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Constrained Gaussian Mixture Model Framework

for Automatic Segmentation of MR Brain Images
Hayit Greenspan Amit Ruf and Jacob Goldberger

Abstract— An automated algorithm for tissue segmentation
of noisy, low contrast magnetic resonance (MR) images of the
brain is presented. A mixture model composed of a large number
of Gaussians is used to represent the brain image. Each tissue
is represented by a large number of Gaussian components to
capture the complex tissue spatial layout. The intensity of a
tissue is considered a global feature and is incorporated into the
model through tying of all the related Gaussian parameters. The
Expectation-Maximization (EM) algorithm is utilized to learn
the parameter-tied, constrained Gaussian mixture model. An
elaborate initialization scheme is suggested to link the set of
Gaussians per tissue type, such that each Gaussian in the set
has similar intensity characteristics with minimal overlapping
spatial supports. Segmentation of the brain image is achieved by
the affiliation of each voxel to the component of the model that
maximized the a-posteriori probability. The presented algorithm
is used to segment 3D, T1-weighted, simulated and real MR
images of the brain into three different tissues, under varying
noise conditions. Results are compared with state-of-the-art
algorithms in the literature. The algorithm does not use an atlas
for initialization or parameter learning. Registration processes
are therefore not required and the applicability of the framework
can be extended to diseased brains and neonatal brains.

Index Terms— Image segmentation, MRI brain segmentation,
Mixture of Gaussians, GMM, EM, Constrained model

I. INTRODUCTION

Automatic segmentation of brain MR images to the three

main tissue types: white matter (WM), gray matter (GM)

and cerebro-spinal fluid (CSF), is a topic of great importance

and much research. It is known that volumetric analysis of

different parts of the brain is useful in assessing the progress

or remission of various diseases, such as Alzheimer’s disease,

epilepsy, sclerosis and schizophrenia [21].

A variety of segmentation schemes exist in the literature.

As it is very difficult to estimate automatic or semi-automatic

segmentation results against an in-vivo brain, manual segmen-

tation by experts is still considered to be the “gold standard”

or “ground truth” for any automated algorithm. However,

manual partitioning of large amounts of low-contrast/low-

SNR brain data is strenuous work and is prone to large

intra- and inter-observer variability. Fully automated intensity-

based algorithms, on the other hand, exhibit high sensitivity

to various noise artifacts, such as intra-tissue noise, inter-

tissue intensity contrast reduction, partial-volume effects and
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others [16]. Reviews on methods for brain image segmentation

(e.g.,[21]) present the degradation in the quality of segmen-

tation algorithms due to such noise, and recent publications

can be found addressing various aspects of these concerns

(e.g. partial-volume effect quantification [7]). Due to the arti-

facts present, classical voxel-wise intensity-based classification

methods, such as K-means modeling and Mixture of Gaussians

modeling (e.g., [25],[11] ), may give unrealistic results, with

tissue class regions appearing granular, fragmented, or violat-

ing anatomical constraints.

Incorporating spatial information via a statistical atlas pro-

vides a means for improving the segmentation results (e.g.

[22], [13], [18]). The statistical atlas provides the prior prob-

ability for each pixel to originate from a particular tissue

class. Algorithms that are based on the maximum-a-posteriori

(MAP) criterion utilize the atlas information in the algorithm

iterations to augment the information in the presence of noisy

data. Co-registration of the input image and the atlas, a

computationally intensive procedure, is critical in this scenario

[23]. It is important to note that the quality of the registration

result is strongly dependent on the physiological variability

of the may converge to an erroneous result in the case of a

diseased or severely damaged brain. Moreover, the registration

process is applicable only to complete volumes. A single slice

cannot be registered to the atlas, thus, cannot be segmented

using these state-of-the-art algorithms.

An additional conventional method to improve segmentation

smoothness and immunity to noise is to model neighboring

voxels interactions using a Markov Random Field (MRF)

statistical spatial model [13], [27], [9]. Smoother structures

are obtained in the presence of moderate noise as long as

the MRF parameters controlling the strength of the spatial

interactions are properly selected. Too high a setting can result

in an excessively smooth segmentation and a loss of important

structural details [15]. In addition, MRF-based algorithms

are computationally intractable unless some approximation is

used which still requires computationally intensive algorithms.

Algorithms that use deformable models to incorporate tissue

boundary information [19] imply inherent smoothness but

require careful initialization and precisely calibrated model pa-

rameters in order to provide consistent results in the presence

of a noisy environment. Several works can be found in the

literature, such as fuzzy connectedness segmentation methods,

that attempt to provide an alternative to the MRF modeling

(e.g. [20], [26]. In [26], as in many other works, there still

seems to be a need for a large number of parameters for the

task.

