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Constrained Inverse Optimal Control with Application to a

Human Manipulation Task

Marcel Menner, Peter Worsnop, and Melanie N. Zeilinger

Abstract—This paper presents an inverse optimal control
methodology and its application to training a predictive model
of human motor control from a manipulation task. It introduces
a convex formulation for learning both objective function and
constraints of an infinite-horizon constrained optimal control
problem with nonlinear system dynamics. The inverse approach
utilizes Bellman’s principle of optimality to formulate the infinite-
horizon optimal control problem as a shortest path problem and
Lagrange multipliers to identify constraints. We highlight the key
benefit of using the shortest path formulation, i.e. the possibility
of training the predictive model with short and selected trajectory
segments. The method is applied to training a predictive model
of movements of a human subject from a manipulation task.
The study indicates that individual human movements can be
predicted with low error using an infinite-horizon optimal control
problem with constraints on shoulder movement.

Index Terms—Imitation learning, learning for dynamics and
control, learning from demonstrations, manipulation tasks.

I. INTRODUCTION

As robotic systems are applied to increasingly unstructured

and unpredictable environments, the ability to identify and

adapt to their environment is becoming of critical importance.

The collaboration with humans represents a particular chal-

lenge, as the interaction varies between individuals. The ma-

nipulation of an articulated object by a human in collaboration

with a robot is one example, where the robot performance can

be improved by learning a model to describe and predict the

human motor control behavior [1].

The literature on human control behavior widely agrees on

the fact that human motor performance is achieved through a

reactive and a predictive component, cf. the review in [2]. The

reactive component is triggered by sensory inputs and updates

an ongoing motor command; it can therefore be interpreted as

feedback control action. The predictive component capitalizes

on the ability to anticipate motor events based on memory in

order to accomplish a given task under foreseeable conditions,

which can be interpreted as feedforward action [3]. The

existence of these two components has been highlighted in

studies of various motor control tasks, including grasping and

manipulation [4]–[6].

In this work, we present a shortest path inverse optimal

control method, which is applied to train a predictive model

of human motor control. The inverse optimal control method

is thereby used to learn the parameters of an optimal control

problem from demonstrated state and input trajectories. In

particular, it learns both the objective function and constraints
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of an underlying infinite-horizon optimal control problem from

observed trajectory segments of finite length using optimality

conditions of a corresponding shortest path problem and a

candidate constraint set. The optimality conditions are derived

based on Bellman’s principle of optimality [7] and the Karush-

Kuhn-Tucker (KKT) optimality conditions [8]. The proposed

method is convex for objective functions that are linear in their

parameters and for general nonlinear systems, where relevant

constraints are identified from the candidate constraint set

using Lagrange multipliers. The method is utilized to train a

predictive model of movements of three human subjects from

a human manipulation task.

We set up a human manipulation experiment, where three

human subjects manipulated one end of a passive kinematic

object whose position was changed consecutively by a robot.

In this context, the goal of the inverse learning method is to

train a predictive model of human movements. The underlying

hypothesis is that the demonstrations of the human manip-

ulation task are optimal with respect to an infinite-horizon

constrained optimal control problem. The experimental study

highlights the potential of the proposed learning approach by

providing good predictive performance for individual human

movements. In particular, the proposed shortest path formula-

tion is shown to be beneficial for sub-optimal execution, i.e.

disregard the reactive human motor control component in the

application considered in this paper.

Related inverse optimal control approaches are presented in

[9]–[15]. The approaches in [9]–[11] can be interpreted as an

inverse method of an infinite-horizon optimal control problem,

but they are restricted to unconstrained, linear systems and

quadratic objective functions. In [12], a bilevel approach to

solve an inverse unconstrained optimal control problem is

presented. The techniques closest to our method are [13]–

[15], where the KKT conditions are similarly used for learning

the stage cost but the constraints are assumed to be known.

The two main distinctions of our approach with respect to

[13]–[15] are the consideration of an optimal control problem

with an infinite horizon and the simultaneous identification of

constraints from a candidate constraint set that is constructed

from data with a convex optimization problem. By using

a shortest path formulation, the required trajectory segment

for learning the parameters of the underlying optimal con-

trol problem can be shorter, e.g. compared to [14], and the

learned parameters are invariant with respect to the chosen

trajectory segment. As for the application, the incorporation of

constraints results in better predictions of human movement,

whereas the consideration of a shortest path formulation

allows for isolating trajectory segments where the predictive

component is dominant, i.e. where the hypothesis of optimal

demonstrations with respect to an optimal controller is valid.



