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Abstract-In this paper, an improved form of iterative speech en- 
hancement for single channel inputs is formulated. The basis of the 
procedure is sequential maximum a posteriori estimation of the speech 
waveform and its all-pole parameters as originally formulated by Lim 
and Oppenheim, followed by imposition of constraints upon the se- 
quence of speech spectra. The new approaches impose intraframe and 
interframe constaints on the input speech signal to ensure more speech- 
like formant trajectories, reduce frame-to-frame pole jitter, and 
effectively introduce a relaxation parameter to the iterative scheme. 
Recently discovered properties of the line spectral pair representation 
of speech allow for an efficient and direct procedure for application of 
many of the constraint requirements. Substantial improvement over 
the unconstrained method has been observed in a variety of domains. 
First, informal listener quality evaluation tests and objective speech 
quality measures demonstrate the technique's effectiveness for addi- 
tive white Gaussian noise. A consistent terminating point for the iter- 
ative technique is also shown. Second, the algorithms have been gen- 
eralized and successfully tested for noise which is nonwhite and slowly 
varying in characteristics. The current systems result in substantially 
improved speech quality and LPC parameter estimation in this context 
with only a minor increase in computational requirements. Third, the 
algorithms were evaluated with respect to improving automatic rec- 
ognition of speech in the presence of additive noise, and shown to out- 
perform other enhancement methods in this application. 

I. INTRODUCTION 

HE presence of background noise can seriously degrade the T performance of many speech processing systems, since most 
digital voice communication and recognition systems have tra- 
ditionally been formulated in noise-free tranquil environments. 
There are, however, many instances where such systems must 
perform reliably in noisy environments. As an example, con- 
sider the use of speech recognition in a noisy aircraft cockpit. 
It has been shown that recognition performance is severely re- 
duced in such an environment due to background noise and pilot 
task requirements [8], [13], [l8]. Since commonly used front 
ends do not usually take noise into account explicitly, recog- 
nition deteriorates rapidly. One alternative, which would ben- 
efit recognition as well as speech coding systems is to develop 
enhancement preprocessors that produce speech or recognition 
features less sensitive to background noise, so that existing rec- 
ognition/communication systems may be employed. Such pre- 
processing systems would also benefit human listeners by im- 
proving speech characteristics in voice communications 
systems. 

The problem of enhancing speech degraded by additive back- 
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ground noise covers a broad spectrum of applications and issues 
[12]. A system may be directed at one or more objectives such 
as improving overall quality, increasing intelligibility, or re- 
ducing listener fatigue. Assumptions made in this investigation 
include: i) the background noise distortion is additive, ii) only 
the degraded speech signal is available (i.e., single microphone 
environment), and iii) the noise and speech signals are uncor- 
related. 

This paper presents an improved method for iterative speech 
enhancement based on a set of vocal tract spectral constraints. 
The framework of this approach was adopted from all-pole 
modelinghoncausal Wiener filtering as formulated by Lim and 
Oppenheim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 13. The original iterative technique attempts to 
solve for the maximum a posteriori (MAP) estimate of a speech 
waveform in additive white noise. The improved techniques are 
formulated using interframe and intraframe constraints to en- 
sure speech-like characteristics. An efficient technique for ap- 
plying the spectral constraints is based on the line spectral pair 
(LSP) transformation of the LPC parameters. The paper is ar- 
ranged as follows. First, the iterative unconstrained technique 
is discussed. Several anomalies are cited which motivate for- 
mulation of constrained enhancement techniques using the LSP 
transformation. Next, algorithm evaluation is performed for ad- 
ditive white Gaussian noise, and a slowly varying nonwhite dis- 
tortion. Finally, a comparative evaluation is also performed to 
determine their usefulness as preprocessors for recognition in 
noisy environments. 

11. ITERATIVE SPEECH ENHANCEMENT 

Enhancement based on the estimation of all-pole speech pa- 
rameters in additive white Gaussian noise was investigated by 
Lim and Oppenheim [ 111, and later for a colored noise degra- 
dation by Hansen and Clements [3], [4], [6]. This approach 
attempts to solve for the maximum a posteriori estimate of a 
speech waveform in additive white Gaussian noise with the re- 
quirement that the signal be the response from an all-pole pro- 
cess. Crucial to the success of this approach is the accuracy of 
the estimates of the all-pole parameters at each iteration. After 
some simplification, it can be shown that the resulting equations 
for the joint MAP estimate of tGe all-pole speech parameters 
a', gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, and noise free speech So become nonlinear. Lirn and 
Oppenheim considered a sujoptimal solution employing se- 
quential MA? estimation^ of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo followed by MAP estimation of 

a', g given SO,,, where So,, is the result of the ith estimation. 
The sequential estimation procedure is linear at each iteration, 
and must continue until some criterion is satisfied. With further 
simplifying assumptions, it can be shown that MAP estimation 

of So is-equivalent to noncausal Wiener filtering of the noisy 
speech Yo. Lim and Oppenheim showed this technique, _under 
certain conditions, increases the joint likelihood of a' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS with 
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each iteration. It can also be shown to be the optimal solution 
in the mean-squared sense for a white noise distortion. 

Although successful in a mathematical sense, this technique 
has received little application due to several factors. First, the 
scheme is iterative with sizable computational requirements. 
Second and most important, is that although the original se- 
quential MAP estimation technique was shown to increase the 
joint likelihood of the speech waveform and all-pole parame- 
ters, a heuristic convergence criterion had to be employed. This 
represents a serious drawback if the approach is to be used in 
environments requiring automatic speech enhancement. Hansen 
and Clements performed an extensive investigation of this tech- 
nique for additive white Gaussian (AWGN), and a generalized 
version for additive nonwhite, nonstationary aircraft interior 
noise [3], [4]. Objective speech quality measures, which have 
been shown to be correlated with subjective quality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 171, were 
used in the evaluation. This approach was found to produce 
significant levels of enhancement for white Gaussian noise in 
3-4 iterations. Improved all-pole parameter estimation was also 
observed in terms of reduced mean-squared error. Only if the 
probability density function is unimodal, and the initial estimate 
for a' is such that the local maximum equals the global maxi- 
mum, is thegrocedure equivalent to the joint MAP estimate of 
a', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,  and So. Some interesting anomalies were noted which 
helped motivate development of the constrained approaches. 
First, as additional iterations were performed, individual for- 
mants of the speech consistently decreased in bandwidth and 
shifted in location as indicated in Fig. 1. Second, frame-to- 
frame pole jitter was observed across time. Both effects con- 
tributed to unnatural sounding speech. Third, although the se- 
quential MAP estimation technique was shown to increase the 
joint likelihood of the speech waveform and all-pole parame- 
ters, a heuristic convergence criterion had to be employed which 
was shown by Hansen and Clements to be dependent on speech 
class concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  

Lim and Oppenheim later recognized that their method re- 
sulted in biased estimates of the all-pole speech parameters. This 
observation, could easily explain the variation in quality across 
different speech classes for the unconstrained technique. An im- 
proved maximum likelihood (ML) method for general AR and 
ARMA parameter estimation in noise was later formulated by 
Musicus and Lim [ 151 which addressed some of the limitations 
of the original technique. Although such a procedure might help 
in the estimation of speech parameters, it has never to our 
knowledge, been subjected to extensive testing on speech in 
noise. Even if this improved procedure were used, it would only 
serve to address the problem of better estimation of AR param- 
eters in noise. Since speech is not truly all pole, there is no way 
of knowing whether or not the ML procedure is actually better 
for speech than the original Lim-Oppenheim procedure. On the 
other hand, performance of the unconstrained Lim-Oppenheim 
approach has been well documented for speech degraded by ad- 
ditive white Gaussian noise, thereby motivating its use as a ba- 
sis of comparison. 