The objectives of the current work are threefold: 1) incorpo-
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Fig. 1. Schematic description of the CGMM segmentation framework

rate spatial information within a statistically-based model in a

simple and intuitive way, for both localization and smoothing;

2) achieve robust segmentation on real data along with strong

resistance to noise, and 3) achieve accurate segmentation even

in cases in which an atlas is not available or appropriate

for the task. A robust, unsupervised, parametric method for

segmenting 3D (or 2D) MR brain images with a high degree

of noise and low contrast, is presented 1. We refer to the

proposed framework as the Constrained Gaussian Mixture

Model (CGMM) framework. In this framework, each tissue

is modeled with multiple four-dimensional Gaussians, where

each Gaussian represents a localized region (3 spatial features)

and the intensity characteristic per region (T1 intensity fea-

ture). Incorporating the spatial information within the feature

space is novel, as is using a large number of Gaussians per

brain tissue to capture the complicated spatial layout of the

individual tissues. Note that models to-date utilize the intensity

feature only and use a single Gaussian per tissue type (e.g.

[25], [18], [13]). The intensity of a tissue is considered a global

feature and is incorporated into the model via parameter-tying:

the intensity parameter of all the clusters that are related to

the same tissue, is essentially the same, and is considered as

a single parameter that appears several times in the model.

The Expectation-Maximization (EM) algorithm is utilized to

learn the parameter-tied, constrained Gaussian mixture model

(GMM). An elaborate initialization scheme is suggested to link

the set of Gaussians per tissue type, such that each Gaussian

in the set has similar intensity characteristics with minimal

overlapping spatial supports. Two key features of the proposed

framework are: 1) combining global intensity modeling with

localized spatial modeling, as an alternative scheme to MRF

modeling, and 2) segmentation is entirely unsupervised; thus

eliminating the need for atlas registration, or any intensity

model standardization. The paper is organized as follows: a

detailed description of the proposed framework is provided

in Section II. Algorithm validation on both simulated and

real brain volumes is presented in Section III. Discussion and

conclusions are presented in Section IV.

II. THE CGMM SEGMENTATION FRAMEWORK

In this section a detailed description of the segmentation

framework is presented. Figure 1 illustrates the four major

stages of the framework. In a preprocessing stage the brain

region is extracted and intensity inhomogeneities (bias) are

corrected (based on [13] as described in section III). In a

feature-extraction stage a four-dimensional feature vector is

1Preliminary results of the study presented in this paper appeared in [24].

extracted for each voxel v. The main feature is the voxel in-

tensity, denoted by vI . In order to include spatial information,

the (X, Y, Z) position is appended to the feature vector. We

use the notation vXY Z = (vX , vY , vZ) for the three spatial

features.

The set of feature vectors extracted per volume is denoted by

{vt | t = 1, ..., T} where T is the number of voxels. The set of

feature-vectors is input to the learning stage of the framework,

in which a variation on the GMM is utilized to represent

the intensity and spatial characteristics of the input image.

Details of the probabilistic model and its parameter learning

via the EM algorithm, are described in sections II-A and II-B.

Segmentation of the brain image based on the learned model

is described in section II-C. A model initialization scheme is

described in section II-D.

A. The Probabilistic Model

The complex spatial layout of an MRI brain image provides

a challenge for conventional GMM modeling schemes. In

order to accommodate the spatial complexity, we model an

image as a mixture of many Gaussians:

f(vt|Θ) =

n
∑

i=1

αifi(vt|µi, Σi) (1)

such that vt is the feature vector associated with the t-th voxel,

n is the number of components in the mixture model, µi

and Σi are the mean and the covariance of the i-th Gaussian

component fi, and αi is the i-th mixture coefficient. The

spatial shape of the tissues is highly non-convex. However,

since we use a mixture of many components, each Gaussian

component models a small local region. Hence, the implicit

convexity assumption induced by the Gaussian distribution is

reasonable (and is empirically justified in the next section).

The high complexity of the spatial structure is an inherent

part of the brain image. The intra variability of the intensity

feature within a tissue (bias) is mainly due to artifacts of the

MRI imaging process and once eliminated (via bias-correction

schemes) is significantly less than the inter-variability among

different tissues. It is therefore sufficient to model the intensity

variability within a tissue by a single Gaussian (in the intensity

feature). To incorporate this insight into the model, we further

assume that each Gaussian is linked to a single tissue and

all the Gaussians related to the same tissue share the same

intensity parameters.

Technically, this linkage is defined via a grouping function.

In addition to the GMM parameter set Θ, we define a grouping

function π : {1, ..., n} → {1, ..., k} from the set of Gaussians
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to the set of tissues. We assume that the number of tissues is

known and the grouping function is learned in the initialization

step. The intensity feature should be roughly uniform in the

support region of each Gaussian component, thus, each Gaus-

sian spatial and intensity features are assumed uncorrelated.

The above assumptions impose the following structure on the

mean and variance of the Gaussian components:

µi =





µXY Z
i

µI
π(i)



 , Σi =





ΣXY Z
i 0

0 ΣI
π(i)



 (2)

where π(i) is the tissue linked to the i-th Gaussian component

and µI
j and ΣI

j are the mean and variance parameters of all

the Gaussian components that are linked to the j-th tissue.

The main advantage of the CGMM framework is the ability

to combine, in a tractable way, a local description of the

spatial layout of a tissue with a global description of the

tissue’s intensity. The multi-Gaussian spatial model makes

our approach much more robust to noise than intensity-based

methods. Note that no prior atlas information is used in the

modeling process. Figure 2 illustrates the concept of com-

bining local spatial modeling with global intensity modeling.