II. SHORTEST PATH INVERSE OPTIMAL CONTROL

This section presents an inverse optimal control (IOC)

approach based on a shortest path formulation to learn an

objective function and constraints from observations. The ob-

servations are represented as trajectories of state measurements

x(k) ∈ R
n and inputs u(k) ∈ R

m at time-step k, where

x(k + 1) = f(x(k), u(k)) (1)

with the potentially nonlinear function f(·) modeling the

evolution of the state. For the derivation of the inverse method

in this section, we assume that f(·) is given. Section IV

discusses how to identify f(·) for the considered application.

Observed trajectories are assumed to be optimal with respect

to an infinite-horizon constrained optimal control problem, i.e.

x(k + i) = x⋆
i and u(k + i) = u⋆

i ∀ i ≥ 0 with

{x⋆
i , u

⋆
i }

∞

i=0 = arg min
xi,ui

∞
∑

i=0

l(xi, ui;L) (2a)

s.t. xi+1 = f(xi, ui) ∀ i ≥ 0 (2b)

C(xi, ui) ≤ 0 ∀ i ≥ 0 (2c)

x0 = x(k) (2d)

with stage cost l(xi, ui;L) defined as a parametric function

with parameters L, constraint set C(xi, ui) ≤ 0, and initial

state x(k). The notation {·}
∞

i=0 is used to indicate indices

from i = 0 to ∞. The goal in this work is to train a predictive

model by learning both l(xi, ui;L) and C(xi, ui) from state

and input measurements, which is referred to as the inverse

problem to (2) in the following.
Problem Definition: The first difficulty in the inverse prob-

lem of (2) is that measurements x(k), u(k) are not available

for k → ∞ but only in some finite segment. We address this

using a shortest path formulation (Section II-A). For cases,

where the constraint set C(·, ·) is unknown, we propose the

construction of a candidate constraint set. The main step of the

proposed approach is the derivation of optimality conditions

of the shortest path formulation using the candidate constraint

set (Section II-B). The optimality conditions are then used to

simultaneously identify constraints from the candidate set and

learn the stage cost parameters.

A. Formulation of infinite-horizon as shortest path problem

We formulate the infinite-horizon problem as a shortest path

problem of finite length e and show that the minimizers of both

the infinite-horizon problem and the shortest path problem

are identical along the path, i.e. from time k to k + e. Let

Xm := [ x(k)T x(k + 1)T . . . x(k + e)T ]T ∈ R
n(e+1) and

Um := [ u(k)T u(k + 1)T . . . u(k + e− 1)T ]T ∈ R
me be

the collection of state and input measurements, respectively,

over the time interval k through k + e. If Xm, Um describe

the shortest path, then they (at least locally) minimize

{Xm, Um} = arg min
xi,ui

e−1
∑

i=0

l(xi, ui;L)

s.t. xi+1 = f(xi, ui)
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x(k + e).

(3)

Using Bellman’s principle of optimality [7], we can show that

Xm, Um then also correspond to minimizers of (2) for i =
k, ... k+ e, which is formally stated in the following theorem.

Theorem 1. Consider a trajectory segment of measurements

Xm, Um from a dynamical system (1). If the observed inputs

Um are the result of the optimal control problem in (2) for

times k, ..., k + e − 1, then Xm, Um also (at least locally)

minimize the optimization problem in (3).

Proof. The optimization problem in (2) can be written as

J⋆(x(k)) = min
xi,ui

e−1
∑

i=0

l(xi, ui;L) +

∞
∑

i=e

l(xi, ui;L)

s.t. (2b), (2c), (2d).

(4)

If x⋆
e is known, then, using Bellman’s principle of optimality

[7] with xe = x⋆
e , (4) can be formulated as

J⋆(x(k)) = min
xi,ui

e−1
∑

i=0

l(xi, ui;L) + J⋆(x⋆
e)

s.t. xi+1 = f(xi, ui) i = 0, ..., e− 1
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x⋆

e.

(5)

Hence, the minimizers of (2) and (5) are equal for all i =
0, ..., e. The result follows with x⋆

e = x(k + e).

Note that problem (3) differs from a standard finite-horizon

formulation as used in [14] by the end-point constraint xe =
x(k + e), which makes a key difference for learning the

problem parameters, as will be illustrated in Section III.

Remark 1. The shortest path formulation originates from

the hypothesis that demonstrations are optimal with respect

to the infinite-horizon problem in (2). For a different model/

hypothesis, the formulation of the inverse problem can differ.

A particular advantage of the shortest path formulation is

that any path along the measured trajectory can be used

for learning. This allows for selecting particular paths where

the assumption of optimal execution/data is fulfilled ’more

closely’, e.g. high signal-to-noise ratio or negligible reactive

human motor control component in the application considered.

