
Constrained Hypothesis Testing

and the Cramér-Rao Bound
Terrence J. Moore, Brian M. Sadler, Fellow, IEEE

Abstract— The classical Wald and Rao test statistics are
asymptotically equivalent to the generalized likelihood ratio test
statistics, while not requiring parameter estimation under both
hypotheses, and so they provide lower complexity test statistics.
In this paper we develop corresponding variations of the Wald
and Rao test for nested hypothesis testing under parameter con-
straints. The resulting tests incorporate the constrained Cramér-
Rao bound formulation from Stoica and Ng, and unify some
asymptotic hypothesis testing results. Examples will illustrate key
ideas and test performance.

Index Terms—Hypothesis testing, constrained Cramér-Rao
bound, asymptotic analysis.

I. INTRODUCTION

Gorman and Hero [1] developed a novel approach to the

analysis of estimator performance when side information ex-

ists for the parameters. They showed that unbiased estimators

for parameters that satisfy continuously differentiable con-

straints have a variance (or mean-square error) lower bounded

by the constrained Cramér-Rao bound (CCRB), which depends

only on the Fisher information matrix (FIM) for the origi-

nal unconstrained model and the Jacobian of the constraint

function. Stoica and Ng [2] extended this result1 for the

more general case when the FIM is singular by using the

complement of the constraint’s Jacobian, that, in general,

corresponds to scenarios where the parameters in the original

model are not identifiable [4].

Interestingly, these results were implicitly shown in the

historical literature when considering the asymptotic normality

of the constrained maximum likelihood estimate (CMLE) as

well as for constrained hypothesis testing [5], [6], [7], [8]. This

prior work typically developed asymptotic variance formulas

for constrained parameters that in retrospect we recognize

to contain the Gorman-Hero version of the CCRB. The

asymptotic normality and convergence of the CMLE to the

corresponding CCRB are shown in [9], generalizing classic

maximum likelihood estimate (MLE) results, and incorporat-

ing the Stoica and Ng CCRB. In this paper, we generalize the

Rao and Wald hypothesis tests under constraints, incorporating

the CCRB. These provide simpler alternatives to the gener-

alized likelihood ratio test (GLRT), and are asymptotically

equivalent.

II. PRELIMINARIES

We observe samples x1, x2, . . . , xn that are i.i.d. with

pdf p(x; θ), where θ is a vector of unknown parameters in
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the open set Θ ⊂ R
m. Let yn = (x1, x2, . . . , xn) be the

collection of these samples so that we have the likelihood

l(yn; θ) =

n
∏

i=1

p(xi; θ). (1)

The Fisher information matrix (FIM) for p(x; θ) is given by

I(θ) = Eθ{sT (θ)s(θ)} (2)

with the expectation taken with respect to the pdf, i.e., Eθ(·) =
∫

Ω

(·)p(x; θ)dx, and the Fisher score is given by

s(θ) =
∂ logp(x; θ)

∂θ
. (3)

The FIM and score depend on the model for x, but this

notation is omitted for conciseness. The variance of any

unbiased estimator of the parameters is lower bounded by the

Cramér-Rao bound (CRB), defined as

CRB(θ) = I−1(θ). (4)

Note that for the likelihood function (1), we have Iyn
(θ) =

nI(θ) and CRByn
(θ) = 1

n CRB(θ) since syn
(θ) = ∂l(yn;θ)

∂θT .

These results can be found in many texts on statistical infer-

ence, e.g., [10].

