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ABSTRACT: The optimized design of composite structures is a difficult task. It
requires optimizing simultaneously both structural and manufacturing objectives.
The objectives do not have closed form solutions and have multiple local optima that
calls for a global search. This paper improves the global search method called
GBNM [1], which is based on several restarts of the Nelder–Mead method.
Two issues are addressed here. First, the restart procedure is improved by using
a one-dimensional probability function and a weighted selection procedure. Second,
nonlinear constraints are included by projecting the infeasible points onto the
nonlinear constraints. The improved procedure is applied to four mathematical test
functions. Numerical results show the proposed approach is more efficient in terms
of computational time and probability of finding the global minimum. The improved
GBNM is then applied to the simultaneous structural and manufacturing design
of a Z-shaped composite bracket. The results are compared to those obtained with
the genetic algorithm.

KEY WORDS: composite materials, global optimization, Nelder–Mead method,
simultaneous optimization.

INTRODUCTION

C
OMPOSITE MATERIALS OPEN a new window in engineering by providing excellent
mechanical properties. However, this feature is accompanied by the complexity of the

design problem, especially when the manufacturing aspects are involved in the structural
design. The large number of design variables including continuous and discrete variables,
lack of closed form solutions, the difficulties in simulation and analysis, as well as
multiplicity of the local optima make the design and optimization of composite structures
a difficult task. Lack of closed form solutions rules out the use of gradient-based
optimization methods, because no gradient information is available. Additionally,
multiplicity of local optima calls for a global optimization.
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High computational cost is the main drawback to a global optimization. Several
research papers are devoted to speeding up a global search, either by adding problem
specific knowledge to the search, or by embedding an efficient local algorithm into a global
one. One of these attempts by Luersen et al. [1] is devoted to combine the Nelder–Mead
method (i.e., a local optimizer) to a random search (i.e., the simplest global optimizer).

The Nelder–Mead (N–M) sequential optimization method, proposed in 1965 [2],
is the most popular direct method for local optimization of unconstrained problems.
It has been shown to be effective in practice by producing a rapid initial decrease in
function values [3]. Recently, this popular algorithm has been used in combination with
global search algorithms such as random search [4], genetic algorithm [5], and Tabu
search [6].

A common scenario in engineering design is that the global optimum should be found
with a limited number of analyses. However, it is uncertain if it is possible to perform as
many analyses as needed for an evolutionary algorithm to converge. In such a case, a
local-global search that can be terminated in a short time is the safest strategy [1]. Luersen
et al. [1] introduced such a local-global search based on several restarts of the N–M
method. The procedure, called globalized bounded Nelder–Mead method (GBNM),
repeatedly restarts a local search by the N–M method using a probability function. The
probability function keeps a memory of past local searches and pushes the local search to
the regions far from already-known solutions.

This article extends efforts by Luersen to make such a local-global search more efficient
and to apply it to simultaneous structural and manufacturing design of a composite part.
It is shown that the restart procedure used by Luersen is computationally time consuming
and is not always successful in finding the optimum solution. Here, a new restart
procedure is introduced to improve the probability of finding the global minimum and
to reduce the computational time. In addition, in this article, a backtracking procedure is
used to incorporate nonlinear constraints into the design problem.

The improvements on the restart procedure and the nonlinear constraint handling
method are tested on four mathematical functions with 12 variables and different number
of local minima. The results show that the new restart procedure is more efficient than
Luersen restart procedure, both in terms of probability of finding the global minimum and
of computational time. Then the improved GBNM is applied to simultaneous structural
and manufacturing design of a composite bracket.

This article is divided into two main parts: (a) improvement and test of the optimization
procedure; (b) application of the improved method to simultaneous structural and
manufacturing optimization of a Z-shaped composite bracket.

OPTIMIZATION PROCEDURE

A global search can be performed by repeatedly restarting a local optimizer. To avoid
finding the same local optima, the new initial points should be different and preferably far
from previous initial points and already known local solutions. Luersen introduced a
probabilistic restart procedure that gives points far from previous local optima and
previous initial points more chance to be selected as initial point for the next local search.
The restart procedure is shown in Figure 1.

The N–M method compares values of the objective function at a set of nþ 1 points
called a simplex where n is the number of design variables. Simplex vertices are changed
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through reflection, expansion, contraction, or shrinkage. The process is continued until the
simplex converges to a local optimum. Thus, the local optimum found is dependent on the
initial simplex [7].