The constrained iterative techniques presented here address 
the speech in additive noise problem by using speech-specific 
constraints via the line spectral pair parameters, which in them- 
selves are different from the AR model alone. Hence a new set 
of constraints which add more knowledge of the type of signal 
being enhanced are added. Although it may be possible to im- 
prove the enhancement procedure further by employing our 
constraint approaches within the Musicus-Lim technique, we 
have shown that the imposition of some relatively simple con- 

(a) (b) (C) (d) 

Fig. 1 .  Variation in vocal tract response across iterations. (a) Original. (b) 
Distorted original. (c) Four iterations. (d) Eight iterations. 

straints improves speech quality results, even when directly at- 
tached to the original Lim-Oppenheim method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in the 
presence of noise as formulated by Lim and Oppenheim where 
all unknown parameters over a short interval (all-pole speech 
paremeters a', gain g, and noise free speech so) are random 
with a priori Gaussian probability denscy functions. It was 
shown tkat MAP estimation of a', g,  and So given noisy obser- 
vations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYo, results in a set of nonline_ar equations. Therefore, 
instead of joint estimation of a' and So, a suboptimal solution 
was formulated_ employi_ng a two-step approach based on MAP 
estimatiqfl of So givzn Yo, followed by MAP estimation of a', 
g given So,l ,  where So, l  is the result of the ith estimation. In the 
currently reported work, constraints are imposed on the vocal 
tract spectrum between MAP estimation steps. The procedure 
for obtaining the MAP estimates of a' and g remain the same, 
as that of Lim and Oppenheim. In the current system, con- 
straints are applied to 2, to ensure that i) the all-pole speech 
model is stable, ii) it possesses speech-like characteristics (e.g., 
poles are in reasonable places with respect to each other and the 
unit circle), and iii) the vocal tract characteristics do not vary 
by more than a prescribed amount from frame to frame when 
speech is present. Gjven the new estimate the second 
MAP estimation of So is performed by maximizing its condi- 
tional probability-density function given sl + , and the observed 
noisy sequence Yo. Since this probability density function is 
jointly Gaussian, the-resulting MAP estimate is equivalent to a 
MMSE estimate of So. With further simplifying assumptions, 

it can be shown that MAP estimation of so reduces to a mini- 
mum mean-squared error (MMSE) estimate, and as the obser- 
vation window increases, the procedure becomes a noncausal 

Wiener filter. Once the new estimate of so,, is formed, the it- 
erative procedure continues by reestimating ZI, applying con- 

straints to i?,, and forming the noncausal filter using s, +,  to 
reestimate So,l .  The procedure continues until some conver- 
gence criterion is satisfied. Due to the flexibility of the enhance- 
ment framework, a variety of constraint options are possible 
between MAP estimation steps. 

Fig. 2 presents an overview of two classes of constraints 
which include interframe (across time) andlor intraframe (across 
iterations). Each technique differs in the type of constraint and 
computational requirements. The present evaluation focuses on 
two representative interframe (FF-LSP : T) and combined inter- 
frame plus intraframe (FF-LSP : T, Auto : I) based techniques. 
Further discussion of all techniques are found in [5]-[7]. For 
historical purposes, several comments concerning the other ap- 
proaches are summarized. 

Since observations indicate that poles of the LPC filter often 
move unrealistically close to the unit circle when the uncon- 

+ 



197 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHANSEN AND CLEMENTS: CONSTRAINED ITERATIVE SPEECH ENHANCEMENT 

ACROSS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATIME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(DFkT): Direct Rame Averaging 

Of Radial Pole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALocations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-0: Off-Axh Spedral Evaluation 

WRO: Direct Constraints on 
Maxlmum Pole Movement. 

(OFkT. mil: Direct WeIghted Smwthhg of Radlal Pole 
Locatlons (Urnel. Direct Constraints on 
Maxlmum Radlal Pole Movement (Iteratlonl. 

(MS-LSPTI: Median Smoothing 
of LSP Parameters 

(FF-LSRTk Ftred-frame smoothlng 
constraint on LSP parameters. 

(FF-IBPT, Aut0:O: Flxed-frame LSP Parameter Constraint (urnel 
Autocomlatlon coefl. constralnt (iteration) 

(FF-LSPT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIsPJ): Fked-frame LSP Parameter constraint (Umel 
LSP Posltlon Parameter constraint (iteratlonl 

( (VF-mT.  LSP:O: Variable-frame LSP Paraneter constraint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(time) 
U P  Pasition Parameter constraint [iteration1 I 

Fig. 2. An overview of spectral constraints considered for the class of con- 
strained speech enhancement algorithms. 

strained iterative technique is allowed to continue, initial tech- 
niques limited pole movement by applying constraints directly 
to radial andlor angular movements of the LPC poles across 
iterations and time. For these techniques, LPC predictor coef- 
ficients were obtained, a Pth-order root solve was performed 
and a pole ordering step applied. If pole movement fell within 
a movement constraint window, a constraint was applied, oth- 
erwise, no constraint was applied based on the assumption that 
either movement was allowable, or that the pole was mischar- 
acterized due to the ordering step. Results showed substantial 
improvement in objective speech quality (as measured by Ita- 
kura-Saito, log-area-ratio, and weighted spectral slope (Klatt) 
measures [ 171). Informal listening tests also revealed improve- 
ment, especially during vowels and vowel transitions toward 
nasals. Larger levels of quality improvement were observed 
using interframe versus intraframe constraints, thus suggesting 
that temporal variation in pole locations have a greater effect on 
overall quality. 

Although successful in improving speech quality, con- 
strained techniques based on direct pole location were compu- 
tationally expensive. A Pth-order root-solve and a pole ordering 
step per frame for each iteration was required. Since root solv- 
ing is not always numerically accurate and ordering can be in- 
consistent across frames, a more robust approach was sought to 
implement these constraints. 