A (2σ) spatial projection of the region-of-support for each

Gaussian in the model is shown. Different shades of gray

represent the three distinct tissues present.

Fig. 2. Modeling each of the three tissues with multiple Gaussians. Gaussians
with the same gray level share the same tissue label.

B. Learning the CGMM parameters

The EM algorithm [4] is utilized to learn the model pa-

rameters. In the proposed framework, Gaussians with the

same tissue-label are constrained to have the same intensity

parameters throughout. A modification of the standard EM

algorithm for learning GMM is required, as shown in the

following equations. The expectation step of the EM algorithm

for the CGMM model is (same as the unconstrained version):

wit = p(i|vt) =
αifi(vt|µi, Σi)

∑n

l=1 αlfl(vt|µl, Σl)
(3)

i = 1, ..., n t = 1, ..., T

We shall use the abbreviations:

ni =

T
∑

t=1

wit i = 1, ..., n (4)

kj =
∑

i∈π−1(j)

ni j = 1, ..., k

such that ni is the expected number of voxels that are related

to the i-th Gaussian component, π−1(j) is the set of all the

Gaussian components related to the j-th tissue and kj is the

expected number of voxels in that tissue. The maximization

in the M-step is done given the constraint on the intensity

parameters:

αi =
ni

n
i = 1, ..., n (5)

µXYZ
i =

1

ni

T
∑

t=1

witv
XYZ
t

ΣXYZ
i =

1

ni

T
∑

t=1

wit

(

vXYZ
t − µXYZ

i

) (

vXYZ
t − µXYZ

i

)
⊤

µI
j =

1

kj

∑

i∈π−1(j)

T
∑

t=1

witv
I
t j = 1, ..., k

ΣI
j =

1

kj

∑

i∈π−1(j)

T
∑

t=1

wit

(

vI
t − µI

j

)2

The grouping function π that links between the Gaussian

components and the tissues is not altered by the EM iterations.

Therefore, the affiliation of a Gaussian component to a tissue

remains unchanged. However, since the learning is performed

simultaneously on all the tissues, voxels can move between

tissues during the iterations. Figure 3 shows the 2σ initial

region support (a) versus the final region support (b) of the

Gaussians, on the same synthetic image, after seven EM

iterations.

(a) (b)

Fig. 3. Initial (a) and final (b) region support for all the Gaussians after
seven EM iterations. Different shades of gray present different tissue labels.
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C. Image Segmentation

A direct transition is possible between the estimated image

representation and probabilistic segmentation. If the represen-

tation phase is a transition from voxels to clusters (Gaussians)

in feature space, the segmentation process can be thought of as

forming a linkage back from the feature space to the raw input

domain. Each voxel is linked to the most probable Gaussian

cluster, i.e. to the component of the model that maximizes the

a-posteriori probability. In GMM that are based on intensity

only and in which a single Gaussian models a particular

class, the selection of the Gaussian with the highest posterior

probability for each voxel immediately produces the required

segmentation into one of the different tissues. The CGMM

model uses multiple Gaussians for each tissue. Thus we need

to sum over the posterior probabilities of all the identical tissue

Gaussians to get the posterior probability of each voxel to

originate from a specific tissue. Bayes rule implies that the

posterior probability for a pixel to be linked to the j-th tissue

is:

p(tissue j |vt) =

∑

i∈π−1(j) αifi(vt|µi, Σi)
∑n

i=1 αifi(vt|µi, Σi)
(6)

j = 1, ..., k , t = 1, ..., T

Hence the most likely tissue for the t-th voxel is:

tissue-labelt = argmax
j∈{1,...,k}

p(tissue j |vt) t = 1, ..., T (7)

such that tissue-labelt ∈ {1, ..., k} is one of the tissues. The

linkage of each voxel to a tissue label provides the final

segmentation map.

D. Model Initialization

The EM algorithm requires appropriate initialization, as it

is notoriously known to get stuck on local maxima of the

likelihood function. In the multi-component CGMM model

the problem is even more severe. A novel semi-supervised

top-down initialization method is used in the current work,

utilizing a-priori knowledge about the number of tissues of

interest. The initialization is a dual step procedure, performed

on a down-sampled version of the brain volume in order to

decrease processing time. In the first step, intensity-based

K-means clustering extracts a rough segmentation into six

tissue classes: WM, GM, CSF, as well as three additional

classes which take care of partial-volume effects as well as

any other-than brain information that may be present in the

image (see also [14]). It is assumed that the CSF class is

of lowest intensity. In most cases, the brain image is cleaned

sufficiently in the pre-processing stage and the WM class is the

class with highest intensity. Cases exist in which fat residues

of bright values, remain in the image. For this reason, the

brightest class as well as its consecutive (less bright) classes

are considered to belong to the WM category, until the number

of WM voxels, in all the selected classes, is larger than a user

defined threshold (MinWMfrac). All the voxels that were not

labelled as WM or CSF, are labelled as GM voxels. This

rough but important initial clustering determines an initial

group of voxels that belong to each tissue. An example for the

segmentation achieved on a 2D image is shown in Figure 4(a)

where the two gray levels represent the two classes present.

