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Abstract

We consider practical methods for adding constraints to the K-Means

clustering algorithm in order to avoid local solutions with empty clusters

or clusters having very few points. We often observe this phenomena when

applying K-Means to datasets where the number of dimensions is n � 10

and the number of desired clusters is k � 20. We propose explicitly adding

k constraints to the underlying clustering optimization problem requiring

that each cluster have at least a minimum number of points in it. We then

investigate the resulting cluster assignment step. Preliminary numerical

tests on real datasets indicate the constrained approach is less prone to

poor local solutions, producing a better summary of the underlying data.
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1 Introduction

The K-Means clustering algorithm [5] has become a workhorse for the data
analyst in many diverse �elds. One drawback to the algorithm occurs when it
is applied to datasets with m data points in n � 10 dimensional real space Rn

and the number of desired clusters is k � 20. In this situation, the K-Means
algorithm often converges with one or more clusters which are either empty
or summarize very few data points (i.e. one data point). Preliminary tests
on clustering sparse 300-dimensional web-browsing data indicate that K-Means
frequently converges with truly empty clusters. For k = 50 and k = 100, on
average 4.1 and 12.1 clusters are empty.

We propose explicitly adding k constraints to the underlying clustering op-
timization problem requiring that cluster h contain at least �h points. We focus
on the resulting changes to the K-Means algorithm and compare the results of
standard K-Means and the proposed Constrained K-Means algorithms. Empir-
ically, for modest values of �h, solutions are obtained that better summarize the
underlying data.

Since clusters with very few or no data points may be artifacts of poor local
minima, approaches to handling them include re-running the algorithm with new
initial cluster centers or checking the cluster model at algorithm termination,
resetting empty clusters, and re-running the algorithm. Our approach avoids
the additional computation of these heuristics which may still produce clusters
with too few points. In addition to providing a well-posed, mathematical way
to avoid small clusters, this work can generalize to other constraints ensuring
desirable clustering solutions (e.g. outlier removal or speci�ed groupings) and
to Expectation-Maximization probabilistic clustering.

Alternatively, empty clusters can be regarded as desirable \natural" regular-
izers of the cluster model. This heuristic argument states that if the data do not
\support" k clusters, then allowing clusters to go empty, and hence reducing the
value of k, is a desirable side e�ect. But there are applications in which, given a
value of k, one desires to have a cluster model with k non-empty clusters. These
include the situation when the value of k is know a priori and applications in
which the cluster model is utilized as a compressed version of a speci�c dataset
[1, 8].

The remaining portion of the paper is organized as follows. Section 2 formal-
izes the constrained clustering optimization problem and outlines the algorithm
computing a locally optimal solution. The sub-problem of computing cluster
assignments so that cluster h contains at least �h points is discussed in Section
3. Section 4 presents numerical evaluation of the algorithm in comparison with
the standard K-Means implementation on real datasets and Section 5 concludes
the paper.
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2 Constrained Clustering Problem and Algorithm

Given a dataset D = fxigmi=1 of m points in Rn and a number k of desired
clusters, the K-Means clustering problem is as follows. Find cluster centers
C1; C2; : : : ; Ck in Rn such that the sum of the 2-norm distance squared between
each point xi and its nearest cluster center Ch is minimized. Speci�cally:

min
C1;::: ;Ck

mX
i=1

min
h=1;::: ;k

�
1

2
kxi � Chk22

�
: (1)

By [4, Lemma 2.1], (1) is equivalent to the following problem where the min
operation in the summation is removed by introducing \selection" variables Ti;h.

minimize
C;T

Pm
i=1

Pk
h=1 Ti;h �

�
1
2kx

i � Chk22
�

subject to

Pk
h=1 Ti;h = 1; i = 1; : : : ;m;

Ti;h � 0; i = 1; : : : ;m; h = 1; : : : ; k:

(2)

Note that Ti;h = 1 if data point xi is closest to center Ch and zero otherwise.
Problem (2) or, equivalently (1), is solved by the K-Means algorithm iter-

atively. In each iteration, Problem (2) is solved �rst for Ti;h with the cluster
centers Ch �xed. Then, (2) is solved for Ch with the assignment variables Ti;h
�xed. The stationary point computed satis�es the Karush-Kuhn-Tucker (KKT)
conditions [6] for Problem (2), which are necessary for optimality.

Algorithm 2.1 K-Means Clustering Algorithm Given a database D of
m points in Rn and cluster centers C1;t; C2;t; : : : ; Ck;t at iteration t, compute
C1;t+1; C2;t+1; : : : ; Ck;t+1 at iteration t+ 1 in the following 2 steps:

1. Cluster Assignment. For each data record xi 2 D, assign xi to cluster
h(i) such that center Ch(i);t is nearest to xi in the 2-norm.

2. Cluster Update. Compute Ch;t+1 as the mean of all points assigned to
cluster h.

Stop when Ch;t+1 = Ch;t; h = 1; : : : ; k, else increment t by 1 and go to step 1.

