bekenstein’s suggestion
that a black hole possesses an entropy proportional to the
surface area of its horizon [3], implies the possibility that
a black hole has associated with it a very large number of
microscopic states. It is natural to think that these states are
in some way related to the degrees of freedom of the hori-
zon. This view has been strengthened in approaches that treat
fields on black hole backgrounds as those of manifolds with
boundaries. For gravity, this approach leads to a quantum
description in which an infinite set of observables are local-
ized on the boundary [4–7].
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There has been a resurgence of interest in studying the
behaviour of quantum fields near black hole horizons, moti-
vated by various paradoxes and puzzles related to the infor-
mation problem [8,9]. Based on the asymptotic symmetries
of fields on the null boundaries of conformally compacti-
fied flat spacetimes [10–15], there have been recent propos-
als for the existence of soft black hole hairs [16–20]. The
significance of the horizon is highlighted in the membrane
paradigm, where one replaces the black hole by a membrane
with certain classical properties at the stretched horizon,
i.e. a small distance outside the event horizon (an excellent
overview is provided by the collection of articles in [21]).
This is a sensible description from the perspective of an
external stationary observer, who finds that particles cannot
classically leave the interior of the black hole or reach the
horizon from the outside in finite time. Thus the classical or
semi-classical dynamics of fields on black hole backgrounds
may be studied by considering the bulk and the horizon, and
completely ignoring what happens in the interior of horizon.

Boundary conditions on the fields play a crucial role in
all these investigations. In most of these papers, though not
all of them, the fields (or their derivatives) are set to vanish
on the horizon. For many field theories, this is a convenient
way of ensuring that invariants constructed out of the stress
energy tensor remain finite at the horizon. For the Kerr black
hole spacetime, boundary conditions on the components of
electric and magnetic fields relate the charge and surface cur-
rents at the horizon [22–24]. These conditions allow for the
extraction of electromagnetic energy from Kerr black holes
through a magnetic Penrose process [25]. The boundary con-
ditions for gauge fields are special in that we can ensure the
finiteness of gauge invariant observables without necessarily
imposing the finiteness on the components of gauge fields.
In addition, assuming any particular values for gauge fields
is not particularly meaningful, as they are defined always up
to gauge transformations.

Gauge theories are characterized by the presence of redun-
dant degrees of freedom, which leads to the presence of con-
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straints. The formalism for studying the dynamics of con-
strained systems was discovered by Dirac [26] and indepen-
dently by Bergmann et al. [27,28], and has been applied to
numerous theories of interest over the years [29–31]. While
the formalism for constrained field theories set up by Dirac
generalizes to curved backgrounds [32], the more general for-
mulation in terms of shift and lapse variables was introduced
by Arnowitt et al. [33]. In particular, this formulation has
been used to understand the initial value problem of fields
theories [34], the behaviour of the fields near the horizons
of stationary black hole spacetimes [35], and its quantiza-
tion [36]. Until recently, a noticeable absence in the literature
involved the formulation of constrained theories on curved
backgrounds with horizons. The modification of constraints
due to spatial boundaries on flat backgrounds were inves-
tigated in [37,38], while in [39,40] the quantization of the
Chern–Simons theory on a disk and the role of boundaries on
the vacuum structure of the theory has been covered in detail.
It is the boundary conditions on gauge fields at the horizon
that concerns us in this paper. The point is that the value of a
gauge field at a boundary can be changed by a gauge trans-
formation. The only way to fix the boundary value of a gauge
field is to restrict to gauge transformations which vanish at
the boundary. However, there is no sensible reason to do that
when the said boundary is not a physical singularity, so it
is sufficient to keep the gauge transformations regular at the
horizon. We will find that this seemingly innocuous condi-
tion leads to a modification of the system of constraints when
a horizon is present.

The formulation of gauge theories on spherically symmet-
ric backgrounds with horizons was considered in [41], where
it was found that the constraints received contributions from
terms localized at the horizon. In particular, this is true for
the Gauss law constraint in electrodynamics, which now has
an additional contribution from the horizon. This resulted in
a vanishing charge for an observer situated at the horizon of a
Reissner–Nordström black hole, while not affecting the usual
charge observed by the oberver at infinity. In the present work
we investigate the classical constraints of electrodynamics in
Kerr spacetimes. We will find that like in the static spherically
symmetric case, the Gauss law constraint in the stationary
axisymmetric spacetime picks up a horizon term. While it is
an expected result, we think it was worthwhile to check that it
was not an artifact of spherical symmetry. Thus gauge trans-
formations which do not vanish on the horizon are allowed
for axisymmetric black hole spacetimes. We will also show
that the horizon term is equivalent to a ‘surface’ charge den-
sity on the horizon which is not visible to outside observers,
and that it induces a ‘surface’ current density on the horizon.

The organization of our paper is as follows. In Sect. 2,
we set up our notations and conventions for the analysis of
constraints on the Kerr background. In Sect. 3, we consider
Maxwell’s theory and explicitly derive the surface contribu-

tions to the constraint on the horizon. Gauge fixing is consid-
ered in both the radiation gauge and axial gauge. Finally in
Sect. 5, we discuss the physical consequences of our results.
This involves a modification of the usual solution for the elec-
tromagnetic scalar potential known in the absence of bound-
aries. The calculations behind certain results used in the main
body of the paper appear in three Appendices.

2 General algorithm

2.1 Kerr backgrounds

Here we consider the description of hypersurfaces for the
Kerr background which will be needed in our treatment of
constrained field theories. The spacetime, which may possess
one or more horizons (as in the Kerr–de Sitter case) admits
two Killing vector fields: a stationary ξa and an axial ωa ,
whose normalization we take to be

ξaξ
a = −λ2,

ωaωa = f 2. (2.1)

The orbits of ωa are taken to be closed, i.e. ωa is periodic.
The Killing vector fields mutually commute with each other,

[ξ, ω]a = ξb∇bω
a − ωb∇bξ

a = 0. (2.2)

Kerr backgrounds admit spatial hypersurfaces which are tan-
gent to ωa and orthogonal to the vector (but not Killing) field

χa = ξa + αωa, (2.3)

where α is defined through the contraction of the Killing
vectors

α = − 1

f 2 ξaω
a . (2.4)

We note that α in general is not a constant. It now follows
that this vector is timelike in the region where λ2 + α2 f 2 is
positive, since

χaχ
a = − β2 = − (λ2 + α2 f 2) (2.5)

Despite being a combination of Killing vectors, χa itself is
not Killing since

£χgcd = 2ω(c∇d)α. (2.6)

χa only coincides with the Killing vector on those surfaces
where β2 = 0 and α is a constant, i.e. on the horizons of the
spacetime [42]. Hence χa is timelike in the region outside the
event horizon of asymptotically flat backgrounds, or in the
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general case of black hole de Sitter backgrounds, between
the event horizon and the cosmological horizon.