A. The Constrained Cramér-Rao Bound

It has been shown in [2], [3] that under parametric equality

constraints

f (θ) = 0 (5)

where f : Θ → Rk is a nonredundant continuously differen-

tiable function, then the variance of any unbiased estimator

of θ in the model for x subject to the constraints is lower

bounded by the constrained Cramér-Rao bound (CCRB), de-

fined as

CCRB(θ) = U(θ)
(

UT (θ)I(θ)U(θ)
)−1

UT (θ), (6)

where the columns of U(θ) form a linearly independent

complement of the Jacobian of the constraints F (θ) = ∂f(θ)
∂θT ,

i.e.,

F (θ)U(θ) = 0 and rank(U(θ)) = m− rank(F (θ)). (7)

Similarly, for the likelihood function in (1), the CCRB

is nU(θ)
(

UT (θ)I(θ)U(θ)
)−1

UT (θ). We shall define the

constraint set to be Θf = {θ ∈ Θ : f (θ) = 0}.
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B. Hypothesis Testing

Consider the testing problem

H0 : h(θ) = 0, (8)

where h : Θ → Rr is a consistent, nonredundant, continuously

differentiable function, and denote the Jacobian of this null

hypothesis as

H(θ) =
∂h(θ)

∂θT
. (9)

A common statistic considered for this problem is the

generalized likelihood ratio test (GLRT)

λn =
l(yn; θ̂h)

l(yn; θ̂)
, (10)

where θ̂h is the maximum likelihood estimate (MLE) under

the null hypothesis (i.e., subject to the constraint h(θ) = 0)

and θ̂ is the maximum likelihood (ML) solution under the

alternative hypothesis H1 : h(θ) 6= 0. Asymptotically, as n
approaches ∞, −2 log λn is χ2

r in distribution (see [10] for

more details).

The Wald and Rao (score) tests are asymptotically equiva-

lent to the GLRT, yet these test statistics only require a single

ML solution either under H0 : θ ∈ Θ or H1 : θ ∈ Θh,

respectively, as opposed to requiring both. The Wald test is

given by

ωn = nhT (θ̂)
[

H(θ̂)CRB(θ̂)HT (θ̂)
]−1

h(θ̂), (11)

and only requires the solution of the MLE θ̂. Alternatively,

the Rao score test is given by

ρn = sT (θ̂h)CRB(θ̂h)s(θ̂h)/n, (12)

and only requires the solution of the CMLE θ̂h, i.e., the MLE

under θ ∈ Θh. Again, further details of these results can be

found, e.g., in [10].

III. TESTING UNDER CONSTRAINTS

Now consider the scenario where a testing problem has

a constrained alternative, i.e., under H1 the parameters are

known to satisfy the constraint f (θ) = 0 as described in (5). It

is assumed, additionally, that h is consistent and nonredundant

with respect to f , i.e., Θh ∩Θf = ∅ and

rank(

[

H(θ)
F (θ)

]

) = r + k ≤ m, (13)

respectively. This hypothesis testing problem can also be stated

as

H0 : θ ∈ Θh vs. H1 : θ ∈ Θf , (14)

where now Θh = {θ ∈ Θf : h(θ) = 0}.2

The conditions for the implicit constraint f defined in

section II-A imply the existence of an explicit constraint, at

least locally. Hence, instead of requiring the parameters to be

zeros of a particular function f , we can equivalently require

2In general, the alternative hypothesis in (14) is stated as H1 : θ ∈
Θf \Θh . However, by the definition of h and provided r ≥ 1, then Θh

is a set of (Lebesgue) measure zero in Θf and therefore the hypotheses is

equivalent.

the parameters to be solutions of a function g of a reduced

set of parameters. This equivalence follows from the Implicit

Function Theorem (IFT), see, e.g., [3] and [11, theorems 5-

1 and 5-2]. The difficulty of this step is finding an explicit

reparameterization g, however, it shall be shown that our

results do not require this function directly. Instead, the results

rely on the Jacobian of g, defined as

G(ξ) =
∂g(ξ)

∂ξT
. (15)

It has been shown in [3] that the Jacobian for any reparam-

eterization under the conditions for the implicit constraint in

section II-A corresponds to a linearly independent complement

of F (θ) satisfying (7). Mathematically, the IFT states that

there exist open sets O ⊂ Θf and P ⊂ Rm−k with θ ∈ O and

there exists a diffeomorphism g : P → O such that θ = g(ξ)
for some ξ ∈ P. This reparameterization g depends on θ

(since the diffeomorphism only holds locally about θ) but this

dependence is omitted here for the sake of conciseness.