An alternative approach for implementing the spectral con- 
straints was formed by employing the line spectral pair (LSP) 
transformation as a method for representing the vocal tract 
spectrum. Previous success of the LSP transformation in low- 
bit-rate speech coding by Crosmer [2] led to the use of LSP’s 
for this purpose. 

The line spectral pair (LSP) [9], [19] transformation comes 
from modifying the LPC polynomial, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( z ) ,  in two ways: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( z )  

and Q ( z )  are obtained by augmenting A ( z ) ’ s  PARCOR se- 
quence with a + 1 and - 1, respectively. This results in the fol- 
lowing two polynomials of order p + 1 which have all their 
roots on the unit circle: 

M- I 

P ( z )  = (1 - 2-1) (1  - 2 cos a,z-I + C2) (1) 

M -  1 

Q ( z )  = (1 + z - ’ )  ( 2 )  

The angles of the roots, {a,, i = 1 ,  2 ,  . e ,  M }, are called the 
line spectrumpairs. In general, A ( 2 )  will represent a stable LPC 
filter if and only if the roots of P ( z )  and Q ( z )  interleave. The 
angles of the roots of P ( z ) ,  correspond roughly to the angles 
of the roots of A ( z )  (formant frequencies), and the separation 
of a particular root of P ( z )  from the closet root of Q ( z )  indi- 
cates in some sense the bandwidth of that resonance. The angle 
of the roots of P ( z )  between 0 and ?r are termed the position 
parameters (i.e., the odd indexed LSP parameters, ( p ,  = uZr - I ,  

i = 1, 2 ,  . -, M / 2 } ) ,  and the separations mentioned above 
the difference parameters d, 

( 1  - 2 cos w,z-’ + z - ’ ) .  
I =2,4,6,  

The sign of d, is positive if wzi is closer to + j ,  and otherwise 
is negative. The useful properties of the LSP’s include an easy 
check for stability, excellent interpolation properties, ease of 
computation (compared to roots of A ( z  ) ), some well-under- 
stood trajectories for speech, and the relative insensitivity of 
the auditory system under quantization of the difference param- 
eters. 

B. Enhancement Using the LSP Transformation 

In these techniques, constraints are imposed on the LSP pa- 
rameters directly. In the first technique (MS-LSP:T), a five 
frame median smoothing constraint was placed on the position 
parameters across time,with difference parameters restricted to 
be at least dMIN in magnitude, ensuring the LPC poles of rea- 
sonable bandwidth. Good improvement resulted without the ex- 
pense of root solving or pole ordering. Plots of LSP parameters 
versus time confirmed a reduction in frame-to-frame pole jitter 
with only a slight increase in computational requirements. Since 
vocal-tract characteristics and relative strength of background 
noise vary across time, the imposition of spectral constraints 
should be dependent on speech characteristics obtained during 
the enhancement procedure. Therefore, the remaining con- 
straints are applied based on particular characteristics found in 
the speech waveform during enhancement. 

Two interframe approaches are considered: a fixed frame rate 
(FF-LSP : T), and a variable frame rate approach (VF-LSP : T). 
In the first of these, the LPC predictor coefficients a‘ are first 
converted to LSP parameters. Next, each frame’s energy is ob- 
served, and classified as voiced or unvoiced speech according 
to some threshold Evluv. A local running count L, is kept for 
the number of consecutive frames which fall below the energy 
threshold. If L, reaches LMAX, all subsequent frames below the 
threshold are classified as noise. This allows for a tighter pole 
movement constraint during long periods of silence. The posi- 
tion parameters for each frame are smoothed using a weighted 
triangular window with a variable base of support (1 to 5 
frames). If a frame has been classified as noise, maximum 
smoothing (or tightest movement constraint) is performed. The 
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lower formant frequencies are smoothed over a narrower tri- 
angle width than for those position parameters at higher fre- 
quencies in order to preserve perceptually important speech 
characteristics found in the lower formants. No smoothing is 
performed on the differnce parameters since they are more 
closely related to formant bandwidth than formant location. 
However, it is possible that a difference parameter falls within 
a “forbidden zone.” When this occurs, the LPC analysis has 
most likely underestimated a particular pole’s bandwidth. Since 
this causes unnatural sounding speech, (as found in the uncon- 
strained approach), the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, 1 is set to dMIN. Finally, the 
position and difference parameters are combined to form the 
constrained LPC predictor coefficients 2, + I .  

The (FF-LSP : T) technique applies constraints across time on 
a frame-by-frame basis. Since phonetic transitions do not nor- 
mally coincide with frame boundaries, an inter-frame approach 
(VF-LSP : T) based on constraints applied over speech seg- 
ments was formulated. The technique is identical in theory to 
(FF-LSP : T), except for the front-end segmentation algorithm 
which divides the signal into speech segments. Segments are 
chosen to be long when the speech spectrum is slowly varying 
and short when the speech spectrum is varying quickly. The 
LSP parameters are reconstructed with linear interpolation used 
to compute the parameters for intermediate frames. 

The segmentation algorithm begins by determining the 
onset/offset of speech by thresholding the LPC residual energy, 
which produces relatively long segments. Long segments are 
subdivided based on the curvature of the position parameters. 
This is performed by computing a gain-normalized Itakura-Saito 
measure of the spectral distance between the frequency re- 
sponse of two adjacent frames. The procedure continues by 
computing spectral distortion parameters for successively longer 
segments until the spectral distortion exceeds a threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo. 
At that point, a subsegment boundary is set, with the interme- 
diate position parameters reconstructed via linear interpolation. 
During this step, the length of a subsegment is also limited to 
LMAX to prevent excessively long segments which might con- 
tribute to muffled or unnatural sounding speech. The advantage 
of this approach is to incorporate more information from adja- 
cent frames when the spectrum indicates similar characteristics. 
This, in effect, distorts the position parameters as little as pos- 
sible when associated difference parameters indicate the pres- 
ence of formants. Difference parameters for each frame are used 
to compute the predictor coefficients a‘,+ I .  The difference pa- 
rameters are required to be least dMIN or greater. 