The segmentation is used as a masking procedure (Figure 4(b))

that makes is possible to work on each tissue separately (region

of interest is indicated in white).

The next step is a top-down procedure which propagates

the tissue class information into the spatial space. Regions

are split iteratively until convex regions are found that are

suitable for Gaussian modeling. Each iteration of the spatial

region splitting algorithm involves the following steps:

• A 3D connected-components (CC) algorithm is used to

define distinct regions which should be modeled by one

or more Gaussians. Figure 4(c) shows the CC regions in

shades of gray.

• Each CC region is encircled with the smallest ellipsoid

possible 2. If the volume inside the ellipsoid, that is not

part of the region, is higher than a user defined threshold

(“OutliersThresh”) and the ellipsoid volume sup-

ports more voxels than the defined threshold value of

minimum voxels per region (“MinPixThresh”), the

region is marked for further splitting. This process is

illustrated in Figure 4(d), where the largest CC region

is encircled with a 2D ellipsoid.

• A marked region is further split using K-means on the

spatial features only, into 2-10 distinct (not necessarily

connected) subregions, depending on the size of the

ellipsoid and the user defined threshold for the minimum

size of ellipsoid. Figure 4(f) illustrates splitting of two

distinct regions.

The splitting algorithm iteratively proceeds as long as at least

one region is marked for partitioning. Once the regions are

determined, each region is modeled with a single Gaussian.

The Gaussian’s spatial parameters (mean & variance) are esti-

mated using the spatial features of the voxels supported by the

region inscribed in the ellipsoid, while the intensity parameter

is estimated using all the voxels supported by all the regions of

the same tissue. Thus, Gaussians of the same tissue receive the

same initial intensity parameter. Furthermore, each Gaussian is

tagged with a label that indicates its tissue affiliation. Overall,

the initialization process determines and fixes the grouping

function π.

Figure 4(a)-(g) illustrates the steps of the initialization

process as applied to a 2D synthetic image with two tissues.

Figure 4(g) shows the final 2σ spatial projection of all the

Gaussians at the end of the initialization process, where

different shades of gray present different tissue labels.

III. EXPERIMENTAL VALIDATION

In the following we present a set of experiments to validate

the proposed framework. Both simulated data as well as real

brain data are used. The simulated data was taken from the

BrainWEB simulator repository 3. Real normal T1 MR brain

data sets were taken from the Center for Morphometrics

Analysis at the Massachusetts general Hospital repository 4

2using Matlab’sr Geometric Bounding Toolbox (GBTr)
3http://www.bic.mni.mcgill.ca/brainweb
4http://www.cma.mgh.harvard.edu/ibsr
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Fig. 4. Illustration of the initialization algorithm on 2D synthetic image with
two tissues.

(hereon termed IBSR). The technical data pertaining to the

presented experiments is shown in Table I.

In order to pre-process the data, as well as a means for

comparison of the CGMM algorithm results, the Expectation-

Maximization Segmentation (EMS) software 5 package is used

[10]. The EMS implements a fully automated model-based

segmentation of MR images of the brain based on the methods

described in [12], [13], [17]. The software package is an add-

on to the Statistical Parametric Mapping (SPM99) package 6

developed by the Wellcome Department of Cognitive Neurol-

ogy, Institute of Neurology, University College London. All

brain volumes were pre-processed to extract the brain region

as well as to correct any interslice intensity inhomogeneity and

within slice bias, where the bias correction is based on fourth-

degree polynomial fitting as part of an EM algorithm [13].

Note that the presented algorithm differentiates between three

tissues, with no intensity models used as prior information.

In this unsupervised mode, no intensity scale normalization or

standardization is needed.

In order to compare with state-of-the-art algorithms, in

particular, the well-known EM-based segmentation algorithm

of Van-Leemput (hereon termed KVL) [13], the volume data

is pre-registered to the SPM statistical brain model using the

register function of the EMS which implements an affine reg-

istration algorithm based on the maximum mutual information

criterion described in [17].

A. Simulated Brain

The first experiment was performed on T1-weighted simu-

lated data from the BrainWEB with 1%-9% noise levels and

no spatial inhomogeneity. Two widely-used volumetric overlap

metrics are used. The first, described by Dice [5] and recently

used by Zijdenbos [28], is used to quantify the overlap between

the automatic segmentation and the ground truth for each

tissue. Denote by V k
ae the number of voxels that are assigned to

tissue k by both the ground truth and the automated algorithm.

Similarly, let V k
a and V k

e denote the number of voxels assigned

to tissue k by the algorithm and the ground truth, respectively.

The overlap between the algorithm and the ground truth for

tissue k is measured as:

Mk
1 =

2V k
ae

(V k
a + V k

e )
(8)

The Dice metric attains the value of one if both segmentations

are in full agreement and zero if there is no overlap at all. The

second metric used is known as the Tanimoto coefficient [6]

which is defined as:

Mk
2 =

V k
a∩e

V k
a∪e

(9)

where V k
a∩e denotes the number of voxels classified as class k

by both the proposed algorithm and the manual segmentation

(our ground truth), and V k
a∪e denotes the number of voxels

classified as class k by either the proposed algorithm or the

5freely available from http://bilbo.esat.kuleuven.ac.be
/mic-pages/EMS/

6freely available from http://www.fil.ion.ucl.ac.uk/spm/
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TABLE I

TECHNICAL DATA FOR THE MRI VOLUMES USED IN THE EXPERIMENTS.