B. Optimality conditions

In the following, we derive optimality conditions of the

shortest path problem in (3) and show how they can be used

for learning both parameters of the stage cost and constraints.

First, we express the optimization problem in (3) in terms of

the inputs ui by recursively defining xi = Fi(U, x0):

Fi(U, x0) :=

{

x0 if i = 0

f(Fi−1(U, x0), ui−1) else
(6)

with U :=
[

uT
0 uT

1 . . . uT
e−1

]T
. Hence, the resulting

optimization problem is given as

min
U

e−1
∑

i=0

l(Fi(U, x(k)), ui;L)

s.t. C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1
Fe(U, x(k)) = x(k + e),

(7)



where we use x0 = x(k). The Lagrangian L(U, λ, ν, L) of the

optimization problem in (7) is given by

L(U, λ, ν, L) = νT(Fe(U, x(k))− x(k + e))

+

e−1
∑

i=0

l(Fi(U, x(k)), ui;L) + λT
i C(Fi(U, x(k)), ui)

(8)

with Lagrange multipliers λi ≥ 0 and ν ∈ R
n, cf. [16], and L

denoting the parameters of the stage cost l(xi, ui;L). Using

L(·) in (8), the KKT optimality conditions for the trajectory

segment are given by

∇UL(U, λ, ν, L) = 0 (9a)

λT
i C(Fi(U, x(k)), ui) = 0 i = 0, ..., e− 1 (9b)

λi ≥ 0 i = 0, ..., e− 1 (9c)

C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1 (9d)

Fe(U, x(k))− x(k + e) = 0. (9e)

1) Construction of candidate constraint set: Eq. (9d) will

hold for any observed trajectory with optimal execution (pri-

mal feasibility), however, the function C might be unknown. If

C is unknown, we propose to use (9d) to construct candidate

constraints C̄(xi, ui) as the convex hull of all observed data

points of the form P [xT
i uT

i ]
T ≤ p. A subset of the candidate

constraints is then identified as constraints via the KKT

conditions. A method for computing the convex hull, i.e. P
and p, is, e.g., presented in [17].

2) Optimality conditions for learning: The idea of the pro-

posed approach is to solve (9) for the parameters L of the stage

cost l(xi, ui;L) as well as for λi and ν, given measurements

Xm, Um and the candidate constraints C̄(xi, ui), i.e.

∇U L̄(U, λ, ν, L)
∣

∣

U=Um
= 0 (10a)

λT
i C̄(x(k + i), u(k + i)) = 0 i = 0, ..., e− 1 (10b)

λi ≥ 0 i = 0, ..., e− 1 (10c)

with the approximate Lagrangian L̄(·) defined as in (8) where

C̄(Fi(U, x(k)), ui) replaces C(Fi(U, x(k)), ui). Eq. (9d) is

only needed for the construction of candidate constraints and

(9e) holds by construction. Hence, both C̄(x(i), u(i)) ≤ 0 and

(9e) are not needed for learning the stage cost parameters, cf.

(9) with (10). The feasibility problem in (10) is convex if

l(xi, ui;L) is linear in L. One can show that (10) is always

feasible using the convex hull as the candidate constraint set,

provided optimal and noise-free data.

The Lagrange multipliers λi and their values are essential

in the proposed IOC approach in order to identify constraints

from the candidate set. Each scalar λi,j can be interpreted as

a force keeping the optimization problem (7) from violating

the corresponding primal constraint C̄j(xi, ui) ≤ 0 at time i.
In other words, the value of a dual variable λi,j indicates the

sensitivity of the optimization problem to the corresponding

constraint [16]. We define a measure for the identification of

constraint j as Λj ≥ Λ̄ with

Λj =
∑e−1

i=0 λi,j , (11)

where Λ̄ ≥ 0 is a problem-specific threshold value. If, e.g.,

Λj = 0, the jth constraint does not affect the minimizer of

the optimization problem and does not represent a constraint.

If, however, the value of Λj is very high, the minimizer is

strongly affected by the constraint j and the constraint is

therefore crucial in explaining the observed trajectory. Hence,

Λj relates directly to the importance of constraint j. The larger

Λj , the more important is constraint j. We utilize this relation

to identify constraints from the candidate set. The identified

constraints are used in the predictive model, along with the

learned parameters of the stage cost.

C. Sub-optimal and noisy data

Eq. (10) will be feasible if, and only if, the trajectory is

the solution of an optimal control problem of the form (2). In

practice, however, even if this modeling assumption is correct,

the feasibility problem in (10) will not be satisfied exactly due

to measurement or process noise. In order to learn from sub-

optimal or noisy data, we propose to solve the relaxed problem

min
L,ν,λi

∥

∥∇U L̄(U, λ, ν, L)
∣

∣

U=Um

∥

∥

2

2

s.t. λT
i C̄(x(k + i), u(k + i)) = 0

λi ≥ 0 i = 0, ..., e− 1.