The convergence problems inherent in the unconstrained 
Wiener filtering approach which have been pointed out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, [7], 
[15], are at least partially caused by bias in the MAP estima- 
tion. Although spectral constraints were originally constructed 
to be used across frames, it has been observed that if they are 
used across iterations, convergence to reasonable values occurs 
with much greater frequency and consistency. ln particular, 
previous results based on objective speech quality measures 
show the unconstrained Wiener filtering approach to produce 
minimum objective measures at different iterations for different 
classes of speech [5], [7] (see Table 111). By constraining the 
vocal tract filter to be a function of its values obtained from 
previous iterations, a much improved consistency in quality 
across speech classes and LPC parameter a‘, estimation re- 
sulted. Two approaches were considered, one applied to the 
autocorrelation lags (Auto : I), the other to the position param- 
eter (LSP : I).  The first approach simply weighted the present 
set of autocorrelation lags with the same frame from previous 

1 Apply Constraints: 
A time 

I Construct noncausal PJ wl 

q w )  + q w 1  Wiener Filter: H ( o l  

c 
Repeat until A E L TnREsnOLo 

Fig. 3. Framework for the new set of constrained enhancement algo- 
rithms. 

iterations. Such a technique is easy to perform, since the auto- 
correlation lags must be computed in order to estimate the pre- 
dictor coefficients a’. The second approach weighted position 
parameters with those from the same frame but previous itera- 
tion. If the corresponding difference parameter indicated the ad- 
jacent position parameter to represent a formant, this approach 
had the effect of constraining the formants to lie along smooth 
tracks across iterations. Such a procedure is generally referred 
to as introducing relaxation into the iterations [16]. If the iter- 
ation is producing results for which weighted averaging makes 
sense (e.g., LSP’s but not $), improved convergence results. 
Results frominterframe, intraframe, andcombinedinterframe plus 
intraframe constraint approaches will be presented in the next 
section. Fig. 3 illustrates the framework for the new set of con- 
strained enhancement techniques. 

111. EVALUATION 

We now evaluate the performance of the proposed algorithms 
for spech enhancement alone, and as a preprocessor for word 
recognition in noisy environments. Speech was degraded by ad- 
ditive white or colored noise and processed. Enhancement al- 
gorithms evaluated include techniques incorporating interframe 
constraints applied on a fixed-frame (FF-LSP : T) or variable- 
frame (VF-LSP : T) basis to the LSP parameters, and algorithms 
incorporating combinations of interframe plus intraframe con- 
straints (FF-LSP : T, Auto : I), (FF-LSP : T, LSP : I). Global es- 
timates of SNRI were used in the evaluation, since the assump- 
tion of accurate local estimates is normally unrealistic in actual 
noisy environments. Further improvement is therefore possible 
if a continuous local SNR estimate is available. The intraframe 
constraints were applied across two to three iterations. 

Several parameters must be addressed to ensure proper ap- 
plication of spectral constraints. These include the voicedlun- 

‘The signal-to-noise ratio is defined as I O  log ( &  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 2 ( n ) / C , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 2 ( n ) ) ,  
where the summation is over the entire length of the sentence. This defi- 
nition was chosen in keeping with the format used in  previous studies on 
noncausal Wiener filtering [ I  11. 
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voiced energy threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE“/,,, silence frame count threshold 
L M A X ,  LSP difference parameter thresholds d,,,, d,,,, and the 
accumulated frame-to-frame Itakura-Saito distance threshold 
To. 

The energy threshold E,/U, is used to distinguish voiced from 
unvoiced or silent speech frames for use in applying interframe 
constraints. Values were obtained from frame energy histo- 
grams at each signal-to-noise ratio. Similar enhancement levels 
resulted for in the range between average, and one stan- 
dard deviation below average speech frame energy (e.g., aver- 
age frame energy for sentence S6 was 7719. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,/,, set between 
8000 and 5000 resulted in Itakura-Saito measures which ranged 
from 1.96 to 2.02). 

The silence frame count threshold LMAX, is used in conjunc- 
tion with E,,/,,. If LMAX consecutive frames fall below 
that segment is classified as silence (or noise) so that tighter 
spectral constraints can be enforced. If is set as above, 
similar speech quality measures resulted with L M A X  set between 
two and five frames. Reduced quality measures resulted with 
LMAX in the eight to twelve frame range, thereby suggesting 
increased residual noise levels during silent portions. 

The difference thresholds d M I N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,,,, constrains the LSP dif- 
ference parameters to ensure poles of reasonable bandwidths 
(e.g., the all-pole speech model is stable and that it possesses 
speech-like characteristics). Values in the range 0.015 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 dMIN 
5 0.031 rad, 0.055 5 d,,, 5 0.077 rad, resulted in good 
quality improvement. 

The value TD (accumulated frame-to-frame Itakura-Saito dis- 
tance threshold) greatly effects speech segment length. If set to 
high, small duration phonemes can be lost (e.g., an initial stop 
and final vowel joined to form one speech segment as in be) .  
A value of 1.2 was found to produce segments of reasonable 
length and quality at higher SNR ( 2 +5 dB). At lower SNR, 
frame-to-frame distance values were too large to reliably seg- 
ment speech, resulting in decreased performance. 

Generally speaking, substantial enhancement resulted for a 
wide range of E,/,,, L M A X ,  d M I N ,  and dMAx threshold settings, 
indicating the algorithms robust performance over estimated 
threshold values. Only T D ,  the accumulated frame-to-frame 
Itakura-Saito distance threshold, proved to be sensitive, espe- 
cially across varying SNR. Greater enhancement was observed 
when To was allowed to vary across iterations. 

In this study, the primary tool for quantitative enhancement 
evaluation has been objective quality measures. This is based 
on extensive work carried out in the formulation of objective 
speech quiility measures for speech coding [ 171, and the appli- 
cation of these measures to enhancement [3], [4]. Fair to good 
correlation has been shown to exist between subjective and ob- 
jective quality measures, such as: the Itakura-Saito likelihood 
ratio, log area ratio, and weighted spectral slope measure. These 
measures have been shown to be a viable tool for use in eval- 
uating speech enhancement algorithms for white and nonwhite 
additive noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. In addition, the Itakura-Saito likelihood ra- 
tio is also a commonly used distance measure for speech rec- 
ognition as well as for coding methods employing vector quan- 
tization. Therefore, improvement in Itakura-Saito distance 
might also suggest the possibility of improvement in automatic 
recognition. The speech data for enhancement evaluation is de- 
scribed in the Appendix. 

A.  Evaluation Using Additive White Gaussian Noise 

Various configurations of the new constrained enhancement 
algorithms were evaluated in an additive white Guassian noise 
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environment. Informal listening tests indicated noticeable qual- 
ity improvement, although no intelligibility testing was per- 
formed. A variety of objective speech quality measures were 
used in the evaluation procedure. Fig. 4 illustrates a comparison 
of typical results for the various constraint approaches. The 
Itakura-Saito measure is plotted versus signal-to-noise ratio for 
a .white noise distortion. Plot a represents the original distorted 
speech. Plots b through e represent combinations of interframe 
constraints (both fixed and variable rate), and intraframe con- 
straints (applied to position parameters/autocorrelation lags). 
Ail configurations examined showed significant improvement in 
Itakura-Saito measures. Threshold settings for the variable 
frame rate interframe constraint were somewhat sensitive to 
varying noise levels. This indicates that although applying in- 
terframe constraints across speech segments is theoretically at- 
tractive and should aid in enhancement, in reality the speech 
segmentation step proves to be too sensitive to varying back- 
ground noise levels. However, the fixed frame approach, by 
itself, and with either autocorrelation or position intraframe 
constraints gave impressive results with little sensitivity to 
varying levels of SNR. In order to determine a limit on the level 
of enhancement, the original undistorted predictor coefficients 
a‘ were used in the unconstrained algorithm. In essence, the two 
step MAP estimation approach is now reduced to a single MAP 

estimate of So, and therefore represents the theoretical limit for 
enhancement using Wiener filtering. Plot f indicates this limit. 