Experiment Synthetic Data Real Data

(BrainWEB simulator) (IBSR web site)

Section III-A Section III-C.1 Section III-C.2

Pulse Sequence T1

Number Of Volumes 1 9 9 18

Scan Technique Spoiled Flash Spoiled Gradient Spoiled Flash

Rep. Time TR (ms) 18 40 50 unknown

Echo Time TE (ms) 10 8 9 unknown

Flip Angle (deg.) 30 50 50 unknown

Slice Thickness (mm) 1 3.1 3 1.5

the expert. It should be noted that although both M1 and M2

range from zero to one, for a given automatic classification

and ground truth, one always has that Mk
2 ≤ Mk

1 .

Figure 5 shows the segmentation results of the CGMM

algorithm as compared to the KVL algorithm, for the

two measures. The KVL algorithm was activated with: (1)

No estimation of bias inhomogeneity (2) Markovian Ran-

dom Field (MRF) model enabled. The CGMM algorithm

was implemented with the following set of parameters:

MinPixThresh=0.002%, OutliersThresh=0.007% and

MinWMfrac=5%. These parameters were empirically found

to give a good compromise between execution time and per-

formance. They hereon serve as the default set of parameters.

It can be observed that the CGMM method outperforms

the KVL algorithm in the presence of high noise levels and

provides comparable results in the presence of very low noise

levels. The performance of both algorithms is worse with

1% noise than with 9% noise. This fact was observed and

explained in the original work by Leemput [13]. Note that

the CGMM uses no prior spatial information, whereas the

KVL algorithm depends on precise prior information for its

initialization and parameter learning.

The strength of the CGMM framework is more clearly

evident in its robustness to noise and smooth segmentation

results in increased noise levels. Figure 6 demonstrates the

segmentation on a single slice (95) from the BrainWEB simu-

lator, across varying noise levels. We note that performance of

the CGMM framework stays more constant with the increase

in noise, as compared to the KVL algorithm. In the segmented

image it is evident that smoother regions are obtained by

the CGMM algorithm. Additional segmentation results of two

very noisy brain simulator slices are presented in Figure 7.

B. Further Investigation of CGMM Performance

In this section further analysis of the CGMM framework is

presented: The initialization process is illustrated and a sen-

sitivity analysis on the initialization parameters is conducted.

Finally, the effect of the intensity constraint is demonstrated.

Figure 8 presents a schematic representation of the splitting

process which is part of the CGMM initialization. A 2D

projection of the 3D ellipsoids is shown at different stages of

the initialization process. Figure 8(a) shows the results after

the first step of the initialization procedure. GM and WM are

connected regions and each get a single Gaussian, while the

CSF has several distinct regions in the image and thus several

Gaussians are allocated instead of one. The splitting process

is evident already in this first stage. It can be observed that

the spatial overlap between ellipsoids from different tissues is

consistently decreased following each iteration.

1) Parameter Sensitivity Analysis: Three parameters take

part in the CGMM initialization process as follows (see section

II-D):

• MinWMfrac: Part of the intensity-based K-means clus-

tering. Defines the minimal fraction of the White Matter

in the total brain volume. A higher value means that more

clusters (out of the six initial clusters provided by the K-

means) will be labelled as WM. This parameter is useful

for cases in which spots of bright, non brain tissues,

are apparent as a result of imperfect skull removal.

When no bright residues are apparent the brightest class

should contain most of the WM tissue, thus any positive

threshold value suffices. Therefore a low threshold value

of 5% is used for the regular cases. In cases with residue,

a larger value of 20% is used (this number is based on

empirical studies on ground-truth data of several healthy

brain volumes that show the WM tissue takes at least 35%

of the brain volume). In this case the algorithm defines

all classes as WM until the class voxels contain at least

20% of the voxels.

• MinPixThresh: Part of the top-down splitting process.

Defines the minimum fraction of the total brain volume

inscribed in an ellipsoid. The parameter takes the values

in [0, 1]. A higher value means that each Gaussian’s

support region will contain more voxels out of the total

brain volume, thus, the splitting process will be shorter

and the model will contain less Gaussians. This leads to

a coarser segmentation but guarantees there are enough

voxels in each ellipsoid to provide sufficient statistics

to calculate the spatial parameters of the Gaussians. A

low value ensures a higher-resolution in the segmentation

and the proper modeling of thin structures, such as the

CSF. Note that regions that are smaller than the defined

parameter value will be omitted and defined as noise.