It is straightforward to verify that χa satisfies the Frobe-
nius condition

χ[a∇bχc] = 0. (2.7)

Thus χa is a timelike vector which is orthogonal to some spa-
tial hypersurface �. Since χaωa = 0, these hypersurfaces
are also tangent to the Killing vector ωa . The projection oper-
ator on � is given by

hab = δab + β−2χaχb. (2.8)

We assume that the spacetime is ‘Kerr-like’, i.e., an orthonor-
mal basis on it is {β−1χa, f −1ωa, μa, νa}, where the unit
vectors {μa, νa} are orthogonal to both ξa and ωa (and it fol-
lows, to χa) and span an integral submanifold. Both the Kerr
and Kerr–de Sitter spacetimes fall in this category. Using this
basis, we can express the spatial projector given in Eq. (2.8)
as

hab = f −2ωaωb + μaμb + νaνb. (2.9)

The Killing horizons H are closed, axially symmetric sur-
faces, which are submanifolds of �. The induced metric on
H is given by

σab = hab − nanb, (2.10)

where na is the outward (inward) pointing unit spatial normal
to the inner (outer) horizon of the background, satisfying
nana = 1. Since the horizon is axially symmetric and ωa is
tangent to the hypersurface �, it also follows that naωa = 0.

Using hab we can now project any spacetime tensor onto the
spacelike hypersurface �. Denoting the covariant derivative
on the hypersurface by Da = hba∇b, we have the following
projection

Dat
c...e
b...d = ha

′
a h

b′
b h

c
c′ · · · hee′hd

′
d ∇a′T c′...e′

b′...d ′ , (2.11)

where T c...e
b...d is a spacetime tensor and tc...eb...d denotes its pro-

jection on the spacelike hypersurface.
The time coordinate is measured along χa and is constant

on the hypersurface �. In what follows we will consider the
time evolution vector to be along ξa . With this choice, αωa

and β represent what are known as the shift and lapse of
the time evolution vector. It is the lapse function β which
vanishes at the horizons.

2.2 Hamiltonian formulation

We will now briefly review the Hamiltonian formalism for
field theories on Kerr-like backgrounds. This will serve to

familiarize ourselves with the concepts and notations needed
to address constrained field theories. As mentioned above,
time evolution is taken to be along ξa . This ensures that the
fields evolve in time while the background on which they are
defined remains fixed. More specific to the Hamiltonian for-
malism, it ensures that Hamilton’s equations take their usual
form without any modification of the (covariant) definition
of the Poisson bracket. Thus for any field �A, we have

�̇A := £ξ�A = £χ�A − £αω�A. (2.12)

Here £v is the Lie derivative along the vector v, the index A
stands for a collection of all indices distinguishing the field,
including internal and Lorentz indices, and �A may be either
bosonic or fermionic.

The action functional for a field �A is given by the time
integral of the Lagrangian L , or equivalently the integral of
the Lagrangian density L over the four volume,

S[�A] =
∫

dt L ≡
∫

dt
∫

�

βdVx L(�A(x),∇a�A(x)),

(2.13)

where dVx is the volume element on � and L(�A(x),
∇a�A(x)) is the Lagrangian density. Denoting the space-
time volume element in the orthonormal basis by εabcd and
the spatial volume element of the hypersurface by (3)εbcd , we
have

χaεabcd = β (3)εbcd = ξaεabcd . (2.14)

Thus the projected volume element has the correct form even
though time evolution takes place along ξa while it is χa

which is orthogonal to �.

The canonically conjugate momenta �A are defined as

�A(�x, t) = δL

δ�̇A(�x, t) , (2.15)

where the functional derivative is an ‘equal-time’ derivative
evaluated on the hypersurface �,

δ�A(�x, t)
δ�B(�y, t) = δBA δ(x, y) = δ�̇A(�x, t)

δ�̇B(�y, t) . (2.16)

The δ(x, y) in Eq. (2.16) is a three-dimensional covariant
delta function on �, satisfying

∫

�

dVy δ(x, y) f (�y, t) = f (�x, t). (2.17)

We will sometimes write �x or even (�x, t) as x , etc. as we have
done above.
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The canonical Hamiltonian now follows from the Legen-
dre transform

HC =
∫

�

dVx (�A�̇A) − L . (2.18)

The Poisson bracket is defined on the hypersurface, which for
two functionals F(�A(x),�A(x)) andG(�A(x),�A(x))of
the fields and their momenta is defined as

[F,G]P =
∫

dVz

[
δF

δ�A(z)

δG

δ�A(z)
− δG

δ�A(z)

δF

δ�A(z)

]
.

(2.19)

This definition provides the canonical Poisson brackets
between the fields and their momenta, which follows from
setting F = �A(�x, t) and G = �B(�y, t)

[�A(�x, t),�B(�y, t)]P = δBAδ(x, y). (2.20)

The Poisson bracket of any function or functional of the fields
and momenta with the Hamiltonian provides its time evolu-
tion (this is justified in Appendix C)

Ḟ = [F, HC ]P . (2.21)

This Hamiltonian provides a complete description of the
dynamics of the system only if all the velocities are uniquely
mapped into momenta through Eq. (2.15). This of course is
not the case for constrained field theories. The constraints
and dynamics of such theories can be determined from the
Dirac–Bergmann formalism, which has been treated exten-
sively in many excellent textbooks and reviews [29–31]. In
this formalism, constraints are classified into two types, first
class and second class. Second class constraints can always
be eliminated by using Dirac brackets while first class con-
straints, apart from pathological counterexamples, generate
gauge transformations. All constrained field theories of inter-
est to us, at least in this paper, are thus gauge field theo-
ries. We will find that the constraints include non-vanishing
contributions from the fields on the horizon of the space-
time, thereby modifying the familiar constraints of theories
on backgrounds without boundaries.

In the following, we will demonstrate this by considering
the Maxwell field.

3 The Maxwell field

The action for the Maxwell field is given by

SEM =
∫

dV4(− 1
4 FabFcdg

acgbd), (3.1)

where dV4 is the four dimensional volume form on the man-
ifold � × R, and Fab = 2∂[a Ab]. From Eq. (2.12), we have

Ȧb ≡ £ξ Ab = £χ Ab − α£ωAb − (Aaω
a)∇bα

= χa Fab + ∇b(Aaξ
a) − αωa Fab. (3.2)

We now define the projected fields ea = −β−1χcFca , φ =
Aaξ

a and fab = Fcdhcah
d
b . Using these definitions and the

projection operator of Eq. (2.8) on the action in Eq. (3.1), we
find

SEM = −
∫

dt
∫

�

dVx
β

4
FabF

cd(hach
b
d − 2β−2χaχch

b
d

+ β−4χaχcχ
bχd)

=
∫

dt
∫

�

dVx β

[
1

2
eae

a − 1

4
fab f

ab
]

. (3.3)

The last term in the parenthesis in the first line of Eq. (3.3)
does not contribute due to the antisymmetry of Fab. We also
have the following projection of Eq. (3.2)

ȧb = − βeb + Dbφ + α fbaω
a . (3.4)