The following sections propose two improvements to the Luersen’s GBNM. The first
deals with the restart procedure. The second addresses the issue of how to include
nonlinear constraints in the optimization algorithm.

Improved Restart Procedure

Luersen used a multi-dimensional probability (MDP) density to assign the
sampling probability of a point. Luersen restart procedure selects Nr points randomly,
and takes the point where the solution has the maximum probability to occur. The
probability distribution achieved by this procedure is not equivalent to a normal
distribution. It is strongly dependent on the number of points (Nr) and is independent
of the probability density. The variance of the MDP does not affect the results.
Luersen restart is computationally expensive because of the computational time needed
for MDP.
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Figure 1. Restart and convergence tests linking in GBNM.
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Here, we propose an adaptive probability density to replace the MDP, called the
variable variance probability (VVP). The new probability function is based on the
minimum distance to the points already sampled and represented as:

�ðxÞ ¼
1ffiffiffiffiffiffi
2�

p
�
ð1� e�ðd 2

min
=2�2ÞÞ ð1Þ

dmin ¼ min
i¼1, ...,m

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

xk, i � xk
xku � xkl

� �2

vuut
8<
:

9=
; ð2Þ

where �ðxÞ is the sampling probability of a point x, n is the number of design variables, xi
is a point previously sampled, and m is the number of points already sampled. Length di is
the non-dimensional distance between point x and point xi. The variance of the normal
probability density, updated in each restart, is given by:

� ¼
1

3
ffiffiffiffi
mn

p : ð3Þ

The variance is gradually decreased when the number of sampled points is increased.
Equation (3) provides points located in the one-third of the middle of the line connecting

two previously sampled points about 65% chance of selection. This property will be
preserved all along the restart process. In contrast, the MDP tends to a uniform
distribution when the number of sampled points is increased. Figure 2 compares the
probability of sampling a new point using Luersen and VVP restarts. When the number of
previously sampled points are increased, Luersen restart gives almost no chance of
selection to the points between these points (Figure 2(c)), but it is not the case with VVP
restart (Figure 2(d)). Thus, no part of the design field is ignored with VVP. The numerical
results show the VVP is more efficient when the objective functions have several local
optima clustered around the global one.

The restart procedure is not only to assign a probability density, but also includes a
selection procedure to pick a new point based on assigned probability. The VVP restart
uses a selection procedure different than that of Luersen restart. Nr points are randomly
selected to create a selection pool, which is a set of points whereby each has a number of
copies proportional to its probability value. A new point is randomly selected from this
pool. In this procedure, the probability of sampling a new point is not affected by the
number of selected points, Nr.

Numerous probability functions exist; therefore another probability function could
work better, but by keeping the normal distribution and changing Nr we do not expect
considerable improvement.

Non-linear Constraints

N–M method is originally introduced for unconstrained optimization, but the variables
in an engineering problem are usually constrained not only by upper and lower bounds
(i.e., box constraints) but also by nonlinear constraints. GBNM uses a projection
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procedure on the box constrained variables. Projection of variables is mathematically
specified by:

xi ¼
xlower bounti if xi5xlower Boundi

xupper boundi if xi4xupper boundi

(
: ð4Þ

GBNM as used by Luersen cannot deal with nonlinear constraints; however, the
variables in a composite optimization problem are often constrained by nonlinear
functions, e.g., strength constraints. Identical to the projection of box-constrained
variables, a projection procedure is used for nonlinear constraints. The projection of
nonlinear constraint includes a backtracking procedure illustrated in Figure 3. When a
new point generated by reflection, contraction, or expansion violates one of the
nonlinear constraints, the new point is moved toward the original feasible point such
that the distance between these two points is reduced by a factor of �2 (0, 1). The
procedure is terminated when a feasible point is found or a predetermined number of
trials is reached. If the procedure does not find a new feasible point in a predetermined
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Figure 2. Sampling 1000 points in a 2D design space using the Luersen (Nr¼10) and the VVP restarts
(a) Luersen restart with one point (b) V VP restart with one point; (c) Luersen restart with eight points (d) V VP
restart with eight points.
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number of trials, the original point is kept and the new point is dismissed. This
procedure guarantees the feasibility of the final solution.