• OutliersThresh: Part of the top-down splitting pro-

cess. Defines the maximum fraction of the total brain vol-

ume which does not belong to the region yet is inscribed
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Fig. 5. Segmentation of BrainWEB MRI simulated data [2] with 0% spatial inhomogeneity and 9% noise, using the CGMM algorithm and the KVL
algorithm. Top row- Dice performance index: (a) WM; (b) GM. Bottom row- Tanimoto performance index: (c) WM; (d) GM.

in the ellipsoid. The parameter takes the values in [0, 1].
A higher value means that each Gaussian would contain

more outlier voxels in its support region. Therefore,

the splitting process will be shorter and the model will

contain less Gaussians. This leads to coarser segmentation

results but prevents over-segmentation in presence of high

thermal noise levels.

The sensitivity of the segmentation framework with-respect-to

the parameter setting is explored next. A set of default values

has been experimentally selected, as defined in Section III-A

and listed in Table II. Segmentation performance is measured

across several cases, in each scenario one of the parameters

is changed in value while the others are kept fixed. A similar

approach can be found in [18]. Performance is measured in

a similar experimental setting to the one described in Section

III-A, with a “worst case” simulated volume (9% noise) and

the Dice overlap metric.

The effect of parameter variation is shown in Table II. The

first row presents a default set of initialization parameters.

These were empirically found to provide good results in a

reasonable processing time on most of the brain volumes

tested. The next rows exhibit gradual modification of a single

parameter at a time. Minor monotonic performance deteriora-

tion of about 1% for the GM and 2% for the WM tissue is

noticeable when increasing the OutliersThresh threshold

from 0.005% to 0.030%. At the same time, the number

of Gaussians in the model decreases. A similar phenomena

is present with regard to the MinPixThresh parameter.

Increasing the threshold level from 0.004% to 0.030% presents

a deterioration of about 3% for the GM and 2% for the WM

tissue. The MinWMfrac parameter seems to have almost no

influence on the results. This is due to the relatively clean data

set of the BrainWEB simulator, which does not contain bright

voxels residuals. The number of Gaussians in the model is

noticeably correlated with the measured performance. As we

can see from Table II there is not much sensitivity of the

performance to the variation in the initialization parameters.

2) Intensity Constraint Effectiveness: A key characteristic

of the CGMM framework is the global intensity constraint

for Gaussians with the same tissue label. To demonstrate

the effect of incorporating constraints within the modeling

process, we compare the CGMM performance with regular

EM-based modeling (with no intensity constraints). Figure 9

shows a comparison between the two approaches. The CGMM

algorithm was initialized as described in Section II-D. The

Gaussian parameters were once learned using EM-based mod-

eling (without intensity constraints) and once learned using the

CGMM framework (with intensity constraints). Segmentation

using regular EM-based modeling, without posing any con-

straints on the Gaussian parameters, is shown in Figure 9(b).

Corresponding segmentation results of the CGMM framework

are shown in Figure 9(c). With no intensity constraints, the
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(a) (b) (c)

Fig. 6. Comparison of CGMM vs. KVL algorithm for segmentation of slice 95 from BrainWEB simulator with different noise levels. Upper image:
Ground-Truth. Upper row: 3% noise, Middle row: 5% noise, Lower row: 9% noise. Columns: (a) Original image (b) KVL algorithm (c) CGMM algorithm.

segmentation result is noticeably distorted due to the high

noise present. A considerable improvement is apparent when

constraining the intensity parameters of the Gaussians from

the same tissue.

C. Real Brain Volumes

The CGMM framework performance on real data sets is

demonstrated next. A set of thirty-six normal T1-weighted real

brain data sets was downloaded from the IBSR repository [3].

Two different data sets, each including 18 full-brain volumes,

are used. The parameters of the sets, as copied from the IBSR

web site, are summarized in Table I. Each of the brain volumes

in the IBSR site is provided with manual segmentation by an

expert technician.

1) Real brain - Experiment I: The first experiment com-

pares the CGMM algorithm with six different segmentation

algorithms that are provided as part of the IBSR website 7, as

7Detailed information on these algorithms is not available in the IBSR site
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(a) (b) (c) (d)

Fig. 7. Segmentation results of two sample slices from the BrainWeb volume with 9% thermal noise and 0% intensity bias. Slice number 115 is shown in
first row and slice number 57 is shown in second row. Columns: (a) Ground-Truth (b) Original slice (c) KVL’s algorithm (d) CGMM algorithm.

TABLE II

SENSITIVITY OF THE CGMM ALGORITHM PERFORMANCE TO VARIATIONS IN INITIALIZATION PARAMETERS MEASURED ON SIMULATED MR BRAIN

SCAN WITH 9% NOISE, ACCORDING TO THE DICE PERFORMANCE METRIC.