Substituting Eq. (3.4) in Eq. (3.3), we can write the projected
action as

SEM = −
∫

dt
∫

�

dVx
β

4
[ fab f ab + 2β−2(ȧa − Daφ

−α f abωb)(ȧa − Daφ − α facω
c)]. (3.5)

We note that since φ̇ is absent in the projected action, its
conjugate momentum is a constraint,

πφ = ∂LEM

∂φ̇
= 0. (3.6)

The momenta conjugate to the ab are given by

πb = ∂LEM

∂ ȧb
= −eb. (3.7)

The canonical Hamiltonian follows from the usual definition

HC =
∫

�

dVx (π
bȧb) − L

=
∫

�

dVx

[
β

(
1

2
πbπb + 1

4
fab f

ab
)

+ πbDbφ + απb fbaω
a
]
. (3.8)

The Hamiltonian comprises of the usual energy density along
with an energy current απb fbaωa due to the non-vanishing
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shift vector of the background. This is a known current which
has been found elsewhere in considerations of the Maxwell
field on foliated backgrounds involving a non-vanishing shift
vector [35,43]. By including the constraint of Eq. (3.6) to the
canonical Hamiltonian, a new Hamiltonian is defined,

H0 =
∫

�

dVx

[
β

(
1

2
πbπb + 1

4
fab f

ab
)

+ πbDbφ

+απb fbaω
a + vφπφ

]
, (3.9)

where vφ is an undetermined multiplier. The canonical Pois-
son brackets of Eq. (2.20) are in this case

[φ(x), πφ(y)]P = δ(x, y)

[aa(x), πb(y)]P = δbaδ(x, y). (3.10)

3.1 The Dirac–Bergmann formalism

We will now determine all additional constraints of the the-
ory and construct the unconstrained Hamiltonian through
the Dirac–Bergmann formalism. This requires the Poisson
brackets of the constraints with the Hamiltonian, which we
will always evaluate with the help of smearing functions. As
we will see, these smearing functions come from the same
space as the functions of gauge transformations, i.e. the dual
space of the space of the gauge generators [44]. Therefore
we will not assume that these smearing functions vanish at
the horizons, but only that they are regular there. We need
to check that the constraints of the theory are obeyed at all
times, or in other words, π̇φ ≈ 0. This is done using the
Poisson bracket between πφ and the Hamiltonian, and with
the help of a smearing function ε as follows,

∫

�

dVy ε(y)π̇φ(y)

=
∫

�

dVy ε(y)[πφ(y), H0]P

=
∫

�

dVy ε(y)

⎡
⎣πφ(y),

∫

�

dVx πb(x)Dx
bφ(x)

⎤
⎦

P

=
∮

∂�

day ε(y)nybπ
b(y) +

∫

�

dVy ε(y)(Dy
bπ

b(y)).

(3.11)

In deriving the above result we used the canonical Poisson
brackets given in Eq. (3.10) and an integration by parts. The
nb involved in the surface integral over the horizons of the
spacetime is the ‘unit normal’ to the surface of the horizon
satisfying nbnb = 1 and pointing into the region where χa

is timelike. We are particularly interested in the case where

∂� consists of an outer cosmological horizon and an inner
black hole horizon. Here and for the rest of the paper, we
have allowed the smearing functions and its derivatives to
be non-vanishing but regular at the horizons. Then by the
Schwarz inequality we have

∣∣∣nbπb
∣∣∣ ≤

√∣∣nbnb∣∣ ∣∣πbπb
∣∣. (3.12)

nbnb = 1 andπbπ
b = ebeb appears in the energy momentum

tensor (more precisely in invariant scalars such as T abTab),
and therefore may not diverge at the horizon. Thus when
the smearing function ε is regular at the horizon, the surface
integral provides a finite contribution from ∂�. Hence setting
the right hand side of Eq. (3.11) to weakly vanish produces
the constraint
∫

�

dVxε(x)�2(x) =
∫

�

dVxε(x)Dx
bπ

b(x)

+
∮

∂�

daxε(x)n
x
bπ

b(x) ≈ 0, (3.13)

In the absence of a surface integral, as for spacetimes without
boundaries, we would extract the smearing function ε(x) and
write the constraint as a weakly vanishing distribution on
�, with the understanding that manipulations involving the
constraint requires a smearing function and integration over
the volume. In the present case, we will express the constraint
appearing in Eq. (3.13) as

�2 = Dbπ
b + nbπ

b
∣∣∣H ≈ 0. (3.14)

The notation |H symbolizes that this term must be integrated
with respect to the area element at the horizons. In other
words, while the usual Gauss’ Law constraint holds for all
points of �, the additional surface contribution in Eq. (3.14)
must be considered for all points at the horizon ∂�. This is
a key result of our paper.

It is now straightforward to verify that �̇2 = [�2(x), H0]P
≈ 0, which reveals that there are no further constraints. Thus
the full Hamiltonian is given by

HT =
∫

�

dVx

[
β

(
1

4
fab f

ab + 1

2
πaπ

a
)

+ v1(Dbπ
b)

+ πbDbφ + απb fbaω
a + vφπφ

]

+
∫

∂�

v1nbπ
b. (3.15)
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The multipliers v1 and vφ may be determined by examining
the equations of motion. The evolution of φ is given by

∫

�

dVy ε(y)φ̇(y)

=
∫

�

dVy ε(y)[φ(y), HT ]P

=
∫

�

dVy ε(y)
∫

�

dVx vφ(x)[φ(y), πφ(x)]P

=
∫

�

dVy ε(y)vφ(y), (3.16)

which tells us that we can set φ̇ = vφ . The evolution of ab
can also be determined in a similar manner,

∫

�

dVy ε(y)ȧb(y) =
∫

�

dVy [ε(y)ab(y), HT ]P

=
∫

�

dVy ε(y)[β(y)πb(y) + Dy
bφ(y)

+ α fbaω
a − Dy

bv1(y)]. (3.17)

Comparing this with Eq. (3.4), we deduce that Dbv1 = 0.
With this choice, Eq. (3.17) produces

ȧb = βπb + Dbφ + α fbaω
a, (3.18)

and this can result by simply setting v1 = 0. While this choice
is not unique, we would always have v1�2 = πbDbv1 = 0.
Hence the total Hamiltonian takes the form

HT =
∫

�

dVx

[
β

(
1

4
fab f

ab + 1

2
πaπ

a
)

+ πbDbφ

+απb fbaω
a + φ̇πφ

]
. (3.19)

The two first class constraints generate gauge transforma-
tions on the fields. By evaluating the Poisson bracket of the
fields φ and ab with the general linear combination of the
constraints ρ = ε1π

φ + ε2�2, we find that

δφ(y) = [φ(y), ρ(x)]P = ε1(y)

δab(y) = [ab(y), ρ(x)]P = −Dy
bε2(y). (3.20)

The gauge transformations which leave the Lagrangian in
Eq. (3.1) invariant are δAb = ∇bε. By projecting this expres-
sion using Eq. (2.8) we have

δ(φ + αωaaa) = £χε, δab = Dbε. (3.21)

Eq. (3.20) is equivalent to Eq. (3.21), provided we identify
ε1(y) = £ξ ε(y) and ε2(y) = − ε(y). Without the horizon
term in the constraint, the gauge transformations will clearly
not have the usual form unless ε is assumed to vanish on the
horizon.