Mathematical Test Functions

Four mathematical test functions are used in this section to assess the improvement
suggested in the optimization procedure. The test functions are of two types. The first are
those having a periodic term and, as a result, having many local optima all over the field
and clustered around the global one. The second are those that do not have an alternating
term. In this case, the number of local minima is smaller and arbitrarily distributed in the
design space.

FUNCTIONS WITH PERIODIC TERM
Griewank’s Test Function

The first test function is the Grienwank’s test function [1] with n design variables and
several local minima. The global minimum of the function is �1 achieved at xi¼ 0,
i¼ 1, . . . , n and is surrounded by several local minima. Figure 4 shows this function in two
dimensions. The function is defined by:

A1ðxÞ ¼
Xn
i¼1

x2i
400n

�
Yn
i¼1

cos
xiffiffi
i

p

� �
; xi 2 ½�1000, 1000�; i ¼ 1, . . . , n: ð5Þ

Ackley’s Test Function
The second test function is the Ackley’s test function [8] with n variables and several

local optima described by:

A2ðxÞ ¼ �20 e�1=5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn

i¼1
x2
i

p
� e�1=n

Pn

i¼1
cosð2�xiÞ, xi 2 ½�15, 30�,

i ¼ 1, . . . , n:
ð6Þ
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Figure 3. Backtracking procedure projects an infeasible point to the corresponding nonlinear constraint.
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Ackley’s test function in two dimensions is depicted in Figure 5. It has several local and n2

global minima. The global minimum of the function is �21.8072.

FUNCTIONS WITH NON-ALTERNATING TERMS
Six-hump Camelback

Six-hump camelback test function [1] with two variables is illustrated in Figure 6. It has
six local minima and is defined by:

cbðxÞ ¼ 4x21 � 2:1x41 þ
1
3x

6
1 þ x1x2 � 4x22 þ 4x42, x1, x2 2 ½�2, 2�: ð7Þ

The global minimum of the function is �1.03163 obtained at x¼ (0.0898,�0.7126) and
x¼ (�0.0898,�0.7126)

To obtain a test function with 2n variables and 6n local minima we consider:

B1ðxÞ ¼
Xn
i¼1

cbðx2i�1, x2iÞ, xi 2 ½�2, 2�; i ¼ 1, . . . , n: ð8Þ
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Combined Test Function
The next test function is a combination of Hartman test functions and Fletcher and

Powell’s helical valley and is given by:

FðxÞ ¼ H6ðx1, . . . , x6Þ þH3ðx7, . . . , x9Þ þHVðx10, . . . , x12Þ, xi 2 ð0, 1Þ;

i ¼ 1, . . . , 12
ð9Þ

where H6 and H3 are Hartman test functions with six and three variables respectively
having six and four local minima [9], and HV is the Fletcher and Powell’s helical valley [2]
with three variables and one local minimum located at the end of a spiral valley. This
function has 24 local optima and its global minimum is �7.18509 located on the boundary
of the feasible region at: x ¼ ð0:20, 0:15, 0:48, 0:28, 0:31, 0:66, 0:11, 0:56, 0:85, 1, 0, 0Þ:

Optimization Set-up

The control parameters in optimization procedure are set to the recommended values in
literature. Reflection, expansion, and contraction coefficients are taken to be 1, 2, and 0.5,
respectively, as used by Nelder and Mead [2]. A shrink coefficient of 0.9 is used as
recommended by [7] and [10]. The N–M method is terminated when the simplex is small or
flat, or when the maximum number of iterations is reached. A simplex is small when:

max
i¼1,..., n

j
xkþ1
i � xki
xui � xli

j

� �
� "1 ð10Þ

where k is the number of iterations, subscripts u and l represent the upper and lower bound
on variables xi, and "1 is a predetermined small number. Similarly, the simplex is flat when:

��� fH � fL

��� � "2 ð11Þ
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Figure 6. Six-hump camelback test function with two design variables.
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where fH and fL are the highest and lowest function values at the current simplex and "2 is a
given small number.

Initial simplex of the N–M is a polyhedron with the edge size of 20% of the design
space. The two small-test and large-tests restarts (see Figure 1), used to improve the
convergence, restart the algorithm from the best point of the current simplex with a
polyhedron of size 2% and 10% of the domain size. Nr in selection procedure is set to 10,
and a and n in the backtracking procedure are set to be 0.9 and 10, respectively. Also,
genetic algorithm with the population size of 20 and crossover and mutation fraction of 0.8
and 0.01 is used for comparison.