Hence, for any θ ∈ Θf , an asymptotically equivalent

testing problem to (14) can be written in terms of the parameter

as an explicit constraint, e.g.,

H0 : h(g(ξ)) = 0 vs. H1 : h(g(ξ)) 6= 0, (16)

for which the Wald and Rao statistics are well-known (with

respect to ξ).

A. The general likelihood-ratio test statistic

The likelihood ratio statistic for (14) is simply

λn =
l(yn; θ̂h)

l(yn; θ̂f)
, (17)

where θ̂h and θ̂f are the maximum likelihood solutions in Θh

and Θf , respectively. This test is somewhat common and so

will not be addressed further here.

B. The generalized Wald test statistic

The Wald test statistic for (16) is given by

nhT (g(ξ̂))
[

(H ◦ G)(ξ̂)Ĩ−1(ξ̂)(H ◦ G)T (ξ̂)
]−1

h(g(ξ̂)),
(18)

where (H ◦ G)(ξ̂) = H(g(ξ̂))G(ξ̂) and the Fisher informa-

tion Ĩ(θ) is derived from the score s̃(θ) which is itself derived

from the alternative likelihood p̃(x; ξ) = p(x; g(ξ)). This

expression is not particularly useful, as it requires knowledge

of an explicit formulation of the constraint. To transform the

formula into an expression relevant to the original parameter

space, note from [3] that G(ξ)Ĩ−1(ξ)G(ξ) = CCRB(θ) and

g(ξ̂) = θ̂f (for large n certainly). Substitution into (18)

produces

ωn = nhT (θ̂f )
[

H(θ̂f )CCRB(θ̂f )HT (θ̂f )
]−1

h(θ̂f ).
(19)

This statistic incorporates the CCRB formula and the CMLE

(subject to f ) into the usual Wald statistic. This is a generaliza-

tion of the classical result presented by Aitchison [7, ‘λ21(θ)’
on p. 240], which uses the Gorman-Hero variant of the CCRB
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[1] that assumes a nonsingular FIM.3 For the statistic in (19)

to exist, it is necessary that H(θ̂f )CCRB(θ̂f )HT (θ̂f ) is

nonsingular. However, this is the usual requirement for valid

testing, i.e., that the function to be tested is identifiable.4

Moreover, the statistic in (19) preserves the asymptotic

characteristics of the usual Wald statistic. This can be as-

sumed from the derivation or shown directly: Using a first

order Taylor series approximation of h about θ evaluated

at θ̂, and the fact that
√

n
(

θ̂f − θ
) d→ N

(

0, CCRB(θ)
)

(which is shown, for example, in [9] and [5]), then h(θ̂f ) −
h(θ) = H(θ)

(

θ̂f − θ
)

+ o(1) and
√

n
(

h(θ̂f ) − h(θ)
)

goes to N
(

0, H(θ)CCRB(θ)HT (θ)
)

in distribution as n →
∞. Thus,

√
n

(

H(θ)CCRB(θ)HT (θ)
)−1/2 (

h(θ̂f ) − h(θ)
)

is asymptotically an r-dimensional standard normal distribu-

tion, and ωn → χ2
r in distribution.