A remark regarding the Hamiltonian and its relation to
time in this space is in order. Even though the integral defining
the Hamiltonian in Eq. (3.19) is over � which is orthogonal
to χ , and not to the timelike Killing vector field ξ , the time
evolution generated by this Hamiltonian provides the correct
form of the Maxwell equations. This is shown in Appendix C.

3.2 Gauge fixing

We will look at this theory in two different gauges – the
radiation gauge and the axial gauge. In the radiation gauge
the full set of constraints are �i ≈ 0, with

�1 = πφ

�2 = Daπ
a + naπ

a
∣∣∣H

�3 = φ

�4 = Db(βab). (3.22)

The first two are the gauge constraints of the theory already
found in Eqs. (3.6) and (3.14), while �3 and �4 are the gauge-
fixing functions. We call this the radiation gauge because that
is what it reduces to in flat space. The full set of constraints
is second-class, requiring the construction of Dirac brackets.

The non-vanishing Poisson brackets of the constraints in
Eq. (3.22) are

[�1(x),�3(y)]P = − δ(x, y),

[�2(x),�4(y)]P = Da(βDaδ(x, y)). (3.23)

The first Poisson bracket is the canonical relation given
in Eq. (3.10). The second Poisson bracket is calculated as
follows.

⎡
⎣

∫

�

dVx η(x)�2(x),
∫

�

dVy ε(y)�4(y)

⎤
⎦

P

=
⎡
⎣

∫

�

dVx η(x)Dx
aπ

a(x) +
∮

∂�

η(x)nxaπ
a(x),

∫

�

dVy ε(y)Db
y(β(y)ab(y))

⎤
⎦

P

=
⎡
⎣

∫

�

dVx (Dx
aη(x))πa(x),

∫

�

dVy β(y)(Db
yε(y))ab(y)

⎤
⎦

P
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= −
∫

�

dVy β(y)(Dy
aη(y))

(
Da

yε(y)
)

=
∮

∂�

dayε(y)n
a
yβ(y)(Dy

aη(y))

+
∫

�

dVy ε(y)Da
y(β(y)Dy

aη(y)). (3.24)

By using Schwarz’s inequality on the surface term in the last
line above, we get

|naβDa(η)|2 ≤ ∣∣nana∣∣ β2
∣∣(Daη)(Daη)

∣∣
= β2(Daη)(Daη). (3.25)

Due to the presence of β2, the surface integral vanishes and
only the second term of Eq. (3.24) contributes. The Poisson
bracket in Eq. (3.24) can thus be written as
⎡
⎣

∫

�

dVx η(x)�2(x),
∫

�

dVy ε(y)�4(y)

⎤
⎦

P

=
∫

�

dVy ε(y)
∫

�

dVx η(x)[Da
y

(
β(y)Dy

aδ(x, y)
)],

(3.26)

which corresponds to the result given in Eq. (3.23). The
matrix of the Poisson brackets between these constraints have
a non-vanishing determinant and is invertible. This matrix,
Cαβ(x, y) = [�α(x),�β(y)]P , is given by

C(x, y) =

⎛
⎜⎜⎝

0 0 −δ(x, y) 0
0 0 0 Da(βDaδ(x, y))

δ(x, y) 0 0 0
0 −Da(βDaδ(x, y)) 0 0

⎞
⎟⎟⎠ .

(3.27)

The dynamics of the gauge fixed theory is determined
through Dirac brackets, whose definition requires the inverse
of the matrix given in Eq. (3.27). The Dirac brackets of the
theory for two dynamical entities A and B (which may be
functions or functionals on phase space) is defined as

[A, B]D = [A, B]P
−

∫

�

dVu

∫

�

dVv[A, �α(u)]PC−1
αβ (u, v)

[�β(v), B]P . (3.28)

Thus we need to find the inverse of the operator Da(βDa).
Let us formally write the inverse as G(x, y), i.e.

Da(βDaG(x, y)) = −δ(x, y), (3.29)

for some scalar function G (x, y). This is the time-
independent and axisymmetric Green’s function for the
spacetime Laplacian operator as can be easily verified by
projecting it on the hypersurface. Thus the inverse of the
matrix in Eq. (3.27), C−1

αβ (x, y), is now given by

C−1(x, y) =

⎛
⎜⎜⎝

0 0 δ(x, y) 0
0 0 0 G(x, y)

− δ(x, y) 0 0 0
0 −G(x, y) 0 0

⎞
⎟⎟⎠ .

(3.30)

Using Eq. (3.30) in Eq. (3.28) we find that the non-vanishing
Dirac brackets are

[aa(x), πb(y)]D = δ(x, y)δba − Dx
a (β(y)Db

yG(x, y)).

(3.31)

The Green function involved in Eq. (3.31) has a known
closed form expression outside the ergosphere on the Kerr
background [45]. For the electromagnetic field on the
Schwarzschild background, it is known that the Dirac bracket
in the radiation gauge reduces to the Poisson bracket when
either πb or aa is at the horizon [46]. This does not occur if
we use a modified radiation gauge which involves a surface
term at the horizon. Since expressions for the scalar Green
function valid up to the horizon of a Kerr black hole are not
known, such an analysis cannot be performed on axisym-
metric spacetimes. We will however further elaborate on the
implications of a radiation gauge with a surface term at the
horizons in the discussion section of this paper.

Given that our background is axisymmetric, we will
now further consider the axial gauge. Our consideration
of the axial gauge will generalize the treatment provided
in [30] about flat spacetime. We adopt the basis {φa, μa, νa}
described in Sect. 2 and will consider Eq. (2.9) in the follow-
ing equations. While it is possible to identify and select the
axial direction by an appropriate choice of coordinates in the
μ–ν plane, we will keep the choice of direction open for the
moment and give a prescription independent of that choice.
Let us fix a ‘generalized axial gauge’ by setting to zero the
component of aa along μa . We then have the following set
of constraints in this gauge [30]:

�1 = πφ

�2 = Dbπ
b + nbπ

b
∣∣∣H

�3 = μaaa

�4 = μaDaφ + βμaπa + αμa facω
c. (3.32)
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The constraints have the non-vanishing Poisson brackets

[�1(x),�4(y)]P = −μa(y)Dy
aδ(x, y)=[�4(x),�1(y)]P ,

[�2(x),�3(y)]P = μa(y)Dy
aδ(x, y) = [�3(x),�2(y)]P ,

[�3(x),�4(y)]P = β(y)δ(x, y). (3.33)

The bracket [�2(x),�4(y)]P vanishes because we have
assumed that there is no torsion,

⎡
⎣

∫

�

dVx η(x)�2(x),
∫

�

dVy ε(y)�4(y)

⎤
⎦

P

=
⎡
⎣

∫

�

dVx η(x)Dx
bπ

b(x) +
∮

∂�

dax η(x)nxbπ
b(x),

∫

�

dVy ε(y)(μaDaφ + βμaπa + αμa facω
c)(y)