Numerical Results

RESTART PROCEDURES
Four test functions described earlier with 12 variables are minimized using GBNM with

random restart, Luersen restart, and VVP restart. The optimization is conducted for 1000,
5000, and 10,000 iterations. A pool of solutions is needed to compare the results. Thus, each
function is minimized 100 times and the average and the standard deviation of the solutions
are compared. Results are compared to those obtained with the Genetic Algorithm (GA).

Figures 7–10 compare the average minimum found by each algorithm in 100 runs.
The figures plot the average runtime for each algorithm. The performance of different
restart procedures depends on the function type and number of iterations.

The random restart is not able to find an adequate minimum for a small number of
iterations (i.e., 1000) and a function with many local minima (Figures 7 and 8); however
if the objective function has only a few local minima, the performance of all restart
procedures is similar (Figures 9 and 10).

After about 5000 iterations, all the restart procedures have the same performance,
except on Ackley’s test function (Figure 8). Ackley’s test function has many local optima.
Therefore, the local optimizer traps in a local optimum close to the initial simplex. The
global minima of Ackley’s test function are located at the end of a narrow hole (see
Figure 5). If only a random restart is performed, the probability of having an initial
simplex located sufficiently close to this hole (i.e., xi 2 ð�5, 5Þ) is less than 10�8. Thus it is
rare that the random restart reaches the global minimum of this function.

With Luersen restart, the probability of having an initial simplex sufficiently close to the
global minimum is even smaller than random restart, because Luersen restart pushes the
new initial points away from previous ones (see Figure 2). Luersen restart finds the global
minimum of Ackley’s test function 8 times and random restart finds it 14 times out of 100
runs. With VVP restart, points located between known local minima still have the chance
to be selected, whereas with Luersen restart if a local optimum around the global one is
found, the probability of finding a new point in that region is almost zero (see Figure 2).
Thus the VVP restart performs better than both Luersen and random restarts (Figure 8) by
finding the global minimum 95 times out of 100 runs. Figure 11 shows the average
probability of finding the global minimum of all the given test functions, after 100 runs.
It shows that, in general, the VVP has more probability for finding the global minimum
than the two other restart procedures and the GA. Luersen and random restart are almost
the same in this respect, and both are better than GA.

In terms of computational time, Luersen restart is about 5–10 times slower than the
random and the VVP restarts, because it uses a multidimensional probability function that

Constrained Globalized Nelder–Mead Method 725

 at MCGILL UNIVERSITY LIBRARY on August 15, 2012jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


needs matrix calculation. Computational time of VVP and random restarts differs only by
30% and increases linearly with the number of iterations. Since the time for Luersen
restart is increased exponentially with the number of restarts (and hence the number of
iterations), the difference between Luersen and VVP will be more noticeable when the
number of iterations is increased.

A genetic algorithm is applied to all these functions with the same number of function
analyses. In most of the cases, GA is not able to find a good minimum compare to the
GBNM, with this number of iterations (see Figures 7, 8, and 10). The total computational
time consists of time needed for functional analysis and time needed for optimization.
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For mathematical functions, the computational time required for functional analysis is of
the same order of the one required for optimization. Indeed, VVP requires longer
optimization time than GA for a given mathematical test function. However, when
functional evaluation becomes complex, such as in real composite structures where FEA
calculations must be included, then the computational time for functional evaluation
completely dominates the total computational time. The result is that VVP and GA end up
with nearly the same total computational time (difference would be negligible). However,
as shown in Figure 10(a), VVP provides a better accuracy in finding the optimum value for
a give number of function analysis (i.e., 5000).

In summary, for a small number of function analyses, it is shown that several restarts of
the N–M method (a local optimizer) can generally find a better solution than an evolu-
tionary optimizer like a genetic algorithm. Three different restart procedures have been
tested. The result shows that the VVP restart can find a better minimum for a general multi-
modal function than those obtained by Luersen and random restarts. The required compu-
tational time for VVP restart is considerably less thanGBNMand is close to random restart.