(12)

It is easy to verify that
∥

∥∇U L̄(·)
∣

∣

U=Um

∥

∥

2

2
= 0 indicates

optimality with respect to (10) and that (12) is always feasible.

Remark 2. The use of a shortest path formulation in this work

is reflected through the term νT(Fe(U, x(k)) − x(k + e)) in

(8). Thus, an inverse approach with finite horizon as in [14]

is obtained with ν = 0.

Remark 3 (On active and identified constraints). A constraint

j is active if C̄j(xi, ui) = 0 at time i. Using the proposed

method for constructing candidate constraints, there are al-

ways active candidate constraints. However, it is important to

note that not all active candidates yield Λj > 0; it is also

possible that candidate j is active, i.e. C̄j(xi, ui) = 0, and

Λj = 0. Inversely, Λj = 0 does not mean that the candidate

j is never active but that the observed trajectory would have

been the same with and without candidate j. Hence, candidate

constraint j is not identified as constraint if Λj = 0. Section III

illustrates this concept in a simulation example.

III. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the IOC procedure and highlight

its key benefits in simulation for a pendulum with the discrete-

time state-space representation:
[

x1(k + 1)
x2(k + 1)

]

=

[

x1(k) + Tsx2(k)
x2(k)− Ts

g
l
sinx1(k)

]

+ Ts

[

0
1

ml2

]

u(k)

with x1(k) = θ(t) at t = kTs and Ts = 0.01s, g = 9.81m/s2,

l = 1m, and m = 1kg. θ(t) is the angle and u(t) is the applied

torque in Nm, where |u(t)| ≤ ū with ū = 5Nm is assumed

to be the available torque. In the following, we consider an

optimal controller of the form (2) with constraints ui ≤ 5
and −ui ≤ 5 and stage cost l(xi, ui;Q

gt, rgt) = xT
i Q

gtxi +
rgt|ui|+u2

i . The goal in this example is to learn the constraints

and the parameters Qgt and rgt.



A. Learning with shortest path and finite horizon methods

First, we highlight main differences between the proposed

shortest path formulation and two finite-horizon methods, i.e.

a method using the KKT conditions similarly as in [14]

and a probabilistic IOC method which uses a likelihood

maximization similarly as in [18]. The finite-horizon KKT

method differs from the presented approach by virtue of the

term νT(Fe(U, x(k)) − x(k + e)) in (8) and thus, follows

readily with ν = 0 (removing the term). The proposed IOC

approach, similarly as the approach in [14], yield a convex

semi-definite program, which can e.g. be solved with MOSEK

[19], whereas the likelihood maximization method yields a

non-convex optimization problem, which in this example is

solved with a projected gradient descent method.

Figure 1 shows results with trajectory segments from t =
0s through te generated with Qgt = I and rgt = 0, where

we enforce Q � 0. The middle plot shows that the proposed

method only needs a segment from t = 0s through te ≈ 0.5s

to find the ground truth. Both methods with finite horizon are

not able to learn the ground truth even if the segments are long

and θ(t) is close to stationarity, cf. Q12 ≈ 1 at te = 1000s.

B. Learning with and without candidate constraints

Next, consider the trajectories with Qgt = 10I and rgt = 1
for comparing methods with and without candidate constraints

using segments from ti to ti+2s, cf. the top plot in Figure 2.
IOC, constrained (2nd plot from the top): The first step is

to construct candidate constraints for the input u(k):

u(k) ≤ gu (13a)

−u(k) ≤ gl (13b)

where gu and gl depend on the chosen segment and are dis-

played in red (diamond markers) and green (triangle markers),

respectively. The algorithm returns Q and r as well as Λ1 and

Λ2, which are defined in (11) and correspond to the candidate

constraints (13a) and (13b), respectively. The parameters Q
and r are very close to the ground truth for all ti. If ti < 0.96s,

gu = 5 and Λ1 > 0 suggesting that u(k) ≤ 5 is indeed a

constraint. If ti > 0.96s, gu < 5 and Λ1 = 0 suggesting

that u(k) ≤ gu < 5 is not a constraint, which is correct, as

the constraint is not active. For all ti, gl < 5 and Λ2 = 0
(not displayed) suggesting that −u(k) ≤ gl < 5 is not a

constraint. Overall, Q is learned reliably and for ti < 0.96,

u(k) ≤ umax is learned as constraint. The trajectory does not

provide conclusive evidence about the existence of a lower

bound, i.e. −u(k) ≤ umax, which is expected as gl < 5 ∀ti.
IOC, unconstrained (3rd plot from the top): If ti > 0.96s,