C. The generalized Rao test statistic

The Rao test statistic for the problem in (16) is given by

s̃T (ξ̂h◦g) ˜CRB(ξ̂h◦g)s̃(ξ̂h◦g)/n, (20)

where the score is taken with respect to the ξ parameter, in

particular the score is s̃(ξ) = G(ξ)s(θ), and it is evaluated

at the CMLE with respect to h. Note for sufficiently large n,

the invariance property of the MLE holds, i.e., θ̂f,h = g(ξ̂h),
which justifies this reparameterization approach for the CMLE

(with respect to f and h). Hence, substituting into (20) the

formula for the score in terms of θ and noting, again from

[3], that GT (ξ) ˜CRB(ξ)G(ξ) = CCRB(θ) produces

ρn = sT (θ̂h,f )CCRB(θ̂h,f )s(θ̂h,f )/n. (21)

As in the general Wald test statistic in (19), this statistic

incorporates the CCRB formula and the CMLE (subject to

both f and h) into the usual Rao score statistic.5

IV. EXAMPLES

Example 1: Detection of a subspace signal (linear model)

subject to linear constraints in white Gaussian noise of known

level. Assume the parameters in the model x = Dθ+n satisfy

the linear constraint F θ + v = 0, where D ∈ Rd×m is a

known observation matrix, n is a white Gaussian vector with

known covariance matrix σ2Id×d, and F has full row rank

k. For this model, the score is s(θ) = 1
σ2

DT (x − Dθ) and

therefore the FIM is I(θ) = 1
σ2 DT D. Consider the testing

problem:

H0 : θ = θ0 vs. H1 : θ 6= θ0 (23)

3Aitchison also discusses the more general scenario when the FIM is

singular in [7, section 3.9]. Equivalently, this formula can be found in [5].
4Conditions for which identifiability holds under a constraint can be found

in [4].
5There exists a corresponding Lagrange multiplier variant (originally de-

veloped by Silvey [6]) of this generalized Rao statistic given by

λ̂
T
h,f H(θ̂h,f )CCRB(θ̂h,f )HT (θ̂h,f )λ̂h,f /n, (22)

where the Lagrange multiplier (LM) estimates are based on the first order
conditions relating to the constraints h. This result is consistent with a variant
of this LM test [6, if one takes the Schur complement of equation (6.5)] that

uses an alternative variant of the CCRB. The equivalence of the formula was
not shown in Silvey, but can be shown using a general matrix identity in

Khatri [12].

under the linear constraint. The formulation of the null hy-

pothesis does not satisfy (13) and the matrix in (19) will be

singular, and hence the pseudo-inverse may be considered, i.e.,

(θ̂ − θ0)
T

[

U
(

UT I(θ̂)U
)−1

UT
]†

(θ̂ − θ0) (24)

since H(θ) = Im×m. The pseudo-inverse formula for a

Gramian matrix is
(

AAT
)†

= A
(

AT A
)−2

AT if A is full

column rank [13]. The resulting general Wald test is

(θ̂ − θ0)
T UUT I(θ̂)UUT (θ̂ − θ0) (25)

using A = U
(

UT I(θ̂)U
)−1/2

and where U satisfies (7).

This is equivalent to the reparameterized approach: Given

θ = g(ξ) = Uξ − F T (F F T )−1v then the classical Wald

test formula in (11) for this problem is (ξ̂−ξ0)
T Ĩ(ξ̂)(ξ̂−ξ0)

where, as shown in [3], Ĩ(ξ) = UT I(θ)U and UT θ = ξ.

Note that even though the Jacobian of h(θ) = θ − θ0

has full rank m, the statistic is χ2
m−k where k is the rank

of the Jacobian of f (θ) = F θ + v by the assumption of

nonredundancy.

We can show this Wald test is equivalent to the correspond-

ing Rao test for (23). Substituting the FIM and the MLE

θ̂ =
(

DT D
)−1

DT x in , then we have

(x− Dθ0)
T D(DT D)−1/2 ×

[

(DT D)1/2U
(

UT DT DU
)−1

UT (DT D)1/2
]†

×
(DT D)−1/2DT (x − Dθ0), (26)

where we have pulled (DT D)−1/2 into the pseudo-inverse

with the CCRB as this makes the resulting matrix inside

idempotent and its own pseudo-inverse. Hence, we are left

with

(x− Dθ0)
T DU

(

UT DT DU
)−1

UT DT (x− Dθ0), (27)

which using the score and CCRB formula is

sT (θ0)CCRB(θ0)s(θ0), (28)

which is exactly the Rao test statistic for (23). This is an

expected result since the Wald and Rao agree for a linear test

on a linear model and a linear constraint on a linear model is

simply another linear model.