Nonlinear Constraints

To test the back tracking procedure (Figure 3) we need to choose constraints
described by nonlinear functions. Two hyper-spheres are added as constraints to the
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third test function (B1). Points within the two hyper-spheres are feasible. Figure 12 shows the
feasible region and the function contour-plot in two dimensions. The GBNM with VVP
restart is applied to this test function with two variables. All the local minima found
within 1000 iterations are shown in this figure. The figure shows that the procedure can find
the constrained local minima and the global ones (i.e., f¼�0.9085 at (�0.24, 0.65)
and (0.24,�0.65)).

Then the constrained optimization procedure is applied to B1 with 12 design variables.
Figure 13 shows the average minimum of the function value found with and without
nonlinear constraints. The global minimum of B1 with nonlinear constraints is �5.45
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Figure 12. The feasible region (two gray circles) and the contour plot of the six-hump camelback test function
(B1) in two dimensions.
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(dashed line in Figure 13) and the average minimum found by the optimization procedure
is �4.83. Considering more challenges in nonlinear constrained problem, the average
minimum is close to the global solution. The results are not compared with GA or GBNM
with Luersen restart because neither of these algorithms is able to directly work with
nonlinear constraints.

COMPOSITE DESIGN PROBLEM

Finding the optimum structural design of composite materials is a difficult task due to
the high degree of freedom in tailoring material properties and shape design. A variety of
optimization methods, from simple mathematical methods, such as a linear programming
[11], to combinations of computationally expensive methods, such as genetic algorithms
and topology optimization [12], has been used for this purpose. The genetic algorithm is
among the most popular ones in this field [13] because of capability of global optimization
and independency to gradient information.

The optimum design of a composite part is a trade-off between structural and
manufacturing aspects. Composite designers usually try to simplify the problem by
separating the two parts [14] and performing the process tuning after the structural design.
But, it is acknowledged that, once the preliminary design has been selected, up to 80% of
the manufacturing cost cannot be changed [15]. Also a significant weight reduction in final
part is reported by incorporating the manufacturing constraints into the structural design
problem [16,17]. There are several researches [14–18] confirming the approach to the
design and optimization of composite materials must be multidisciplinary. Such an
approach, called simultaneous optimization, is studied in this article.

Simultaneous optimization is more complex than the separate design, because it requires
taking into account a large number of variables and local minima. Figure 14 shows the
objective functions of a two-layer rectangular plate made of laminated composite material
under specific in-plane loads. Maximum structural objective (part (a)) corresponds to the
maximum strength.Maximizing themanufacturing objective (part (b)) is also desired, which
corresponds to the minimum warpage and maximum permeability. The simultaneous
objective function is illustrated in Figure 14(c). The simultaneous objective is neither the
manufacturing nor the structural one, but it is a trade-off that lies between them.

There are only a few papers working on simultaneous optimization of composite
materials, and most of them use evolutionary methods (i.e., a genetic algorithm) [18–22],
despite their low convergence rate and inherently high computational cost. Previous
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Figure 14. Comparing a typical structural objective (a), manufacturing objective (b), and simultaneous
objective (c) in a tow-layer rectangular plate [�1/�2]t under in-plane loads.
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section has shown that the improved local-global search is generally faster than an
evolutionary algorithm for small number of function analyses. In this section the improved
GBNM, described in preceding sections, is used for simultaneous optimization of a
composite bracket.

Composite Bracket Design Problem

The Z-shaped composite bracket shown in Figure 15 is made of 16 plies balanced
symmetric laminate of graphite/epoxy (AS4/8552) with fiber orientation
of ½��1=��2=��3=��4�s. The optimization problem is to find the structural and
geometrical variables to achieve the optimum value of the objective functions as shown
in Table 1. The objectives are shown in the first row of the table. This table also shows the
strong/weak effect of the design variables on the objectives by a solid/non-solid circle in
the corresponding cell. The part should not fail or delaminate anywhere within a safety
factor of 1.5 and 2, respectively. Delamination is calculated in the curved regions where the
angle shape causes high interlaminar normal stresses. The vertical deflection of less than
1mm and the spring-in of less than 0.58 are strictly required for an acceptable design.

Problem Simulation

To evaluate the objective function, an appropriate processing and structural simulation
is required. A semi-analytical model is developed in MATLAB� for quick evaluation of
the objectives and constraints.