⎤
⎦

P

=
∫

�

dVx Dx
a (η(x))Dx

b (α(x)ε(x)(μb(x)ωa(x)

− μa(x)ωb(x)))

+
∮

∂�

daxDx
a (η(x))nxb(α(x)ε(x)(μb(x)ωa(x)))

= −
∫

�

dVx α(x)ε(x)(μb(x)ωa(x)

− μa(x)ωb(x))Dx
bDx

a (η(x)) = 0. (3.34)

The Poisson brackets of (3.33) lead to the following matrix,

C(x, y) =

⎛
⎜⎜⎜⎝

0 0 0 −μa(y)Dy
aδ(x, y)

0 0 μa(y)Dy
aδ(x, y) 0

0 μa(y)Dy
aδ(x, y) 0 β(y)δ(x, y)

− μa(y)Dy
aδ(x, y) 0 −β(y)δ(x, y) 0

⎞
⎟⎟⎟⎠ . (3.35)

The inverse of this matrix is needed for the Dirac brackets.
Let us write it as

C−1(x, y) =

⎛
⎜⎜⎝

0 −p(x, y) 0 q(x, y)
p(x, y) 0 −q(x, y) 0

0 −q(x, y) 0 0
q(x, y) 0 0 0

⎞
⎟⎟⎠ ,

(3.36)

where p(x, y) and q(x, y) are two functions which may be
found by evaluating

∫
dVzC(x, z)C−1(z, y) = δ(x, y). We

find that these functions must satisfy

μa(y)Dy
aq(x, y) = − δ(x, y) (3.37)

μa(y)Dy
a p(x, y) = − β(y)q(x, y) (3.38)

The expressions for p and q on the asymptotically flat
Kerr background in Boyer–Lindquist coordinates are derived
in Appendix B. Since Eq. (3.37) and Eq. (3.38) involve first
order differential equations, their solutions will also exist on
other Kerr-like backgrounds. Using the matrix of Eq. (3.36)
and the constraints given in Eq. (3.32), we derive the follow-
ing non-vanishing Dirac brackets for the fields,

[φ(x), ab(y)]D
= μb(y)β(y)q(x, y) + Dy

b p(x, y), (3.39)

[φ(x), πb(y)]D
= Dy

a (α(y)q(x, y)(μa(y)ωb(y) − μb(y)ωa(y)))

+ nyaα(y)q(x, y)(μa(y)ωb(y))|H, (3.40)

[ab(x), πc(y)]D
= δcbδ(x, y) + μc(y)Dy

bq(x, y). (3.41)

The Dirac bracket in Eq. (3.40), which also involves contri-
butions from the horizons of the spacetime, is not present in
flat space results involving the axial gauge. It appears here
due to the non-vanishing shift vector of the Kerr background.
The derivation of the bracket is provided in Appendix A.

Use of Dirac brackets ensures that all brackets involv-
ing μaaa , or the other constraints in Eq. (3.32), identically
vanish. The Hamiltonian in Eq. (3.19) becomes, after the
constraints of Eq. (3.32) have been imposed,

HT =
∫

�

dVx

[
β

(
1

4
fab f

ab+1

2
( f −2ωaωb+νaνb)πaπ

b
)

+ ( f −2ωaωb + νaνb)π
bDaφ

−1

2
βμaπaμ

bπb + ανbν
cπb fcaω

a
]

. (3.42)

4 Charges and currents

The modification of Gauss law by horizon terms has inter-
esting consequences – in particular, it ties in nicely with the
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membrane paradigm as we shall see below. The electric and
magnetic fields appearing in the analysis of constraints are
in general from external sources, we do not assume that they
share the symmetries of the background. We first note that
Maxwell’s equations resulting from the Hamiltonian, derived
in Appendix C, are given by

£χπb = Da(β f ab)+αωb
(
Daπ

a+naπ
a
∣∣∣H

)
≈ Da(β f ab),

(4.1)

£χ fab = 2D[aβπb]. (4.2)

The equations of motion involve a term proportional to the
Gauss law constraint, which does not affect the dynamics
of πb since the constraint vanishes weakly. This is noth-
ing unusual, Hamiltonian equations of motion hold up to
constraints. Thus we find that for electromagnetism in black
hole spacetimes, while the Gauss law constraint is modified
by surface terms at the horizons, the dynamical Maxwell
equations are not. The Gauss law constraint can be used to
determine the charge contained in a given region of the space-
time. By considering a region from the black hole horizon H
to an outer (spacelike) boundary ∂�B , we have

QB =
∫

�B

dVx �2(x)

=
∫

�B

dVx Dx
bπ

b(x) +
∮

H
dax n

x
bπ

b(x)

= −
∮

∂�B

dax n
x
bπ

b(x) −
∮

H
dax n

x
bπ

b(x)

+
∮

H
dax n

x
bπ

b(x) = −
∮

∂�B

dax n
x
bπ

b(x). (4.3)

We have introduced the notation
∮

to indicate any surface

integral which arises from the horizon term in the Gauss law
constraint. The surface integrals have their usual meaning and
the notation is merely used to keep track of contributions from
the surface terms in Gauss law. We see that for an observer
outside the horizon, the enclosed charge is determined by the
usual expression of the electric flux across ∂�B . The surface
term in the Gauss law constraint only contributes a surface
integral at H and does not provide a term at ∂�B . However,
now let us shrink the surface to the horizon, ∂�B → H. If
we do the same calculation now, we will get an additional
contribution

∮
Hdax nxbπ

b(x) from the surface term in the
Gauss law constraint, resulting in a vanishing charge at the
black hole horizon

QH = 0. (4.4)

Thus the non-vanishing electric flux outside the horizon is
seen to vanish by an observer at the horizon. Clearly it is the
surface term in the constraint which causes the total charge
to vanish for an observer on the horizon. This suggests that
the surface term contribution in the Gauss law constraint
corresponds to an induced charge on the horizon of the black
hole. We can define the induced surface charge density σ at
the black hole horizon by

nxbπ
b(x)

∣∣∣H = σ(x)
∣∣∣H. (4.5)

As the spacetime is rotating, we can also identify a surface
current density on the horizon. Contracting Eq. (4.1) with the
unit normal at the horizon, we find

£χσ = Da(β f abnb). (4.6)

This equation represents the expression for charge conserva-
tion on Kerr spacetimes

£χσ + Da j
a = 0, (4.7)

provided we have

βna f
ab = jb, (4.8)

as the induced current on the black hole horizon. Since
the current is parallel to the horizon, Da ja is the two-
dimensional divergence on the surface of the horizon. If we
define the magnetic field Bc as

β f ab = − εabcBc, (4.9)

then Eq. (4.8) is satisfied given the following expression for
the parallel components of the magnetic field Ba‖

Ba‖
∣∣∣H = εabc jbnc

∣∣∣H (4.10)