Q and r are very close to the ground truth, which is expected

since the control problem is virtually unconstrained in these

segments. However, if no candidate constraints are constructed

a priori, Q and r differ for ti < 0.96s as the observed trajectory

cannot be explained by means of an unconstrained optimal

control problem.
Finite-horizon IOC, constrained (bottom plot): The method

learns the constraint u(k) ≤ 5 using similar arguments as SP-

IOC, however, it fails to capture the ground truth stage cost

parameters with r ≈ 0 and Q not close to Qgt for all trajectory

segments.
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C. Summary of analysis

In this section, we have illustrated the benefits of the

proposed approach. In particular, we showed the candidate

constraint construction and how to simultaneously learn pa-

rameters of the stage cost and identify constraints from the

candidate set. Further, we have shown that the proposed

shortest path formulation only requires a short segment of

measurements to learn the stage cost parameters and iden-

tify constraints, whereas finite-horizon approaches require a

comparably long segment. Moreover, we have shown the

importance of the candidate constraint set as a substantial

component for correctly identifying the stage cost.



IV. MANIPULATION OF A PASSIVE KINEMATIC OBJECT

In this section, we show how to train a predictive model for

human movements in a manipulation task using the proposed

method. We conducted experiments with three human subjects

where the underlying hypothesis is that humans plan their

movements by solving a constrained optimal control problem.

A. Experiment description and system modeling

In the experiment, the human subjects manipulated one end

of an object whose position was changed consecutively by a

robot. The manipulation task was set up to provide a fore-

seeable environment triggering the human’s predictive motor

control component such that the reactive control component

can be disregarded (at least at the beginning of the movement).

The object was articulated and unactuated and was composed

of three lightweight wooden links and one cardboard handle,

which acted as both a revolute joint and the manipulation

point, cf. Figure 3. Hence, it had four revolute joints, one

connecting its end link to the robot (joint 1), two connecting

the three wooden links (joint 2 & 3), and the cardboard handle

(joint 4), which was gripped by the subject such that the

forearm and the handle acted as a single rigid body.

After familiarizing themself with the robot, the human was

instructed to achieve specific angles for two of the object’s

joints, the joint connecting the object to the robot (joint 1 in

Figure 3) and the first joint after that (joint 2), both of which

have vertical rotational axes (perpendicular to the ground).

The target angles were communicated to the subjects visually

by reference-markers attached to the links. The subjects were

asked to only move when the robot was stationary. First, the

robot moved to disturb the system state. When the robot’s

motion ended, the subject corrected the reference error. Motion

capture sensors were placed on all links of each kinematic

chain and recorded through the Phasespace Python API.

The derivation of the individual movement model, i.e.

the system dynamics, of each subject is based on model-

ing the passive kinematic object and the human arm as a

kinematic chain [20] whose parameters were identified from

measurements. In this model, the base frame is attached to

the torso and the manipulation frame is attached to the grip

location of the hand. Ball joints such as the shoulder joint are

modeled as three revolute joints in series with orthogonal axes

intersecting at the center of the joint. This leads to the ball

joint configuration being described with intrinsic Euler angles

rotating around a point in space [21], [22]. The elbow joint

is modeled as a single revolute joint. The wrist is modeled as

three revolute joints in series, however a wrist brace was used

in the experiment to restrict the motions in the frontal and

sagittal plane, that is, waving and flapping motions. Pronation

and supination (twisting about the forearm) could not be

restricted by the brace, however the experiment was designed

such that the kinematic chain of the object itself constrained

this movement. Both the placement of the motion capture

markers and the kinematic modeling are shown in Figure 3.

The system state x(t) = [ xh(t)
T xo(t)

T ]T is composed of

the joint angles of the human, xh(t) ∈ R
4, and of the object,

xo(t) ∈ R
4. The input to the system, u(t) = ẋh(t), is given

Joint 1
Joint 2

Joint 3

Joint 4 (cardboard handle)

Fig. 3. Top: Modeling of the human arm and the object. Bottom: Experiment
setup with the Kuka LBR iiwa robot. Joints included in the model are shown in
green, while the blue joint represents a freedom of motion that was constrained
by experiment design. The motion capture markers are illustrated in red.

by the joint velocities of the human arm. The velocities of the

object joint angles are given by:

ẋo(t) = J‡
o (xo(t))Vg(t), (14)

where Jo(xo(t)) ∈ R
6×4 is the Jacobian mapping joint

velocities of the object to Vg(t), the absolute twist velocity

of the manipulation frame, and J‡
o (xo(t)) ∈ R

4×6 denotes

its Moore-Penrose pseudo-inverse [23]. Given that the human

maintained a stationary base in the experiment, we can express

Vg(t) in terms of the human arm joint velocities and the

Jacobian of the human arm, Jh(xh(t)) ∈ R
6×4:

Vg(t) = Jh(xh(t))ẋh(t). (15)

Using (14) and (15), ẋo(t) = J‡
o (xo(t))Jh(xh(t))ẋh(t), and

thus, the overall dynamics of the system is given by
[

ẋh(t)
ẋo(t)

]

=

[

I
J‡
o (xo(t))Jh(xh(t))

]

u(t). (16)

In order to obtain the Jacobians, the twists representing the

joints in each kinematic chain are identified by recording traces

of the subject’s range of motion and applying the techniques

in [24]. The Jacobians Jh(xh(t)) and Jo(xo(t)) in (16) are

derived using the formula for the body Jacobian as in [25].

A discrete-time representation of (16) is derived using an

Euler-forward scheme with the sampling time Ts:
[

xh(k + 1)
xo(k + 1)

]

=

[

xh(k)
xo(k)

]

+ Ts

[

I
J‡
o (xo(k))Jh(xh(k))

]

u(k).

An unscented Kalman filter as described in [26] is imple-

mented to estimate the system state, where a static process

model is chosen to smoothen the estimated angles, since mea-

surement noise is amplified by the kinematic transformation.

The inputs are computed as u(k) = (xh(k + 1)− xh(k))/Ts.

B. Learning predictive model for human movements

Each of the three subjects maneuvered the object 15 times

to correct the reference error induced by the robot. For each



experiment, we recorded the entire trajectory from the start of

the human movement until the subject was instructed to remain

stationary. For reasons discussed in Section IV-C3, we use the

initial 1.2s, i.e. e = 65 in (10) with sampling time Ts =
0.0185s for learning, which corresponds to roughly 60% of

each trajectory. In order to generalize from the available sparse

data, we utilize leave-one-out cross-validation [27], where we

learn the parameters of the predictive model 15 times, each

time removing one of the recorded trajectories. This is done

to assess the robustness of the model.

1) Design choices: In this work, we train a predictive

model with quadratic stage cost. Our goal is to exemplify

the proposed method to build a simple predictive model

of human movement. Quadratic stage costs are commonly

used as objective function in optimal control offering a good

compromise between complexity and expressivity, where the

cost minimizes a trade-off between tracking a given target and

control effort. Note that higher-order or more complex stage

cost terms are possible with the proposed framework and there

are various possibilities to express human movements [28].

Given that the task requires tracking a reference for only two

of the states, we take a stage cost of the form

l(xi, ui) = (Sxi − ys)
TQ(Sxi − ys) + uT

i Rui,

where ys ∈ R
2 is the reference, S = [ 02×4 I2 02×4 ] selects

the states (two joint angles of the object) tracking ys, and Q,R
are the penalty parameters. We enforce Q,R � 0 in order to

obtain physically meaningful penalties for both deviation to

the target angles and control effort. Also, we restrict the input

penalties to
∑m

i=1 Rii = 1, which fixes the scaling of the stage

cost and avoids the trivial solution of all parameters being

zero. We train one predictive model without constraints and

one with a polytopic candidate constraint set for each subject.

Candidate constraints: The object’s states xo(k) are mod-

eled as unconstrained. The human’s states xh(k) consist of

the three shoulder joint angles and the elbow angle; the inputs

u(k) are the three angular velocities of the shoulder joint and

the angular velocity of the elbow. Constraints on joint angles

directly relate to constraints on xh(k), velocity constraints

relate to constraints on u(k), and acceleration constraints are

computed as a rate constraint: a(k) = (u(k + 1)− u(k))/Ts.

2) Learning results: Figure 4 shows the mean and standard

deviation of Q and R obtained with the proposed IOC method.

The most distinct feature is the scale of the parameters Qij ,

varying from order 10−2 for Subject 1, 10−3 for Subject 2,

to 10−6 for Subject 3. The second most distinct feature is the

difference in the diagonal elements of R that reflect movement

of the shoulder, i.e. R11, R22, and R33, whereas the penalty on

elbow velocity is comparable, i.e. R44 ≈ 0.2 for all subjects.

Off-diagonal elements in R are similar across subjects.