N1=500 N/m

R

N1

N3=100 N/m

N3

M1=50 N.m/m 

M1
+

t12=300  N/m 

t12

E

Dq

S

3
2 1

Figure 15. Geometrical variables and applied loads on the composite bracket.

Table 1. Structural, geometrical, and manufacturing design variables and objectives.

Structural objectives/constraints Manufacturing objectives/constraints

Design variable Min: W Max: R dy; 1mm D�2 jDhj0:5o Min: jDhj

�i i ¼ 1, . . . , 4 �
a

�
b

� � � �

E � � � � � �

S � � � � � �

R � � � �

�, Indirect or weak interconnection; �, direct and strong coupling.
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Objectives of the coupled problem include: failure index, vertical deflection, and
spring-in. Failure index (R) is calculated by first-ply-failure in classical lamination theory
and Hashin stress criterion [23]. Vertical deflection is calculated by a numerical integration
and energy method [24]. Finally, spring-in, which is the angular deformation of a part after
demolding, is a function of cure shrinkage and thermal expansion, and is given by:

�� ¼ �
ð�l � �tÞ�T

1þ �t�T

� �
þ

�l � �t

1þ �t

� �� �
ð12Þ

where � is the angle of the bracket, �� is spring-in, �T is temperature change which is the
difference between the cure temperature and room temperature. � and a are coefficients of
shrinkage and thermal expansion, subscripts l and t respectively stand for longitudinal and
through thickness direction.

Delamination is a critical mode of failure in composite materials, and it is due to the
interlaminar stresses between subsequent laminates. In a flat plate, interlaminar stresses
are created only by the free-edge effect [25], but in a curved part, the 3D stress field also
creates significant interlaminar stresses that may cause delamination at the curved region.
A convenient, albeit crude, model of free edge interlaminar stresses by Pagano [25] is used.
In this model the interlaminar normal stress is estimated as shown in Figure 16.

Interlaminar normal stresses created by the angle-shape effect are shown in Figure 17.
Sequentially solving the equilibrium equations for all layers, starting form the innermost
layer results in interlaminar normal stress between layers n and nþ 1:

�z, n�ðnþ1Þ ¼

Pn
k¼1 �x, ktk

Rþ
Pn

k¼1 tk
ð13Þ

where ti shows the thickness of ith layer, and R is the inner radius of the curved part. If off-
axis stresses change along the curve, Equation (13) would be valid only for a differential
angle d�.

Interlaminar shear stresses are of minor importance with respect to interlaminar normal
stresses [23], thus an approximation of shear stress in a prismatic member under a
transverse load is used.

The semi-analytical models of first-ply-failure, delamination, deflection, and spring-in
will be used during the optimization process in the next section.
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Figure 16. Approximate distribution of interlaminar normal stress at a free edge.
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Numerical Results

The improved GBNM is applied to the simultaneous structural and manufacturing
design of the bracket. The following weighted summation of the objectives is used as a cost
function to be minimized:

minFðxÞ ¼ �
Weight

0:005
�

R

1:5

� �
þ �

j��j

0:25

� �
; �, � 2 f0, 1g

S:T: fR � 1:5, D � 2:0, Sr � 0:01,

�ðj�j � 0:001Þ � 0, � ��j j � 0:5ð Þ � 0g

ð14Þ

where R and D are delamination and load factors. Sr is the shoulder length after applying
the fillet, measured in meters. � is the vertical deflection in meters. �� is the spring-in
expressed in degrees. � and � are two dimensionless factors defining the relative
importance of structural and processing objectives. The optimum found by �¼ 1 and �¼ 0
only considers the structural objectives and constraints, thus called the structure-only
design. In contrast the case with �¼ 0 and �¼ 1 is the manufacturing-only design.
Optimization with �¼ �¼ 1 is called a simultaneous design. Here, � and � are restricted to
0 and 1, but in general, a designer can set them to any real value by considering the relative
importance of structural and manufacturing design.

Since the problem includes variables of different kinds and scales, the variables are
normalized to their design domain. The stopping criteria are set to be one percent of the
smallest discrete portion of the design domain for the small simplex and 10�4 for a flat
simplex. The optimization procedure is performed up to 5000 iterations. The optimum point
obtained in continuous optimization process is rounded off toward the near discrete value.