The above treatment extends to backgrounds with an outer
cosmological horizon. In this case, by integrating the Gauss
law over the entire hypersurface, whose inner boundary is
the black hole horizon H1 and outer boundary is the cosmo-
logical horizon H2, we have

Q =
∫

�

dVx �2(x)

=
∫

�

dVx Dx
bπ

b(x) +
∮

H
dax n

x
bπ

b(x)
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= −
∮

H2

dax n
x
bπ

b(x)−
∮

H1

dax n
x
bπ

b(x)+
∮

H2

dax n
x
bπ

b(x)

+
∮

H1

dax n
x
bπ

b(x) = 0. (4.11)

The surface charge density in Eq. (4.5) and surface current
density in Eq. (4.10) can now be defined on both H1 and H2.
We hence have the following situation. The Gauss law con-
straint on backgrounds with horizons is modified by surface
terms at the horizons of the spacetime, which can be iden-
tified with induced surface charge densities defined locally
on these horizons. These induced charges lead to a vanish-
ing electric flux at the horizons and is related to the nor-
mal component of the electric field. On the other hand from
Maxwell’s equations, we can also determine induced surface
current densities on the horizons of Kerr spacetimes. These
current densities are related to parallel components of the
magnetic field on the horizons.

The induced charges and currents that we find on black
hole horizons have been introduced before in the literature.
It was noted in [47] that when an electric charge is lowered
into a Schwarzschild black hole, the electric flux lines ter-
minate on the horizon. This required the introduction of an
induced surface charge density on the horizon, and the elec-
tric potential was calculated as the superposition of that due
to the external charge and that due to the induced charge.
This result was generalized to describe an induced surface
current density on the horizon of a rotating black holes in an
asymptotically flat spacetime in [22,23]. The induced sur-
face charges and currents can be described within the mem-
brane paradigm as conditions on the electromagnetic fields
on the membrane [21,35] as well as through a surface action
for the electromagnetic field on the membrane [48]. The
induced charges and currents on the horizon help describe the
Blandford-Znajek mechanism [25], a magnetic Penrose pro-
cess which provides a model for the source of pulsars, quasars
and active galactic nuclei [49,50]. Our result demonstrates
that induced charges and currents on the horizon arise natu-
rally as part of the general Gauss law constraint on black hole
backgrounds. In the membrane paradigm, the induced charge
density on the horizon appears as a consequence of boundary
conditions . The vanishing electric flux at the horizons, fol-
lowing our treatment, could provide a means to investigate
soft limits and their relation to gauge parameters at the hori-
zon. In this regard, we note the proposal in [16], where soft
hairs were defined as charges on the future horizon of the
black hole, considered as a ‘holographic plate’, which are
associated with non-vanishing large gauge transformations
on the horizon. It will be interesting to investigate if such
charges also result for the quantized electromagnetic field

as a consequence of gauge parameters and constraints at the
horizons.

5 Discussion

In this paper we have considered the constrained dynamics of
field theories on Kerr backgrounds with one or more horizons
and have argued that the constraints of the theory will receive
additional contributions from these horizons. We explicitly
considered the example of the Maxwell field, and found that
the Gauss law constraint must include contributions from
the horizon(s). Such surface contributions will not arise on
spacelike surfaces of the background, but they appear on hori-
zons in part due to our inability to observe past the horizon,
as well as the fact that gauge fields can in principle take on
arbitrary values at the horizon provided gauge invariant quan-
tities constructed from them remain finite. More precisely,
the non-vanishing of gauge parameters and their derivatives
at the horizons leads to a Gauss law constraint with surface
contributions.

A Gauss law constraint with horizon corrections implies
some novel consequences on our understanding of the elec-
tromagnetic field, and more generally of gauge field theories,
on black hole spacetimes. Let us briefly note the new results
in this paper and how they relate with known results in the lit-
erature. Firstly, for gauge fields on spacetimes with horizons,
existing literature sets gauge parameters or their derivatives
to vanish on the horizon exactly as on spatial boundaries.
Then the Gauss law constraint involves no surface contri-
bution. A recent alternative approach introduces, at spatial
boundaries, additional dynamical fields whose transforma-
tions cancel the surface contributions resulting from gauge
transformations [51,52]. What we find, by not fixing the
gauge parameters to vanish at a horizon, is that we can choose
more general boundary conditions which allow not only hori-
zon terms in the Gauss law constraint but also gauge fixing
conditions which involve additional contributions from the
horizon. As we discuss below, these terms could help explore
the physical degrees of freedom at the Killing horizons.

A second novel result we have found is that the horizon
contribution to the Gauss law leads to a vanishing electric flux
across the horizon. Thus the horizon term can be interpreted
as an induced ‘surface’ charge density at the horizon which
in turn induces a surface current at the horizon. Previous
work based on the membrane paradigm had postulated the
existence of such a surface charge and surface current [23,
47]. We found that the same charge and current appears on
the horizon as a consequence of the modification of Gauss
law brought about by our choice to allow gauge parameters
to not vanish on the horizon.

While some of the results in this paper are similar to those
previously presented by some of us for spherically symmet-
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ric black hole spacetimes [41], the class of Kerr spacetimes
considered in this paper lead to some interesting new results.
The spatial hypersurfaces on which we have integrated the
Hamiltonian density cannot be taken to be orthogonal to the
timelike Killing vector field, but are orthogonal to a timelike
vector field which coincides with the Killing field only at
the horizons. Thus it is not a priori obvious that the uncon-
strained Hamiltonian would generate time evolution, but we
have shown in Appendix C that this Hamiltonian does indeed
produce Maxwell equations modulo first class constraints.
Another key difference involves the implications of the Gauss
law constraint on currents at Killing horizons. As we men-
tioned in the previous section, the surface terms in the Gauss
law constraint can be directly associated with surface charges
and currents postulated previously in the literature. A third
difference is that there are many more gauge choices compat-
ible with the symmetries of the Kerr-type background than
for the spherically symmetric case. This also implies that sur-
face terms in the gauge fixed theory are more general than
those on spherically symmetric spacetimes, which we will
now describe.

Some consequences of the modified Gauss law constraint
can be determined by gauge fixing the theory. In Sect. (3) we
considered two gauges – the radiation gauge and the axial
gauge. For the radiation gauge considered in Eq. (3.22), we
chose the covariant generalization of the gauge adopted in
flat space. Unsurprisingly, the Dirac brackets for aa and πb

in Eq. (3.31) are the covariant generalizations of the flat space
result, involving the Green function of the spacetime Lapla-
cian operator. As we noted in our treatment of this gauge
however, it would be useful to include additional surface
terms at the horizons. To see this, let us now consider the
following gauge fixing function

�4 = Db(β−1ab) + β−1nbab|H, (5.1)

in place of the expression in Eq. (3.22), with �3 as given.
Unlike �4 in Eq. (3.22), this gauge function involves addi-
tional terms at the horizons. The time derivative of �4 gives

�̇4 = Daπ
a + naπa

∣∣∣H = �2 ≈ 0 (5.2)

Thus this constraint is a consistent choice. Proceeding as
before, we now find that the bracket of [�2(x),�4(y)] is
given by

[�2(x),�4(y)]P = Dx
a (β

−1(x)Da
x δ(x, y))

+β−1(x)nxaDx
aδ(x, y)|H. (5.3)

From the Schwarz inequality, it follows that the surface term
in Eq. (5.3) does not vanish. The resulting Dirac bracket
will require the Green function for the operator involved in
Eq. (5.3), which has a non-trivial surface contribution. This

Green function and its derivatives do not vanish at the hori-
zons. Hence the horizons will affect the Dirac brackets and
the dynamics of the theory.