One advantage of the general class of Wiener filtering ap- 
proaches is that no “musical tone” artifacts are present after 
processing as observed in spectral subtraction techniques [ 11, 
[3], [ 121. To determine performance versus spectral subtrac- 
tion, a series of enhancement evaluations under identical con- 
ditions (same distorted utterances, same global estimates) were 
performed. Evaluation was performed for both half-and full- 
wave rectification over a SNR range of -20 to +20 dB, and 
employed one to five frames of magnitude averaging (as defined 
by Boll [l]). See Hansen [7] for details. Full-wave rectification 
resulted in improvement over a wider range of SNR, however 
half-wave rectification had greater improvement over the re- 

+ 
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Fig. 5. Comparison of enhancement algorithms over SNR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a )  Original 
distorted speech. (b) Boll: Spectral subtraction, using magnitude averag- 
ing. (c) Lim-Oppenheim: Unconstrained Wiener filtering. ( d )  Hansen- 
Clements: Employing interframe constraints (FF-LSP : T). ( e )  Hansen- 
Clements: Employing interframe and intraframe constraints (FF-LSP : T, 

Auto : I). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f) Theoretical 1imit:Using undistorted LPC coefficients a'. 

0 

stricted SNR band of 5 to 10 dB. Magnitude averaging lead to 
improve enhancement for both rectification approaches. 

Next, the constraint approaches were compared to spectral 
subtraction and unconstrained noncausal Wiener filtering. All 
systems performed enhancement on the same speech, with the 
same global estimates of SNR. Fig. 5 compares quality im- 
provement for each technique. Although only Itakura-Saito 
measures are shown, similar improvement was observed for log 
area ratios and weighted spectral slope measures (Klatt). Ita- 
kura-Saito measures are presented since they are widely ac- 
cepted as a spectral distance measure and have been used ex- 
tensively for speech recognition applications. A comparison of 
the three speech quality measures is shown in Table I .  The aver- 
age correlation between each objective quality measure and 
subjective quality as measured by the diagnostic acceptability 
test (DAM) is shown [17]. 

I )  Quality Improvement Over Speech Classes: To deter- 
mine individual quality improvement, an evaluation over sound 
classes was performed by hand partitioning speech into seg- 
ments, processing entire sentences, and computing objective 
measures from each class. Table I1 summarizes the comparison 
between the unconstrained technique, and an interframe plus 
intraframe constained approach (FF-LSP: T, Auto : I). Mea- 
sures for the theoretical limit using undistorted LPC predictor 
coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa' are also indicated. Improvement is indicated for 
all classes of speech. These results show that the constraint 
techniques are enhancing all aspects of the speech signal. 

2) Termination Criterion: As mentioned, the iterative en- 
hancement algorithms must be suspended at some iteration. In 

- order to determine a terminating iteration, a criterion must be 
selected to evaluate levels of improvement as the iterative 
scheme progresses. The criterion chosen is based on objective 
speech quality measures. Such measures are formed by a 
weighted comparison of actual and resulting estimated LPC 
predictor coefficients found during enhancement. The obvious 
problem with such a criterion is that, outside of simulation, the 
actual speech is unknown during the procedure. If, however, 
simulations were to show a consistent value for the best itera- 

COMPARISON OF UNCONSTRAINED (LIM-OPPENHEIM) AND INTERFRAME 

OVER SOUND TYPES FOR WHITE GAUSSIAN N O I S E .  SNR = + 5  dB 
AND INTRAFRAME CONSTRAINED (HANSEN-CLEMENTS) ALGORITHMS 

Itakura-Saito Likelihood Measure 

Lim- Hansen- True 
Sound Type Original Oppenheim Clements LPC 

Silence 
Vowel 
Nasal 

Fricative 
Glide 
Liquid 
Affricate 
Voiced + Unvoiced 

Total 

stop 

1.634 
4.020 

19.814 
7.261 
3.739 
1.525 
9.597 
3.924 
5.838 
4.022 

1.649 
3.299 

17.656 
3.979 
3.509 
1.442 
4.545 
2.102 
4.293 
3.151 

0.842 0.319 
1.651 0.582 
3.968 0.324 
1.099 0.435 
1.766 0.649 
1.131 0.705 
0.998 0.303 
2.229 0.323 
1.761 0.519 
1.364 0.433 

tion in terms of this criterion, a convenient stopping condition 
would exist. Previous results based on objective quality mea- 
sures indicate the unconstrained approach to produce maximum 
objective quality at different iterations for different classes of 
speech. Table 111 illustrates this behavior over the indicated 
sound classes. As shown, maximum overall speech quality is 
obtained at the third iteration, with considerable variation across 
sound types. Glides required two iterations for maximum qual- 
ity, with nasals, liquids, and affricates requiring between five 
and six. Therefore, depending on sound class concentration, the 
optimal iteration (in terms of minimum distance) would vary 
considerably. Observations from a previous investigation indi- 
cate that the optimal iteration varies between the second and 
sixth and that it is also somewhat dependent on SNR [3]. 

The new constrained enhancement algorithms have less sen- 
sitivity to sound class. Table IV presents results from an equiv- 
alent evaluation for one of the constrained enhancement algo- 
rithms (FF-LSP:T, Auto:I). Comparing Tables 111 and IV 
shows that the constrained approach produces superior quality 
measures across all speech classes at the same iteration. The 
improvement surpasses even combined individual maximum 
quality measures found across the unconstrained approach. 
Thus, the constrained enhancement algorithm does more than 
simply impose a constraint to adjust the rate of improvement: 
the constrained approaches consistently result in superior ob- 
jective speech quality at the same iteration over all sound 
classes, independent of SNR. 
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TABLE 111 
LIM-OPPENHEIM UNCONSTRAINED SPEECH ENHANCEMENT FOR WHITE GAUSSIAN NOISE. OPTIMUM 

PERCEIVED QUALITY FOR A PARTICULAR SPEECH CLASS IN  TERMS OF OBJECTIVE MEASURES IS 

INDICATED BY A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ . SNR = + 5 dB 

Itakura-Saito Likelihood Measure (across iterations) 