Example 2: Detection of a signal over an unknown convolu-

tive channel subject to a normed channel constraint and real-

valued signaling. We consider a single-input multiple-output

finite-impulse response model, which is typically framed

within a blind channel identification context. This particular

model is given as

x = Ks + n (29)

where K is a 2-sensor, 1-source convolutive channel matrix of

order 3 generated from the example in [2], s ∈ C50×1 includes

the data symbols using binary phase shift keying symbols

generated from a Binomial(1,.5) distribution, and the noise is

white Gaussian with known variance σ2I47×47. We assume a

norm constraint on the channel elements, i.e., ‖vec(K)‖2
= 1,

and additionally assume the signal elements are real-valued,

i.e., imag(s) = 0. The MLE estimate for the Wald test is the
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Fig. 1. ROC curves for detection of a signal in a blind channel identification
context in Example 2 over 1000 trials.

subspace method in [14] with a smoothing factor of eight. We

wish to test

H0 : s = 0 vs. H1 : s 6= 0 (30)

under the channel-norm and real-valued signal constraint.

Since the test is redundant with respect to the constraints,

either the test can be reformulated as real(s) = 0 or the

pseudoinverse can be used in (19). A more interesting com-

plication is that under H0 there exists no meaningful estimate

of the channel elements, which are unobservable under H0.

Hence any estimate for the channel is a CMLE, so we use

the subspace method. Figure 1 displays simulation results for

this example conducted under a range of signal-to-noise ratios

(SNR) for both the Wald and Rao tests. For this particular

scenario the Rao statistic outperforms the Wald statistic, and

as the SNR grows the Rao exhibits perfect classification. It is

important to note the scenario is of a single model sample or

observation (n = 1) so a χ2 assumption would be optimistic.

Example 3: Detection of unit modulus signaling over an

unknown channel for multiple users subject to training or

pilot symbols. This model is a 2-channel, 2-source multiple-

input multiple-output (MIMO) generalization of (29), i.e.,

x = H(1)s(1)+H(2)s(2)+n except with zero order channels.

We use a mixing model with 3-ray multipath subchannels

expressed as a weighted sum of steering vectors with angle-

of-arrivals and corresponding amplitudes being {−1, 0, 4} and

{
√

0.2∠(−π
6 ),

√
0.5,

√
0.15∠(−π

5 )} for source s(1) (at SNR

20dB) and {0, 5, 11} and {
√

0.15∠(−π
5 ),

√
0.6,

√
0.25∠(π

3 )}
for source s(2) (at SNR 15dB). The SNRs are accomplished

by scaling with respect to the channel. Given an observation

of 30 time snapshots for each source, we assume knowledge

of the first two data elements (i.e., training) per source and

test the remaining data elements for unit (constant) modulus

signaling, i.e.,

H0 : |s(i)
j |2 = 1 ∀i, n vs. H1 : |s(i)

j |2 6= 1 for some i, n.
(31)

For the simulation, under H1, we set the s(1) elements to have

unit modulus and the s(2) elements to have modulus 1
4 . An

initial estimate of H is obtained via least-squares using the

training symbols, the initialization of unknown elements of s
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Fig. 2. ROC curves for detection of unit modulus signaling in the MIMO
mixing model of Example 3 over 1000 trials.

are from Ĥ to find the best fit for the MLE. Under H0, we

use ZF-ACMA [15] and use the training to find the best fit

for the CMLE. Figure 2 displays the simulation results. This

is a difficult test as under H1 both sources each have constant

modulus, but the Rao statistic still well detects the moduli are

different.
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