Table I shows the sum of Lagrange multipliers as in (11),

which are used to identify constraints from the candidate

constraint set. The Lagrange multipliers are stated as the mean

over all experiments to identify constraints on angle, velocity,

and acceleration of shoulder and elbow joints. We consider

constraint j as identified if the corresponding Lagrange mul-

tiplier Λj ≥ Λ̄ = 10−3. It can be seen that constraints are

predominantly on shoulder movement. Constraints on elbow

movement seem less important for all subjects. Note that even

though the stage cost parameters in Figure 4 obtained with

constrained and unconstrained IOC are relatively close for the

individual subject, the resulting prediction models differ by

virtue of the constraints identified as in Table I.
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Fig. 4. Mean and standard deviation of cost parameters Q and R for
unconstrained learning (black stars) and constrained learning (red diamonds).

TABLE I
LAGRANGE MULTIPLIERS TO IDENTIFY CONSTRAINTS

Angle Velocity Acceleration

Shoulder Elbow Shoulder Elbow Shoulder Elbow

Subject 1 22.8 0 3.31e-2 0 1.38e-2 8.66e-4

Subject 2 11.5 0 2.78e-1 0 2.15e-2 6.98e-4

Subject 3 3.50 0 4.36e-1 2.86e-4 1.05e-1 0

C. Evaluation of trained human manipulation model

The difficulty in evaluating the quality of the trained model

for human-centered experiments is the lack of a ground truth as

reference. We therefore assess the quality of modeling human

movement as an optimal control problem (2) by comparing

the true trajectory with the prediction provided by the model.

The predictions are obtained by solving problem (3) with the

learned stage cost and identified constraints from the initial

position at time t = 0s through t = te = 1.2s using IPOPT

[29], cf. Figure 5 for a sample prediction. We compute 15 sets

of stage cost matrices by leaving out one trajectory for each

learning. In order to evaluate the quality of the trained model,

we use the left-out measured trajectory for validation against

the predicted trajectory, which would result from (3) with the

learned stage cost and constraints. This technique ensures that

the predicted trajectory is not biased by the corresponding

measured trajectory. The mismatch between prediction x̂j
i ∈

R
8 and measurement xj(i) ∈ R

8 of trajectory j is measured

as the root mean square (RMS) error:

Ej =
√

1
8e

∑e

i=1 ‖x̂
j
i − xj(i)‖22. (17)

1) Intra-subject evaluation: First, we compute the errors

Ej in (17) for each trajectory j per subject. Figure 5 shows

one measured trajectory of Subject 2 and the predictions

obtained with the unconstrained and the constrained model.

The prediction obtained with the unconstrained model shows

a larger RMS error, best seen in the plot of human joint angles.



The prediction obtained with the constrained model shows a

lower error. Table II presents the mean and standard deviation

over all 15 prediction errors for all subjects. It shows that,

generally, the predictions have low errors (< 3.3◦), where

Subject 1 has the lowest (< 1◦). On average, the presence

of constraints improve the predictions by 20%-25%.

TABLE II
PREDICTION ERRORS: UNCONSTRAINED VS. CONSTRAINED

Constraint set unconstrained constrained

Subject 1 0.96◦ ± 0.49◦ 0.78◦ ± 0.42◦

Subject 2 3.26◦ ± 1.75◦ 2.45◦ ± 0.87◦

Subject 3 1.87◦ ± 1.00◦ 1.56◦ ± 0.79◦

2) Inter-subject cross-evaluation: Next, we analyze the

individuality of the trained models, where the error Ej in (17)

is computed three times for each trajectory j: We compute the

error using the prediction model of the subject who generated

trajectory j; then, we compute Ej of the predicted trajectory

x̂j
i using the other subjects’ prediction models, where we use

the proposed IOC method with polytopic constraints.

Figure 6 shows an example of a measured trajectory from

Subject 1, compared against predictions generated with the

models of all subjects. The measured trajectory and the

predicted trajectory of Subject 1 are close (error: 0.55◦).

The predicted trajectories of Subject 2 & 3 show higher

errors. Table III states the mean and standard deviation of

the errors between measurements of Subject j in columns j
and prediction with objective of Subject i in rows i over all

trajectories. Hence, a good separation between the subjects

means large entries in the off-diagonal entries i 6= j. The

results show a high confidence in separating Subject 1 from the

other two with high confusion errors (3.23◦, 2.39◦ vs. 0.78◦).

The confidence to identify Subject 2 from a given trajectory

is also high with confusion errors (3.99◦, 3.59◦ vs. 2.45◦).

A less clear separation is observed for Subject 3, where the

confusion errors are lower (2.22◦, 1.91◦ vs. 1.56◦). Overall,

this cross-validation suggests that the models trained to predict

the distinct motor behavior are individual.