GRAY WHITE CSF Number of Gaussians

in the model

Default values:

OutliersThresh=0.007% 0.886 0.918 0.735 5067

MinPixThresh=0.002%

MinWMfrac=5%

OutliersThresh=0.005% 0.889 0.920 0.742 6191

OutliersThresh=0.009% 0.885 0.916 0.735 4305

OutliersThresh=0.011% 0.884 0.914 0.734 3821

OutliersThresh=0.015% 0.882 0.912 0.732 3157

OutliersThresh=0.030% 0.876 0.905 0.723 2236

MinPixThresh=0.001% 0.892 0.918 0.757 4922

MinPixThresh=0.004% 0.880 0.918 0.708 4922

MinPixThresh=0.006% 0.878 0.916 0.701 4649

MinPixThresh=0.008% 0.874 0.914 0.690 4088

MinPixThresh=0.015% 0.860 0.903 0.655 2295

MinPixThresh=0.030% 0.848 0.889 0.634 1140

MinWMfrac=1% 0.886 0.918 0.735 5067

MinWMfrac=10% 0.886 0.918 0.735 5067

MinWMfrac=15% 0.870 0.904 0.741 5046

MinWMfrac=20% 0.870 0.904 0.741 5046
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(a)

(b)

(c)

Fig. 8. Splitting each tissue during the initialization process of the CGMM algorithm on the BrainWEB simulated data set (slice number 85) with 9% noise
and no intensity inhomogeneity. Left: CSF; Center: GM; Right: WM. (a) first iteration (b) fourth iteration (c) eighth iteration.
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(a) (b) (c)

Fig. 9. (a) Slice number 95 from the BrainWEB normal brain simulator; (b) GMM (without constraints); (c) CGMM (with constraints).

well as with a state-of-the-art segmentation algorithm, which

we term the Marroquin algorithm [18]. Marroquin’s algorithm

presents a fully automatic Bayesian segmentation algorithm.

The algorithm incorporates robust non-rigid registration of a

brain atlas to the specimen to be segmented, as a means for

better initialization and to set prior probabilities for each class.

A variant of the EM algorithm is then used to find the optimal

segmentation given the intensity models along with a spatial

coherence assumption in the form of a MRF model.

The experiment is conducted on a data set of 18 normal

T1-weighted real MR brain data (see Table I). This data set

is becoming a standard for comparative algorithm testing.

It has been used in a variety of volumetric studies in the

literature as it contains varying levels of difficulty, with the

worst scans consisting of low contrast and relatively large

spatial inhomogeneities.

The overlap metric used by the IBSR repository is the

Tanimoto coefficient [6]. Figure 10 shows the comparison

results. Note that a higher value indicates a better correspon-

dence to the ground-truth (expert’s segmentation). The results

summarized in Table III indicate that the CGMM algorithm

outperforms the set of algorithms provided in the IBSR site for

both GM and WM, and preforms comparably to the Marroquin

algorithm. The CGMM algorithm has the lowest standard

deviation for both GM and WM tissues.

2) Real brain - Experiment II: In a second experiment, a

different set of 18 T1-weighted, normal real MR brain data

from the IBSR repository was used (see Table I). This set of

data was used to compare the CGMM algorithm with the KVL

algorithm, on real brain data.

The CGMM algorithm was applied with the default set

of parameters except for the MinWMfrac value which was

increased to 20% in order to compensate for bright spots

apparent in some of the MR brain scans. Figure 11 shows

a comparison of the CGMM method with the KVL algorithm

using the Dice metric (Equation 8). Results are summarized

in Table IV and indicate comparable performance between the

KVL algorithm and the CGMM approach on this set of MR

brain scans. A gain in performance seems to be evident in the

CSF tissue. Poor segmentation results for both algorithms can

be seen in brain volumes IBSR8 and IBSR12. The difficulty

in these two cases was found to be the result of imperfect

brain isolation in the preprocessing stage, which translates to

an error in the performance measure due to differing volumes.

The Dice overlap metric is widely used in the literature (e.g

[18], [13]) but it is by no means claimed to be the most suitable

metric for comparing performance of different segmentation

algorithms. In particular, the Dice metric depends on the size

and the shape complexity of a given object and is related

to the image sampling. Assuming that most of the errors

occur at an object boundaries, small objects are penalized

and get a much lower score than large objects. No consensus

currently exists regarding a necessary and sufficient set of

measures for segmentation performance characterization. In a

recently published work, the Mean absolute surface distance

metric (which is based on the Hausdorff distance metric [1])

is suggested to compare different MR brain segmentation

results [8]. Figure 12 shows a comparison between the CGMM

method and KVL’s algorithm, based on the mean absolute

surface distance metric as implemented by the VALMET

software package 8 [8]. The results are summarized in Table V.

Using this metric, a lower value means better segmentation. As

seen, the standard deviation of both algorithms is considerably

higher than the differences in their average values. Thus, we

can only say that the two algorithms show a comparable

performance according to the mean absolute surface distance

metric.

8freely available at http://www.ia.unc.edu/dev/download/valmet/index.htm
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Fig. 10. Tanimoto’s performance metric for different segmentation algorithms on different real brain MR scans from the IBSR repository. The bold line
corresponds to our algorithm. (a) WM; (b) GM.

TABLE III

MEAN AND STANDARD DEVIATION OF TANIMOTO’S OVERLAP METRIC FOR VARIOUS SEGMENTATION METHODS, CALCULATED OVER A FIRST SET OF 18

BRAIN SCANS FROM THE IBSR REPOSITORY.