Suppose cluster h is empty when Algorithm 2.1 terminates, i.e.
Pm

i=1 Ti;h =
0. The solution computed by Algorithm 2.1 in this case satis�es the KKT
conditions for (2). Hence, it is plausible that the standard K-Means algorithm
may converge with empty clusters. In practice, we observe this phenomenon
when clustering high-dimensional datasets with a large number of clusters.

To avoid clustering solutions with empty clusters, we propose explicitly
adding constraints to Problem (2) requiring that cluster h contain at least �h
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data points, where
Pk

h=1 �h � m. This yields the following Constrained K-
Means problem:

minimize
C;T

Pm
i=1

Pk
h=1 Ti;h �

�
1
2kx

i � Chk22
�

subject to

Pm
i=1 Ti;h � �h; h = 1; : : : ; kPk
h=1 Ti;h = 1; i = 1; : : : ;m;

Ti;h � 0; i = 1; : : : ;m; h = 1; : : : ; k:

(3)

Like the classic K-Means algorithm, we propose an iterative algorithm to solve
(3).

Algorithm 2.2 Constrained K-Means Clustering Algorithm Given a
database D of m points in Rn, minimum cluster membership values �h �
0; h = 1; : : : ; k and cluster centers C1;t; C2;t; : : : ; Ck;t at iteration t, compute
C1;t+1; C2;t+1; : : : ; Ck;t+1 at iteration t+ 1 in the following 2 steps:

1. Cluster Assignment. Let T t
i;h be a solution to the following linear pro-

gram with Ch;t �xed:

minimize
T

Pm
i=1

Pk
h=1 Ti;h �

�
1
2kx

i � Ch;tk22
�

subject to

Pm

i=1 Ti;h � �h; h = 1; : : : ; kPk

h=1 Ti;h = 1; i = 1; : : : ;m;

Ti;h � 0; i = 1; : : : ;m; h = 1; : : : ; k:

(4)

2. Cluster Update. Update Ch;t+1 as follows:

Ch;t+1 =

8<
:
P

m
i=1 T

t
i;hx

i

P
m
i=1

T t
i;h

if
Pm

i=1 T
t
i;h > 0;

Ch;t otherwise.
(5)

Stop when Ch;t+1 = Ch;t; h = 1; : : : ; k, else increment t by 1 and go to step 1.

Like the traditional K-Means approach, the Constrained K-Means algorithm
iterates between solving (3) in Ti;h for �xed Ch, then solving (3) in Ch for �xed
Ti;h.

We end this section by with a �nite termination result similar to [3, Theorem
7].

Proposition 2.3 The Constrained K-Means Algorithm 2.2 terminates in a �-
nite number of iterations at a cluster assignment that is locally optimal. Speci�-
cally, the objective function of (3) cannot be decreased by either reassignment of
a point to a di�erent cluster, while maintaining

Pm

i=1 Ti;h � �h; h = 1; : : : ; k,
or by de�ning a new cluster center for any of the clusters.
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Proof: At each iteration, the cluster assignment step cannot increase the
objective function of (3). The cluster update step will either strictly decrease
the value of the objective function of (3) or the algorithm will terminate since

Ch;t+1 = argmin
C

mX
i=1

kX
h=1

T t
i;h �

�
1

2
kxi � Chk22

�
(6)

is a strictly convex optimization problem with a unique global solution. Since
there are a �nite number of ways to assignm points to k clusters so that cluster h
has at least �h points, since Algorithm 2.2 does not permit repeated assignments,
and since the objective of (3) is strictly nonincreasing and bounded below by
zero, the algorithm must terminate at some cluster assignment that is locally
optimal. 222

In the next section we discuss solving the linear program sub-problem in
the cluster assignment step of Algorithm 2.2 as a minimum cost network ow
problem.

3 Cluster Assignment Sub-problem

The form of the constraints in the cluster assignment sub-problem (4) make it
equivalent to a Minimum Cost Flow (MCF) linear network optimization problem
[2]. This is used to show that the optimal cluster assignment will place each point
in exactly one cluster and can be found using fast network simplex algorithms.
In general, a MCF problem has an underlying graph structure. Let N be the set
of nodes. Each node i 2 N has associated with it a value bi indicating whether
it is a supply node (bi > 0), a demand node (bi < 0), or a transshipment node
(bi = 0). If

P
i2N bi = 0, the problem is feasible (i.e. the sum of the supplies

equals the sum of the demands). Let A be the set of directed arcs. For each arc
(i; j) 2 A, the variable yi;j indicates amount of ow on the arc. Additionally,
for each arc (i; j), the constant ci;j indicates the cost of shipping one unit ow
on the arc. The MCF problem is to minimize

P
(i;j)2A ci;j � yi;j subject to the

sum of the ow leaving node i minus the sum of ow incoming is equal to bi.
Speci�cally, the general MCF is:

minimize
y

P
(i;j)2A ci;h � yi;j

subject to

P
j yi;j �

P
j yj;i = bi;8i 2 N

0 � yi;j � ui;j ; 8(i; j) 2 A:

(7)