TABLE III
PREDICTION ERRORS: CROSS-VALIDATION BETWEEN SUBJECTS

Trajectories of Subject 1 Subject 2 Subject 3

M
o

d
el Subject 1 0.78◦ ± 0.42◦ 3.99◦ ± 1.53◦ 2.22◦ ± 1.14◦

Subject 2 3.23◦ ± 1.03◦ 2.45◦ ± 0.87◦ 1.91◦ ± 0.93◦

Subject 3 2.39◦ ± 0.68◦ 3.59◦ ± 1.68◦ 1.56◦ ± 0.79◦

3) Benefit of shortest path formulation: In the following,

we discuss the advantages of using a shortest path formulation

over a finite horizon in the context of the considered applica-

tion. If the entire trajectory is used for training and stationarity

is reached, i.e. e is large, both the proposed shortest path

method and a finite-horizon method are similar. In the context

of the considered application, however, we encountered two

main challenges when considering the entire trajectory. Firstly,

in the final part of the trajectory, the target angles are more or

less reached and the measured signals are close to stationarity.

As a result, the signal-to-noise ratio is low and can corrupt

−20◦

0◦

20◦

40◦

shoulder flexion

shoulder abductionshoulder rotation

elbow flexionH
u
m
a
n
jo
in
t
a
n
g
le
s

Meas. Traj. unconstrained constrained

0 0.2 0.4 0.6 0.8 1 1.2
−60◦
−30◦

0◦
30◦
60◦

Time t in s

O
b
je
ct

jo
in
t
an

gl
es
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strained model in gray (error 4.17◦) and the constrained model in red (error
1.40◦). The upper plot shows the shoulder flexion, shoulder abduction, and
shoulder rotation, as well as elbow flexion. The object states to be tracked
are shown in the lower plot as dashed black lines and are related to the
corresponding joints with a diamond and a star marker.

−30◦

−20◦

−10◦

0◦

10◦
H
u
m
an

jo
in
t
an

gl
es

Meas. Traj. Subject 1 Subject 2 Subject 3

shoulder flexion

shoulder abduction

shoulder rotation

elbow flexion

0 0.4 0.8 1.2

−30◦

0◦

30◦

60◦

90◦

O
b
je
ct

jo
in
t
an

gl
es

0 0.4 0.8 1.2

Time t in s

Fig. 6. Measured trajectory of Subject 1 in black, predicted trajectory of
Subject 1 in red (error: 0.55◦). Left plots: Predicted trajectory of Subject 2
in green (error: 3.62◦). Right plots: Predicted trajectory of Subject 3 in blue
(error: 1.97◦).

learning. Secondly, we observed small corrections around the

target angles in the experiment suggesting the presence of re-

active movements, which renders the final part of the trajectory

not indicative for the predictive human motor control.

For shorter segments, the predictive component dominates

both noise and reactive component but the solution from a

finite-horizon formulation diverts from that with a shortest

path, cf. Section III. The proposed IOC approach allows

for using only the initial part of the trajectory for learning

where stationarity is not reached. Overall, the presence of both

reactive human motor control component and noise do not

fulfill the assumption of optimal execution with respect to (2).

We used the initial 60% of the trajectory, which was observed

to be a good trade-off between segment-length and avoidance

of the reactive component.



Figure 7 revisits the trajectory in Figure 5 to illustrate the

above discussion on the horizon length e. The upper plot

shows the complete recorded trajectory, where some correction

around the target angles can be observed for t ≥ 1.4s, cf. joint

angle marked by the diamond symbol. The lower plot displays

the RMS error (17) of the predictions that result from different

horizon lengths e. The RMS error increases as a result of both

the correction around the target angles and the low signal-to-

noise ratio. It highlights that the modeling assumption as an

open-loop optimal control problem is suitable for the predic-

tive part, but not in the presence of the reactive component.
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and are related to the corresponding joints with a diamond and a star marker.
Bottom: RMS error of prediction with different horizon lengths e.

V. CONCLUSION

This paper presented an inverse optimal control approach

to learn both cost function parameters and constraints from

demonstrations, i.e. state and input measurements of dynam-

ical systems. The shortest path formulation is shown to be

the inverse problem to an infinite-horizon optimal control

problem. By relying on the Karush-Kuhn-Tucker conditions,

the problem is convex for cost functions that are linear in their

parameters. We set up a human manipulation experiment to

exemplify the proposed approach for modeling and predicting

human arm movements. In the experiment, three human sub-

jects manipulated one end of a passive kinematic object whose

position was changed consecutively by a robot. The benefits

of using a shortest path formulation and the consideration

of constraints on human movements were highlighted. The

results showed that a model with good predictive capabilities

can be learned using a quadratic cost function for both states

and inputs together with constraints on shoulder movements

using the proposed formulation. Finally, it was shown that the

predictive models of the human subjects are individual.
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