Method (abbr) Source GM WM

Mean Std. Dev. Mean Std. Dev.

adaptive MAP (amap) IBSR 0.57 0.13 0.58 0.17

biased MAP (bmap) ” 0.56 0.17 0.58 0.21

fuzzy c-means (fuzzy) ” 0.47 0.11 0.58 0.19

Maximum a Posteriori Probability (map) ” 0.55 0.16 0.57 0.20

tree-structure k-means (tskm) ” 0.48 0.12 0.58 0.19

Maximum-Likelihood (mlc) ” 0.54 0.16 0.57 0.20

Marroquin (marro) [18] 0.66 0.10 0.68 0.10

Constrained GMM (CGMM) 0.68 0.04 0.66 0.06
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Fig. 11. Dice overlap metric of the CGMM (solid) and the KVL algorithm (dashed) per each of the real MR brain data sets from the IBSR repository. (a)
WM; (b) GM; (c) CSF.
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TABLE IV

MEAN AND STANDARD DEVIATION OF DICE OVERLAP METRIC RESULTS FOR CGMM AND KVL ALGORITHMS CALCULATED OVER A SECOND SET OF 18

REAL BRAIN SCANS FROM THE IBSR REPOSITORY.

Method GM WM CSF

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

KVL 0.786 0.050 0.857 0.021 0.164 0.060

CGMM 0.789 0.060 0.847 0.044 0.219 0.100
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Fig. 12. Mean Absolute Surface Distance metric of the CGMM (solid) and the KVL algorithm (dashed) per each of the real MR brain data sets from the
IBSR repository. (a) GW; (b) WM; (c) CSF.

TABLE V

MEAN AND STANDARD DEVIATION OF THE ABSOLUTE SURFACE DISTANCE METRIC RESULTS FOR CGMM AND KVL ALGORITHMS CALCULATED OVER

A SECOND SET OF 18 REAL BRAIN SCANS FROM THE IBSR REPOSITORY.

Method GM WM CSF

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

KVL 2.32 1.65 4.15 3.88 37.00 2.72

CGMM 2.16 1.59 3.73 3.12 35.48 6.62

IV. CONCLUSION

We present a fully automated, parametric, unsupervised

algorithm for tissue classification of MR images of the brain

that is also very noise resistant. The CGMM framework

provides an alternative to MRF modeling. Spatial information

is incorporated into the learned model along with the intensity

feature. The addition of the spatial features within the GMM

model provides for a more localized analysis. An important

characteristic of the proposed model is the global intensity

parameter-tying across Gaussians, per tissue type. The global

intensity constraint ensures more global intensity learning and

smoother segmentation results. A key feature of the CGMM

framework is the fact that the analysis is done adaptively on

the data at-hand. No a-priori knowledge is used apart from

general properties about the intensity order of the tissues in

T1 MR. This can support cases in which the use of an atlas is

not appropriate and can eliminate the need for registration of

the data to an atlas as part of the overall analysis procedure.

The algorithm was tested on different slices from a very

noisy simulated brain volume. Quantitative comparison with

KVL’s state-of-the-art algorithm in the presence of extremely

noised images was performed and showed that the CGMM

algorithm presents superior results in the presence of moderate

to high noise, both visually and quantitatively. This result

holds with increased noise of up to 9%, a level that presents a

challenge for most existing segmentation algorithms. Further

investigation was conducted on a set of 36 real brain volumes

from the IBSR repository. Eighteen brain volumes were used

to compare the CGMM algorithm with the KVL algorithm; A

second set of eighteen volumes was used for a comparison

with Marroquin’s algorithm as well as with six additional

classic algorithms whose performance information was taken

from the IBSR web site. Three different coefficients for sim-

ilarity were used: the Dice metric (equation 8), the Tanimoto

metric (equation 9) and the mean absolute surface distance

metric implemented by the Valmet [8] software package. The
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real brain volumes contain moderate thermal noise effects.

Results show a significantly better performance of the CGMM

framework as compared with the six segmentation algorithms

provided as results in the IBSR site (Figure 11). The CGMM

framework performed comparably to the Marroquin algorithm

(Figure 11) as well as to the KVL algorithm (Figure 12) on

the real volumes.

The algorithm stability and consistency over a wide range

of initial values was demonstrated. The processing time of

the algorithm depends on the number of Gaussians which are

used to model the brain data set as well as on the number of

voxels in the image. The number of Gaussians is determined

in the initialization stage, as a by-product of the initialization

parameters, noise level and tissue’s complexity. Using the

default initialization parameters on the first set of 18 real brain

volumes, the average processing time was 7 minutes for a

single brain volume, executed on a single 3.0GHz pentium4

processor of a PC machine, with 1Gbyte memory.

The CGMM framework combines local spatial information

with global intensity modeling. The grouping of Gaussians

has a resemblance to using a Markov Random Field model.

The main difference is that the intensity information is linked

adaptively and globally within the image, in contrast to a MRF

model that integrates information from the nearest neighbors

only and in predetermined neighborhoods. These differences

may be the reason for the improved segmentation results with

decreased tissue region granularity in the presence of extreme

noise.

Eliminating the need for an anatomical atlas provides the

opportunity to apply the CGMM framework to diseased brains

and neonatal brains as well as to additional organs (ab-

domen,chest, etc). Furthermore, the algorithm can be applied

to a subset of the full volume or even to 2D images. Currently

we are working on an extension of the model to incorporate

intensity inhomogeneities as well as to support multi-channel

data.
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