Let each data point xi correspond to a supply node with supply = 1 (bxi = 1).
Let each cluster Ch correspond to a demand node with demand bCh = ��h.
Let there be an arc in A for each (xi; Ch) pair. The cost on arc (xi; Ch) is
kxi � Chk22. To satisfy the constraint that the sum of the supplies equals the
sum of the demands, we need to add an arti�cial demand node a with demand
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x1

x2

xm

xm -1

C 1

C 2

C k

x3

Artificial
demand node

Figure 1: Equivalent Minimum Cost Flow formulation of (4).

ba = �m+
Pk

h=1 �h. There are arcs from each cluster node Ch to a with zero
cost. There are no arcs to or from the data point nodes xi to the arti�cial
node a. See Figure 1. Speci�cally, let N = fxi; i = 1; : : : ;mg [ fCh; h =
1; : : : ; kg [ fag. Let A = f(xi; Ch); xi; Ch 2 Ng [ f(Ch; a); Ch 2 Ng. With
these identi�cations and the costs, supplies and demands above, (4) has an
equivalent MCF formulation. This equivalence allows us to state the following
proposition that integer values of Ti;h are optimal for (4).

Proposition 3.1 If each �h; h = 1; : : : ; k is an integer, then there exists an
optimal solution of (4) such that Ti;h 2 f0; 1g.

Proof: Consider the equivalent MCF formulation of (4). Since bxi =

1; 8xi 2 N , bCh = ��h, and ba = �m +
Pk

h=1 �h are all integers, it follows
from [2, Proposition 2.3] that an optimal ow vector y is integer-valued. The
optimal cluster assignment values Ti;h correspond to yxi;Ch and, since each node
xi has 1 unit of supply, the maximum value of Ti;h is 1. 222

Hence, we are able to obtain optimal f0; 1g assignments without having to
solve a much more di�cult integer programming problem. In addition to deriv-
ing the integrality result of Proposition 3.1, the MCF formulation allows one to
solve (4) via codes speci�cally tailored to network optimization [2]. These codes
usually run 1 or 2 orders of magnitude faster than general linear programming
(LP) codes.

4 Numerical Evaluation

We report results using two real datasets: the Johns Hopkins Ionosphere dataset
and the Wisconsin Diagnostic Breast Cancer dataset (WDBC) [7]. The Iono-
sphere dataset contains 351 data points in R33 and values along each dimension
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(a) Ionosphere, K = 10; 20; 50
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(b) WDBC, K = 10; 20; 50

Figure 2: Average number of clusters with fewer than � data points computed
by the standard K-Means Algorithm 2.1

were normalized to have mean 0 and standard deviation 1. The WDBC data
subset consists of 683 normalized data points in R9. The values of �h (denoted
by �) were set equally across all clusters. The ILOG CPLEX 6.0 LP solver was
used for cluster assignment. For initial cluster centers sampled uniformly on
the range of the data, K-Means produced at least 1 empty cluster in 10 random
trials on WDBC for k � 30 and on Ion for k � 20. Figures 2 and 3 give results
for initial clusters chosen randomly from the dataset. This simple technique
can eliminate many truly empty clusters. Figure 2 shows the frequency with
which the standard K-Means algorithm converges to clusters having fewer than
� points.

The e�ect on the quality of the clustering by the constraints imposed by the
Constrained K-Means Algorithm 2.2 is quanti�ed by the ratio of the average
objective function of (1) computed at the Constrained K-Means solution over
that of the standard K-Means solution. Adding constraints to any minimization
problem can never decrease the globally optimal objective value. Thus we
would expect this ratio to be greater than 1. Surprisingly the Constrained
K-Means algorithm frequently found better local minima (ratios less than 1)
than did the standard K-Means approach. Note that the same starting points
were used for both algorithms. Results are summarized in Figure 3. Notice
that for a �xed k, solutions computed by Constrained K-Means are generally
equivalent to standard K-Means for small � -values. For large � -values, the
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Figure 3: Average ratio of objective function (1) computed at the Constrained
K-Means solution over that of the standard K-Means solution versus � .

Constrained K-Means solution is often inferior to those of standard K-Means. In
this case, to satisfy the � -constraints, the algorithm must group together points
which are far apart resulting in a higher objective value. Superior clustering
solutions are computed by the Constrained K-Means algorithm when � is chosen
in conjunction with k. For small values of k (e.g. k = 5) we observe ratios <
1 up to � = 50 (maximum tested) on Ionosphere. For k = 20, we begin to see
ratios > 1 for � = 10. Similar results are observed on WDBC.

5 Conclusion

K-Means can be extended to insure that every cluster contains at least a given
number of points. Using a cluster assignment step with constraints, solvable
by linear programming or network simplex methods, can guarantee a su�cient
population within each cluster. A surprising result was that Constrained K-
Means was less prone to local minima than traditional K-Means. Thus adding
constraints may be bene�cial to avoid local minima even when empty clusters
are permissible. Constrained clustering suggests many research directions. Ro-
bust clustering can be done by simply adding an \outlier" cluster with high
�xed distance that gathers \outliers" far from true clusters. Constraints forc-
ing selected data into the same cluster could be used to incorporate domain
knowledge or to enforce consistency of successive cluster solutions on related
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data.
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