Sound Type 

Silence 
Vowel 
Nasal 

Fricative 
Glide 
Liquid 
Affricate 
Voiced + Unvoiced 

Total 

stop 

Original #1 #2 

1.634 
4.020 

19.814 
7.261 
3.139 
1.525 
9.597 
3.924 
5.838 
4.022 

1.615 
3.721 

19.154 
6.114 
3.637 
1.414 
8.241 
3.609 
5.321 
3.720 

4 1.608 
3.445 

18.416 
4.926 
3.532 

4 1.333 
6.546 
3.213 
4.767 
3.402 

#3 

1.649 
43.299 
17.656 
3.979 

43.509 
1.442 
4.545 
2.702 
4.293 

43.151 

#4 

1.933 
3.720 

17.009 
43.822 

3.902 
2.231 
2.606 
2.091 

44.289 
3.271 

#5 

3.756 
8.319 

16.593 
6.889 
7.658 
4.300 

4 1.676 
4 1.552 

7.346 
5.795 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#6 

20.360 
121.82 

4 15.192 
25.515 
47.829 

8.391 
6.381 
2.91 1 

61.865 
43.457 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#I  

49.884 

15.697 
29.694 
94.106 
15.561 
30.001 
2.975 

TABLE IV 
HANSEN-CLEMENTS INTERFRAME AND INTRAFRAME CONSTRAINED SPEECH ENHANCEMENT FOR WHITE 
GAUSSIAN NOISE. CONVERGENCE FOR A PARTICULAR SPEECH CLASS IN  TERMS OF OBJECTIVE QUALITY 

IS INDICATED BY A e. SNR = +5 dB 

Itakura-Saito Likelihood Measure (across iterations) 

Sound Type Original #1 #2 #3 

Silence 
Vowel 
Nasal 

Fricative 
Glide 
Liquid 
Affricate 
Voiced + Unvoiced 

Total 

stop 

1.634 
4.020 

19.814 
7.261 
3.739 
1.525 
9.597 
3.924 
5.838 
4.022 

1.551 
3.319 

16.490 
6.246 
3.432 
1.389 
6.481 
3.772 
4.642 
3.026 

1.351 
2.865 

12.397 
4.840 
3.027 
1.275 
3.382 
3.447 
3.658 
2.441 

1.155 
2.394 

10.523 
3.492 
2.612 
1.232 
2.243 
3.117 
3.006 
2.069 

#4 

1.036 
1.836 
8.682 
2.668 
2.245 
1.219 
1.612 
2.806 
2.501 
1.801 

#5 

0.979 
1.677 
6.840 
1.812 
1.948 
1.189 
1.209 
2.598 
2.131 
1.611 

#6 

0.929 
1.571 
4.929 
1.383 
1.729 
1.161 
0.943 
2.472 
1.865 
1.457 

#7 

+ 0.884 
4 1.565 
43.789 
41.129 + 1.615 
41.153 
40.926 
42.368 
4 1.740 
41.381 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#8 

0.901 
1.828 
5.548 
1.435 
1.844 
1.217 
1.211 
3.966 
1.953 
1.498 

- 

TABLE V 
SUMMARY OF OPTIMAL TERMINATING ITERATION ACROSS SNR FOR ADDITIVE WHITE GAUSSIAN NOISE 

Additive White Gaussian Noise SNR 

-5  dB -0 dB +5 dB +10 dB 

Constrained Optimal Iteration using Itakura-Saito Likelihood Measure OVERALL 
Enhancement 

Algorithm Iter. Freq. Iter. Freq. Iter. Freq. Iter. Freq. Iter. Freq. 

FF-LSP : T 3 100% 3 87% 3 87% 3 100% 3 93% 

VF-LSP : T 3 90% 3 85% 3 94% 3 100% 3 94% 
4 10% 4 15% 4 6% 4 6% 

FF-LSP:T,Auto:I 7 100% 7 100% 7 100% 7 88% 7 97% 
6 12% 6 3% 

FF-LSP:T,LSP:I 4 100% 4 100% 4 100% 4 100% 4 100% 

VF-LSP:, LSP:I 4 100% 4 100% 4 100% 4 100% 4 100% 

4 13% 4 13% 4 7% 

3) Termination Consistency Versus SNR: Further evalua- 
tions were performed to determine the consistency of the ter- 
minating iteration versus SNR. Table V summarizes optimum 
terminating points in terms of objective quality for some of the 
enhancement algorithms. Techniques employing only inter- 
frame constraints consistently resulted ( 94 % occurrence) in 

maximum quality at the third iteration. Techniques employing 
interframe and intraframe constraints had a 97% occurrence of 
maximum quality at the seventh iteration. In addition, due to 
the relaxation of the iterative scheme as imposed by intraframe 
constraints, adjacent iterations differ only slightly in objective 
quality for the constrained techniques. Therefore, only minor 
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(2a) (2b) (2c) (2d) 

Fig. 6 .  Variation in vocal tract response across iterations for (la)-(Id) un- 
constrained Lim-Oppenheim, and (2a)-(2d) Hansen-Clements constrained 
enhancement (FF-LSP: T, Auto: I )  algorithms. ( la) ,  (2a) Original. ( lb), 
(2b) Distorted original. ( IC) ,  (2c) Four iterations. (Id), (2d) Eight itera- 
tions. 

TABLE VI 
COMPARISON OF ENHANCEMENT ALGORITHMS IN TERMS OF QUALITY, RELATIVE COMPLEXITY, AND 

RELATIVE COMPUTATIONAL RESOURCES. SNR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 5  dB, ADDITIVE WHITE GAUSSIAN NOISE 
DISTORTION 

Itakura- Relative Relative 

Measure (1-10) (1-10) Iteration 
Saito Complexity Computation Terminating 

Noisy Original 4.02 
Spectral Subtraction 3.36 2 
Lim-Oppenheim 3.15 5 

(FF-LPS T) 1.96 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
(FF-LPS : T, Auto : I )  1.36 9 

(MS-LPS : T) 2.68 6 

1.5 

3 3 
4 4 
6 3 

10 I 

differences in speech quality would result if the iterative scheme 
were halted one iteration prior to optimum. The results consis- 
tently suggest that the constrained enhancement algorithms 
reach a maximum level of speech quality at the same iteration, 
independent of SNR and sound class concentrations. Thus, a 
convenient terminating criterion may be determined under sim- 
ulated conditions and employed in actual noisy environments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4) Vocal Tract Estimation: In addition to the problem of a 
terminating point dependent on speech class concentration and 
SNR, the unconstrained approach also suffered from undesir- 
able movements of the LPC poles. Specifically, it was observed 
that as additional iterations were performed, individual for- 
mants of the speech consistently decreased in bandwidth and 
shifted in location as shown in Fig. 1. Fig. 6 illustrates results 
from a single frame of speech for the unconstrained and con- 
strained approaches. The original and distorted original spectra 
are the same for both approaches. Results from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 iterations and 
8 iterations are presented for both approaches. For the uncon- 
strained approach, the terminating point is the fourth iteration. 
For this example the unconstrained approach was somewhat 
successful in improving spectral shape, especially in the region 
of the second formant. However, as additional iterations were 
performed, spectral distortions resulted, especially with respect 
to bandwidth information. The constraint approach (FF-LSP : T, 
Auto : I) is able to eliminate these undesirable effects. The ter- 
minating point for this approach was the seventh iteration. The 
change in spectral shape between the seventh and eighth itera- 
tions were minor, based on visual observation and objective 
speech quality measures. As this figure indicates, fine charac- 
teristics of the speech spectrum result only in the later itera- 
tions. 