We now consider three design scenarios described by different objective functions.
To do this, we control the values of � and � in Equation (14). In the first scenario, only the
structural performance is to be optimized. In the second one, both structural and
manufacturing objectives are considered. In the third one, the objective function is
described only by manufacturing parameters. Table 2 and Figure 18 show the best
solutions to the structural-only, manufacturing-only, and simultaneous design problem.

sx,3

sz,2−3

sx,2

sz,1−2

sx,1

Figure 17. Interlaminar normal stresses in the curved region of an angle-shaped flange.
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Structural-only Simultaneous Manufacturing-only

Table 2 shows the geometry, the fiber orientation, and the performance criteria of
solutions obtained by three design scenarios. Figure 19 shows the performance indices of
the three solutions. These have been obtained by normalizing the objective functions so
that the solution obtained by the structure-only approach has 100% structural
performance and 0% manufacturing performance. In contrast, the solution obtained by
the manufacturing-only approach has 100% manufacturing performance and 0%
structural performance. As shown in this figure, the structural performance of the
simultaneous design is 67% of that obtained by the structural-only design. Its
manufacturing performance is 97% of that provided by the manufacturing-only design.
It shows that the simultaneous design is a trade-off between the structure-only and the
manufacturing-only solutions.

The genetic algorithm needs a penalty function and its performance depends on the
appropriate selection of penalty factor. Here, a GA with different penalty functions is
used, and the best result obtained is compared with the improved GBNM. After 2000
function analyses, solution by the improved GBNM is 17% better than GA. The
difference is reduced to 10% after 5000 function analyses, but still GBNM finds a better
design.

Table 2 shows only the best solution, although there are around 50 other local solutions
found during the optimization process that a designer can select from. In this respect, this

Table 2. Optimum design obtained by improved GBNM after 5000 iterations.

Structure-only Simultaneous Mfg-Only

Fiber orientation [�5/�45/�60/�60]s [10/04/58]s [08]s

Geometry E (mm) 21 10 6
S (mm) 20 20 50
R (mm) 8 7 12

Structural
objectives/constraints

Weight (gr) 6.83 6.91 9.34

Deflection (mm) �0.98 �0.24 0.141
Load factor (R) 2.17 1.74 1.55
Delamination factor 12 23 40

Mfg. obj./cons. Spring-in �0.27 �0.014 �0.005

Structural-only Simultaneous Manufacturing-only 

Figure 18. Optimum geometry of the bracket and fiber orientation of the laminate.
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optimization procedure is comparable to an evolutionary procedure that provides a family
of optimal solutions instead of just one specific solution. This feature is important,
especially for multi-objective optimization.

The composite bracket is optimized for structural, manufacturing, and simultaneous
objectives. The result attests to the necessity of the simultaneous approach for composite
material design. It also confirms that for a small number of function analyses the improved
GBNM is more efficient than a common evolutionary algorithm, both in terms of time
and the optimal solution found.

CONCLUSIONS

A local-global search based on several restarts of the N–M local optimizer is introduced.
The VVP restart is presented to improve the performance of this local-global search.
Different mathematical functions are used to show that the VVP restart generally performs
better than Luersen and random restarts and even an evolutionary algorithm like GA.
The computational cost of VVP restart is much less than that of Luersen restart.
A back-tracking procedure is also presented and tested to incorporate nonlinear
constraints into the design problem. The resulting algorithm can work on a problem
with nonlinear constraints. It is simple to use and is capable of being terminated at any
time. The numerical results show that it is generally faster than an evolutionary algorithm
for a small number of function analyses. Finally, it provides a family of solutions (local
optima) instead of just one specific solution.

The developed optimization procedure is applied to simultaneous structural and
manufacturing optimization of a Z-shaped composite bracket and is compared with GA.
The observed trade-off between structural and manufacturing optimum designs confirms
the need of using a simultaneous approach in this field. The proposed procedure
performed better than an evolutionary algorithm on this type of problem by providing a
better solution with the same number of function analyses. Future work will give more
emphasis on the manufacturing objectives (e.g., processing time, cost, and quality
parameters) and will include manufacturing design variables (e.g., injection pressure and
temperature, gate and vent location, mold design, variables, etc).

97% 100%

67%

100%
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Strc. design Mfg.designSim.design

Manufacturing performance

Figure 19. The simultaneous approach provides a big improvement in manufacturing aspect with a slight loss
in the structural performance.
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