A related point concerns the expression for the scalar
potential φ following the axial gauge of Eq. (3.32)

Db( f
−2ωbωaπ

a + νbνaπ
a) + [nbνbνaπa]|H

= Db(β
−1μbμa(Daφ + α facω

c))

+ β−1nbμ
bμa(Daφ + α facω

c)|H, (5.4)

where we made use of Eq. (2.9). From Eq. (5.4) it also fol-
lows that φ depends non-trivially on πb at the horizon. Thus
in general, the horizon correction in the Gauss law constraint
will manifest in the dependent variables of the theory follow-
ing gauge fixing.

Another implication of the Gauss law constraint involves
the charges and currents on Kerr spacetimes. We noted in
Sect. 4 that the horizon correction in the Gauss law can be
identified with the induced surface charge on the horizon
of a black hole. This term was considered previously in the
literature through boundary conditions on the normal com-
ponent of the electric field. In addition, Maxwell’s equations
further imply an induced surface current as a consequence
of the induced surface charge, which is related to compo-
nents of the magnetic field parallel to the horizon. Thus cor-
rections to the Gauss law constraint resulting from Killing
horizons of the background lead to a natural identification
of an induced surface charge and induced surface current in
Eqs. (4.5) and (4.10) respectively. The induced surface charge
in particular implies the vanishing of electric flux lines on
the horizon. Non-vanishing gauge parameters are associated
with soft charges at null infinity on asymptotically flat space-
times [13]. It will be interesting to consider if the classically
vanishing electric flux at Killing horizons, which arises as a
consequence of non-vanishing gauge parameters following
our treatment, is also related to a description of soft hairs on
Killing horizons in the quantized theory [16].

Finally, we note that the BRST formalism provides an
interesting and powerful means to investigate quantized fields
in the Hamiltonian framework. Following our analysis in this
paper and in [41], it can be argued that the BRST charge oper-
ator will involve the additional surface terms contained in
the constraints. Thus the physical states defined by the coho-
mology of the BRST charge will have to satisfy non-trivial
conditions on the horizon. Within the BRST formalism, we
can expect that the surface corrections in the BRST charge
and gauge-fixing fermion will affect the path integral and
resulting quantum theory. The exploration of these issues lie
outside the scope of the present work. We have recently con-
sidered some of these questions in the case of spherically
symmetric spacetimes elsewhere [53]. We leave the investi-
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gation on axisymmetric spacetimes and physical states at the
horizon for future work.
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Appendix A: Derivation of the Dirac bracket
[φ(x), π b( y)]D

The second Dirac bracket provided in Eq. (3.41) is given by

[φ(x), πb(y)]D
= Dy

a (α(y)q(x, y)(μa(y)ωb(y) − μb(y)ωa(y)))

+ nyaα(y)q(x, y)(μa(y)ωb(y))|H (A1)

Here we provide its derivation to elaborate on the surface
term. From Eq. (3.28) we have
[
φ(x), πb(y)

]
D

= −
∫

�

dVu

∫

�

dVv[φ(x), �α(u)]P

C−1
αβ (u, v) [�β(v), πb(y)]P . (A2)

where we made use of the fact that [φ(x), πb(y)]P = 0. The
expression in Eq. (A2) simplifies to

[φ(x), πb(y)]D = −
∫

�

dVu

∫

�

dVv[φ(x), �1(u)]P

C−1
14 (u, v) [�4(v), πb(y)]P . (A3)

Equations (3.32) and (3.36) can now be used to find the
expression

[
φ(x), πb(y)

]
D

= −
∫

�

dVuδ(x, u)q(u, v)

∫

�

dVvα(v)(μa(v)ωb(v)

− μb(v)ωa(v))Dv
aδ(v, y)

= −
∫

�

dVv q(x, v)α(v)(μa(v)ωb(v)

− μb(v)ωa(v))Dv
aδ(v, y)

=
∮

∂�

dav δ(v, y)nv
aq(x, v)α(v)(μa(v)ωb(v))

+
∫

�

dVvδ(v, y)Dv
a( q(x, v)α(v)(μa(v)ωb(v)

− μb(v)ωa(v))). (A4)

We made use of naωa = 0 in the last equality of Eq. (A4).
Recalling that the brackets are in fact densities which need
to be integrated over the hypersurface for both x and y, we
can express the result of Eq. (A4) as Eq. (A1).

Appendix B: Axial gauge functions in Boyer–Lindquist
coordinates

We will now explicitly derive the functions q(x, y) and
p(x, y) which appear in Eqs. (3.37) and (3.38) respectively.
This will determine the inverse matrix given in Eq. (3.36)
required to describe the Dirac brackets in the axial gauge.
The Maxwell field is assumed to be defined on the Kerr back-
ground, for which we will adopt the usual Boyer–Lindquist
coordinates (t, r, θ, φ)

ds2
BL = −

(
� − a2sin2θ

ρ2

)
dt2

+ 2 a sin2θ

ρ2

(
� − r2 − a2

)
dtdφ

+ sin2θ

ρ2

(
(r2 + a2)2 − �a2sin2θ

)
dφ2

+ ρ2

�
dr2 + ρ2dθ2, (B1)

where

� = r2 − 2Mr + a2, ρ2 = r2 + a2cos2θ, (B2)

with M being the mass of the black hole and a the angular
momentum per unit mass. In these coordinates the r−θ plane
comprise the integral 2-submanifold orthogonal to both t and
φ. Here we will explicitly derive the functions q(x, y) and
p(x, y) corresponding to the axial gauge discussed in Sect. 3,
for the choices μa = (∂θ )

a and νa = (∂r )
a , i.e., for the gauge

choice aθ = 0. From the inverse metric in Boyer–Lindquist
coordinates, we have

(∂r )
a =

(
0,

√
�

ρ
, 0, 0

)
, (∂θ )

a =
(

0, 0, ρ−1, 0
)

.