5) Computational Issues: Discussion of algorithm perfor- 
mance should also address computational issues as well as al- 
gorithm complexity. Naturally, there exists a tradeoff between 
resulting speech quality and each algorithm’s computational 
complexity. It is clear that iterative techniques require greater 
computer resources than noniterative approaches such as spec- 
tral subtraction and correlation subtraction. However, improve- 
ment in speech quality for the constraint approaches may be 
substantial enough to justify the additional computational re- 
quirements. In Table VI, a comparison of the enhancement al- 
gorithms are made with respect to speech quality, relative com- 
puter resources and memory requirements, and algorithm 
complexity. By applying constraints to the LSP parameters, a 
modest increase in computer resources results in a marked in- 
crease in speech quality. For example, median smoothing of the 
LSP parameters (MS-LSP : T) increases speech quality with only 
slight increases in computation and complexity. If greater re- 
sources are available, more sophisticated constraint approaches 
may be chosen. If memory and computational resources are 
available, use of the contrained approaches appears justifiable. 

6) Time Versus Frequency Plots: Isometric plots of time 
versus frequency magnitude spectra were constructed. In Fig. 
7,  each line represents a 128-point frequency analysis. The top 
two graphs are the original and distorted cases. The lower left 
graph is the time versus frequency response for the uncon- 
strained approach, terminated at the third iteration. The lower 
right graph is the frequency response after six iterations of an 
interframe plus intraframe constrained (FF-LSP : T, Auto : I) 
approach. These figures indicate that the considerable noise re- 
jection achieved in the single frame noted in Fig. 6 ,  is generally 
true over time. 
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(c) ( 4  

Fig. 7. Time versus frequency plots of the sentence, “Cats and dogs each 
hate the other.” The original and distorted original (additive white Gauss- 
ian noise, SNK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+5 dB) are shown above. The lower left-hand plot is 
the response after three iterations of the unconstrained noncausal Wiener 
filtering approach. The lower right-hand plot is the frequency response after 
six iterations of an interframe plus intraframe constrained (FF-LSP : T, 
Auto : I) approach. (a) Noise free original. (b) Distorted original. (c) Un- 
constrained. (d) Constrained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Evaluation Using Additive Nonwhite, Nonstationary Noise 

The enhancement techniques described for the white additive 
noise case were also tested using nonstationary, colored noise 
recorded from the interior of a Lockheed C130 aircraft. Esti- 
mates for the noise spectrum were made using Bartlett’s method 
[lo], [14] over long intervals.* Only two spectral estimates were 
used across each processed sentence. Further improvement is 
possible if noise characteristics are updated more frequently. 
Energy thresholds for the interframe constraints were obtained 
from frame energy histograms at each signal-to-noise ratio. In- 
traframe constraints were applied across two to three iterations. 
Fig. 8 and ‘Table VI1 list the results of the analysis, presented 
in a manner consistent with the white noise descriptions. Al- 

though only Itakura-Saito measures are shown, similar im- 
provement was observed for log-area-ratio and weighted spec- 
tral slope distance measures [7]. As seen, consistent 
improvement over all SNR’s and speech sounds resulted, al- 
though the improvement was not as much as the white noise 
case. 

C. Recognition Evaluation 
One application for speech enhancement is a preprocessor for 

an automatic recognition system. For evaluation of enhance- 
ment algorithms in this application, as set of recognition ex- 
periments were performed, including: 1) the no noise condition 
(in order to set an upper limit of recognition performance), 2) 
distorted condition with no preprocessing (in order to set an 
assumed lower limit of recognition), 3) the best performing 
spectral subtraction preprocessing (i.e., the configuration em- 
ploying either half or full-wave rectification and 1 to 5 frames 
of magnitude averaging, which gave the highest quality im- 
provement for the given vocabulary), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) unconstrained Lim- 

*Previous enhancement investigations employing colored aircraft back- 
ground noise indicated that of the spectral estimation techniques considered 
(maximum entropy method, maximum likelihood method, Burg’s method, 
Bartlett’s method, Pisarenko harmonic decomposition, and the Periodo- 
gram method [IO], [14]), Bartlett’s method produced estimates resulting in 
highest improvement for this particular distortion [3], [6]. 
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Fig. 8. Comparison of interframe and intraframe constrained enhancement 
algorithms for colored aircraft noise over SNR. (a) Original distorted 
speech. (b) Generalized unconstrained Wiener filtering. (c) Hansen-Clem- 
ents: Employing interframe constraints (FF-LSP : T). (d) Hansen-Clem- 
ents: Employing interframe and intraframe constraints (FF-LSP : T, 
Auto: I) .  (e) Theoretical limit: Using undistorted LPC coefficients a‘. 

TABLE VI1 

AND INTERFRAME AND INTRAFRAME CONSTRAINED (HANSEN- 
CLEMENTS) ALGORITHMS OVER SOUND TYPES FOR SLOWLY VARYING 

COMPARISON OF GENERALIZED UNCONSTRAINED (LIM-OPPENHEIM) 

COLORED N O I S E .  SNR = + 5  dB 

Itakura-Saito Likelihood Measure 

Lim- Hansen- True 
Sound Type Original Oppenheim Clements LPC 

Silence 
Vowel 
Nasal 
stop 
Fricative 
Glide 
Liquid 
Affricate 
Voiced + 

Total 

6.63 
3.23 
4.03 
1.58 
1.37 
1.14 
1.22 
0.90 

Unvoiced 2.27 
4.15 

6.33 
2.54 
3.26 
1.29 
1.09 
1.04 
0.55 
0.51 
1.76 
3.86 

~ 

4.32 2.03 
1.44 0.53 
2.13 0.45 
0.66 0.61 
0.85 0.65 
0.52 0.51 
0.22 0.18 
0.33 0.16 
1.08 0.52 
2.74 1.17 

Oppenheim preprocessing, and 5)  constrained preprocessing. 
The evaluation was performed at six levels of SNR ( -5,0, +5,  
+ 10, +20, +30 dB) for the additive white Gaussian noise deg- 
radation. 

A fairly standard, isolated-word, discrete-observation hidden 
Markov model recognition system was used for evaluation. This 
system was LPC based with no embellishments. In all experi- 
ments, a five state, left-to-right model was used. The system 
dictionary consisted of 20 highly confusable words from a 
speech data base formulated for recognition evaluation in di- 
verse environments [7]. These words are also used by Texas 
Instruments and Lincoln Labs to evaluate recognition systems. 
Subsets include /go-oh-no-hello/, /six-fix/, /wide-white/, and 
/degree-freeze-three/. Twelve examples of each word were used, 
six for training, six for recognition (i.e., all tests fully open). 
A vector quantizer was used to generate a 64 state codebook 
using two minutes of noise-free training data. The 20 models 
employed by the HMM recognizer were trained using the for- 
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HANSEN: CONSTRAINED 

LIM: UNCONSTRAINED 

SPECTRAL SUBTRACTION 

NOISY 

1 0  

-5  0 5 1 0  20 30 

(a) 

SIGNAL-TO-NOISE RATIO (dB) 

RECOGNIT ION RESULTS 

Onginol -5dB  DdB +SdB + l o d B  + tOdB +YDdB 
LzsEJ:z::nmg) Signal-lo-Nom Rolw 

Noise-free 88% 

5% 5% 6.7% 5% 8% 49% 

5.4% 5.8% 7.5% 12.5% 41% 64% 

15% 14% 19.5% 34.5% 59% 83% 

5.8% 7.1% 5% 5.4% 20% 55% 

Fig. 9. Recognition of speech in noise performance using enhancement 
preprocessing in additive white Gaussian noise. tSNR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= + 10 dB. (a) Bar 
graph. (b) Table. 

ward-backward algorithm. Fig. 9 presents results from five 
scenarios using a noise-free codebook and noise-free trained 
system. The 88% recognition rate clearly indicates the difficulty 
(confusability) of the chosen vocabulary . 3  Spectral subtraction 
preprocessing employed three frames of magnitude averaging. 
The unconstrained Lim-Oppenheim approach was terminated at 
the third iteration. The constrained (FF-LSP : T, Auto : I) ap- 
proach was terminated at the seventh iteration. Results show 
that recognition was reduced to chance for noisy, spectral sub- 
traction, and Lim-Oppenheim preprocessed speech in the SNR 
range of (-5, 0, 5 dB). The constrained approach resulted in 
improved recognition across all SNR’s considered, which is 
quite encouraging in light of the severe levels of noise, and 
difficulty of dictionary employed. An increased number of 
training tokens as well as a less confusable vocabulary would 
at the very least be required if recognition in such hostile en- 
vironments is to be feasible with enhancement preprocessing. 
In this first set of tests, all recognition training was performed 
on undegraded speech. This serves to model the case of training 
a recognizer in advance in quiet surroundings (off line) and using 
it in a noisy environment. As a final comparison, recognizer 
training was camed out using enhanced speech, which models 
training in the field. Three tests were performed using noisy and 
enhanced speech at a SNR of +10 dB. For the noisy case, 
speech was coded using a noisy codebook, and recognition per- 
formed using a noisy trained HMM recognizer. Similar tests 
were performed for two enhancement techniques, (i.e., en- 
hanced words coded using enhanced codebook, and tested using 
enhanced speech trained HMM recognizer). The results indi- 
cate that the new constrained enhancement algorithms improve 
recognition performance over the unconstrained Lim-Oppen- 
heim approach. Although the scenario of training in noise, and 

3 0 n  isolated digit tasks in quiet, the recognizer consistently scored 100% 

[71. 

recognizing in noise shows improvement, the recognition sys- 
tem is now dedicated to a specific SNR. If noise characteristics 
or SNR should change over time, recognition performance 
would seriously degrade. The constraint approaches have been 
shown to be robust over varying SNR, and therefore should re- 
sult in higher recognition rates with changing levels of SNR. 

It is worth noting that, although performance is poor for ap- 
parently high SNR’s, the SNR computation was performed over 
entire words. For low energy consonantal portions, the SNR’s 
may well be 20 dB lower; and for highly confusable word pairs 
(e:g., /six-fix/, /go-oh-no/), errors are understandable. A de- 
tailed analysis of the error patterns bears out this hypothesis 
since almost all confusions were between such pairs. For ex- 
ample, in one noisy speech recognition test, 43 of 61 recogni- 
tion errors (70% ) were caused by misclassification of distin- 
guishing consonants, many of which were leading consonants 
(especially fricatives). Constrained enhancement significantly 
reduces these errors (e.g., one test using (FF-LSP : T, Auto : I) 
resulted in 16 of 21 recognition errors (with 120 test tokens) 
caused by misclassification of distinguishing consonants). The 
noise-free case itself, gave 12% errors due to the difficulty of 
the test set, and the small number of tokens (6) per word used 
for training. These results show that the new constrained tech- 
niques are valuable for recognition, especially at SNR’s in the 
+ 10 to +30 dB range. 

IV. CONCLUSIONS 

The problem of enhancing speech degraded by additive white 
and slowly varying colored background noise was addressed. In 
addition, algorithm performance as a preprocessor for speech 
recognition was also considered. The set of enhancement al- 
gorithms presented impose interframe and intraframe con- 
straints on the input speech signal and were shown to be useful 
in enhancing speech for human listeners, and as a preprocessor 
for recognition in noisy environments. Interframe constaints en- 
sure more speech-like formant trajectories than those found in 
the unconstrained approach and thus reduce pole jitter on a 
frame-to-frame basis. Intraframe constraints ensure relaxation 
of the iterative scheme so that overall maximum speech quality 
is obtained across all classes of speech. In order to increase 
numerical accuracy, reduce computational requirements, and 
eliminate inconsistencies in pole ordering across frames, the line 
spectral pair (LSP) transformation of the LPC coefficients was 
used to implement many of the constraint requirements. The 
new set of constrained algorithms were shown to be effective in 
several domains. First, improvement in objective speech qual- 
ity measures was shown. Improved LPC parameter estimation 
was also observed. Second, the algorithms were extended and 
shown to be effective on nonstationary colored noise. Third, the 
algorithms were shown to improve all segments of speech for 
both white and nonwhite noise. Fourth, the current algorithms 
have been shown to possess a consistent terminating criterion. 
Specifically, the optimum terminating iteration was shown to 
be consistent over all speech sound classes, and virtually all 
tested SNR’s. Finally, the constrained algorithms have shown 
improvement as a preprocessor for speech recognition. Their 
ability to bring performance up to an acceptable level in SNR’s 
between -5 and f 5  dB is questionable. This may be due in 
part to the difficulty of the highly confusable test set, the small 
number of tokens per word used for training, and the observa- 
tion that SNR’s in low energy consonantal portions which dis- 
criminate confusable pairs may well be 20 dB lower. Recogni- 
tion improvement in SNR’s between + 10 and +30 dB may be 
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large enough to warrant enhancement preprocessing for recog- 
nition. 

APPENDIX 
SPEECH DATA USED IN THE EVALUATION 

All sentences were sampled a t  8000 samp leds .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Speech Datu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S1: The pipe began to rust while new. 

S2: Thieves who rob friends deserve jail. 

S3: Add the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum to the product of these three. 

S4: Open the crate but don’t break the glass. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S5:  Oak is strong and also gives shade. 

S6: Cats and dogs each hate the other. 

Female 

Male 

Female 

Male 

Male 

Male 

Speaker 

Speaker 

Speaker 

Speaker 

Speaker 

Speaker 
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