(B3)

Likewise, the metric components of Eq. (B1) provide the
following definitions
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λ2 = −� − a2sin2θ

ρ2

α f 2 = −a sin2θ

ρ2

(
� − r2 − a2

)

f 2 = sin2θ

ρ2

(
(r2 + a2)2 − �a2sin2θ

)
, (B4)

as well as the following expressions for β and
√
h

β =
√

−(λ2 + α2 f 2)

=
(

1 + 4Mr
(
a2 + r2

)
�

(
a2 cos(2θ) + a2 + 2r2

)
)− 1

2

√
h = fρ2

√
�

(B5)

Since Eq. (3.37) involves a delta function source, it will be
convenient to first re-express it in terms of a second-order
differential equation. Eq. (3.37) can be explicitly rewritten
as

1

ρ(r ′, θ ′)
∂θ ′(∂θ ′l(�r , �r ′))

= − 1√
h(r ′, θ ′)

δ(r − r ′)δ(θ − θ ′)δ(φ − φ′), (B6)

where we have chosen q(�r , �r ′) = ∂θ ′l(�r , �r ′) and have con-
sidered the source at a fixed point �r . We now assume the
following ansatz

l(�r , �r ′) = l(r, θ, θ ′)δ(r − r ′)δ(φ − φ′), (B7)

which simplifies Eq. (B6) to

δ(r − r ′) 1

ρ(r ′, θ ′)
∂θ ′(∂θ ′l(r, θ, θ ′))

= − 1√
h(r ′, θ ′)

δ(r − r ′)δ(θ − θ ′), (B8)

The solution for l(r, θ, θ ′) follows by first considering the
homogeneous equation ∂θ ′(∂θ ′ R(r, θ, θ ′)) = 0, whose gen-
eral solution is

R(r, θ, θ ′) = C1(r, θ) + C2(r, θ)θ ′ (B9)

Requiring the solution for l(r, θ, θ ′) to match across the point
�r = �r ′, we can write the following general solution

l(r, θ, θ ′) = C(r, θ)θ ′ (θ ′ < θ)

= C(r, θ)θ (θ ′ > θ), (B10)

where C(r, θ) is a constant whose expression will be deter-
mined by substituting Eq. (B10) in Eq. (B8). Integrating φ′
and r ′ over their respective ranges, and θ ′ from θ − ε to

θ +ε (for an infinitessimal angle ε), we find that the constant
C(r, θ) is given by

C(r, θ) =
√

�(r, θ)

f (r, θ)ρ(r, θ)
, (B11)

where f , � and ρ were defined in Eq. (B4) and Eq. (B2).
With Eq. (B10), we now have the following general solution

l(�r , �r ′) = δ(r − r ′)δ(φ − φ′)
√

�(r, θ)

( f (r, θ)ρ(r, θ))−1 θ ′ (θ ′ < θ)

= δ(r − r ′)δ(φ − φ′)
√

�(r, θ)

( f (r, θ)ρ(r, θ))−1 θ (θ ′ > θ). (B12)

Differentiating this solution with respect to θ ′ gives

q(�r , �r ′) =
√

�(r, θ)

f (r, θ)ρ(r, θ)
�

(
θ − θ ′) δ(r − r ′)δ(φ − φ′),

(B13)

where �
(
θ − θ ′) is just the ordinary Heaviside step function.

To derive the solution for p(x, y), we differentiate Eq. (3.38)
and use Eq. (3.37) to find

μa(y)Dy
a

(
β−1(y)μb(y)Dy

b p(x, y)
)

= δ(x, y). (B14)

This equation can be solved using the procedure given above.
In the case of μa = (∂θ )

a , Eq. (B14) becomes

1

ρ(r ′, θ ′)
∂θ ′

(
β−1(r ′, θ ′) 1

ρ(r ′, θ ′)
∂θ ′ p(�r , �r ′)

)

= 1√
h(r ′, θ ′)

δ(r − r ′)δ(θ − θ ′)δ(φ − φ′), (B15)

whose solution is given by

p(�r , �r ′) = �(r, θ)

f (r, θ)ρ(r, θ)

F
(
|θ − θ ′|

∣∣∣ a2�
(a2+r2)2

)

(a2 + r2)
δ(r−r ′)δ(φ−φ′),

(B16)

where F
(
x
∣∣k2

)
(with k2 independent of x) is the elliptic inte-

gral of the first kind. If we consider Eq. (3.37) and Eq. (3.38)
in flat spacetime, the solution for q(x, y) involves the Heav-
iside step function and the solution of p(x, y) involves the
absolute value function, whose argument is the coordinate
chosen in the axial gauge [30].The solutions for q(x, y)
in Eq. (B13) and p(x, y) in Eq. (B16) are generalizations
of these known solutions on the Kerr background. They
can be substituted in Eq. (3.39), Eq. (3.40) and Eq. (3.41)
to describe the Dirac brackets of the Maxwell field in the
axial gauge. In the flat space limit a, M → 0, we find
�,ρ2 → r2, f → r sin θ, and it follows that q(x, y) and
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p(x, y) also agree with the corresponding flat space solu-
tions.

APPENDIX C: Maxwell equations

Since the Hamiltonian H involves an integral over the hyper-
surface � which is orthogonal to χ, it is not obvious that it
does generate time evolutions along ξ , as indicated in 3. As a
consistency check, we will here demonstrate that Maxwell’s
equations resulting from the Lagrangian also follow from
the Hamiltonian if we set the time evolution generated by
the Hamiltonian to be along ξ . By projecting ∇a Fab = 0
with Eq. (2.8), one can find the following projected Maxwell
equations

£χeb = −Da(β f ab) (C1)

£χ fab = −2D[aβeb]. (C2)

Turning our attention now to the Hamiltonian of Eq. (3.19),
we find the following expressions upon evaluating the Pois-
son brackets

π̇b = [πb, HT ] = Da(β f ab) + Da(α(πaωb − πbωa))

+ αnaπ
aωb

∣∣∣H , (C3)

ḟab = [ fab, HT ] = 2D[aβπb] + 2D[a(α fb]cωc). (C4)

It will be useful to note that since χaωa = 0, ωc∇c = ωcDc

on any function or tensor. Also from contracting Eq. (2.6), we
see that £ωα = 0. Thus, £αω of any spatially projected quan-
tity can be written entirely in terms of the spatially projected
covariant derivative. Let us first consider £αω fab

£αω fab = αωcDc fab + facDb(αωc) + fcbDa(αωc)

= 2αωcD[b fa]c + facDb(αωc) + fcbDa(αωc)

= −2D[a(α fb]cωc), (C5)

where we made use of the Bianchi identity D[c fab] = 0
in going from the first equality to the second equality of
Eq. (C5). Likewise, we find for £αωπb

£αωπb = αωcDcπ
b − πcDcαωb

= Dc(α(ωcπb − πcωb)) − αωbDcπ
c. (C6)

In going from the first equality to the final equation of
Eq. (C6), we used the property that ωc is Killing. Substi-
tuting Eq. (C5) in Eqs. (C4) and (C6) in Eq. (C3), we find

£χπb = Da(β f ab)+ αωb
(
Daπ

a + naπ
a
∣∣∣H

)
≈Da(β f ab),

(C7)

£χ fab = 2D[aβπb]. (C8)

Substituting Eq. (3.7) in the above expressions, we get the
projected Maxwell equations given in Eqs. (C1) and (C2).
The derivation here should be contrasted with the analogous
derivation on spherically symmetric backgrounds, where the
time evolution vector is both Killing and orthogonal to the
hypersurface. Thus, the foliation and time evolution as pre-
sented in this paper is consistent with the covariant Maxwell
equations.
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