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Abstract

Kalman ¯lters are often used to estimate the state variables of a dynamic system.

However, in the application of Kalman ¯lters some known signal information is often

either ignored or dealt with heuristically. For instance, state variable constraints

(which may be based on physical considerations) are often neglected because they do

not ¯t easily into the structure of the Kalman ¯lter. This paper develops an analytic

method of incorporating state variable inequality constraints in the Kalman ¯lter.

The resultant ¯lter truncates the PDF (probability density function) of the Kalman

¯lter estimate at the known constraints and then computes the constrained ¯lter

estimate as the mean of the truncated PDF. The incorporation of state variable

constraints increases the computational e®ort of the ¯lter but signi¯cantly improves
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its estimation accuracy. The improvement is demonstrated via simulation results

obtained from a turbofan engine model. The turbofan engine model contains 3 state

variables, 11 measurements, and 10 component health parameters. It is also shown

that the truncated Kalman ¯lter may be a more accurate way of incorporating

inequality constraints than other constrained ¯lters (e.g., the projection approach

to constrained ¯ltering).

Key Words { Kalman Filter, State Constraints, Estimation, Probability Density

Function, Gas Turbine Engines.

1 Introduction

For linear dynamic systems with white process and measurement noise, the Kalman

¯lter is known to be an optimal estimator. However, in the application of Kalman

¯lters there is often known model or signal information that is either ignored or dealt

with heuristically [13]. This has resulted in recent e®orts to incorporate constraints

in the Kalman ¯lter. For example, a projection method can be used to ¯nd the op-

timal way to incorporate hard inequality constraints on the states [20, 21]. Another

way of incorporating constraints is to use a regularization method to enforce a soft

limit on the changes of the state variables with respect to time [22]. Yet another

approach is the use of ridge regression to bias estimates with low certainty toward

their constraints [5].

This paper presents a way to generalize the Kalman ¯lter in such a way that

known inequality constraints among the state variables are satis¯ed by the state

variable estimates. The constraints that are imposed are hard constraints in that

they are strictly enforced. However, in contrast to the projection method of con-

straint enforcement [20, 21], the state estimates are not projected onto the constraint

surface. Rather, the PDF that is computed by the Kalman ¯lter is truncated at the

constraint edges, and the constrained state estimate becomes equal to the mean of

the truncated PDF. This idea is based on a previously published method [18] but

has been modi¯ed to handle two-sided inequality constraints.

The application considered in this paper is turbofan engine health parameter
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estimation [6]. The performance of gas turbine engines deteriorates over time. This

deterioration reduces the fuel economy of the engine. Airlines periodically collect

engine data in order to evaluate the health of the engine and its components. The

health evaluation is then used to determine maintenance schedules. Reliable health

evaluations are used to anticipate future maintenance needs. This o®ers the bene¯ts

of improved safety and reduced operating costs. The money-saving potential of such

health evaluations is substantial, but only if the evaluations are reliable. The data

used to perform health evaluations are typically collected during °ight and later

transferred to ground-based computers for post-°ight analysis. Data are collected

each °ight at the same engine operating point and corrected to account for variability

in ambient conditions. Typically, data are collected for a period of about 3 seconds

at a rate of about 10 Hz. Various algorithms have been proposed to estimate engine

health parameters, such as weighted least squares [7], expert systems [4], Kalman

¯lters [25], neural networks [25], and genetic algorithms [11].

This paper develops the truncation method of constrained Kalman ¯ltering, and

then applies it to the estimation of engine component e±ciencies and °ow capacities.

Engine component e±ciencies and °ow capacities are referred to as health parame-

ters. We can use our knowledge of the physics of the turbofan engine in order to

obtain a dynamic model [2, 24]. The health parameters that we try to estimate

can be modeled as slowly varying biases. The state vector of the dynamic model

is augmented to include the health parameters, which are then estimated with a

Kalman ¯lter [8]. We use heuristic knowledge of the health parameter dynamics

to constrain their estimate. For example, we know that health parameters never

improve. Engine health always degrades over time, and we can incorporate this in-

formation into state constraints to improve our health parameter estimation. (This

is assuming that no maintenance or engine overhaul is performed.) It should be em-

phasized that in this paper we are con¯ning the problem to the estimation of engine

health parameters in the presence of degradation only. There are speci¯c engine

cases that can result in abrupt shifts in ¯lter estimates, possibly even indicating an

apparent improvement in some engine components. An actual engine performance

monitoring system would need to include additional logic to detect and isolate such

faults.
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Section 2 derives the constrained Kalman ¯lter. Section 3 discusses the problem

of turbofan health parameter estimation, along with the dynamic model that we

use in our simulation experiments. Although the health parameters are not state

variables of the model, it is shown how the dynamic model can be augmented in

such a way that a Kalman ¯lter can estimate the health parameters [8, 12]. We

then show how this problem can be expressed in a way that is compatible with

the constraints discussed in the earlier section. Section 4 presents some simulation

results based on a turbofan model linearized around a known operating point. We

show that the truncated Kalman ¯lter can estimate health parameters better than

the unconstrained ¯lter, and it can also estimate health parameters better than other

constrained ¯lters. Section 5 presents some concluding remarks and suggestions for

further work.

2 Constrained Kalman Filtering

Consider the discrete linear time-invariant system given by

x(k + 1) = Ax(k) + w(k) (1)

y(k) = Cx(k) + e(k)

where k is the time index, x is the state vector, and y is the measurement. The sig-

nals fw(k)g and fe(k)g are uncorrelated zero mean Gaussian noise input sequences
with covariances

E[w(k)wT (m)] = Q±km

E[e(k)eT (m)] = R±km

E[w(k)eT (m)] = 0

where E[¢] is the expectation operator and ±km is the Kronecker delta function

(±km = 1 if k = m, ±km = 0 otherwise). The Kalman ¯lter equations are given as

follows [1].

K(k) = A§(k)CT (C§(k)CT +R)¡1 (2)
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x̂(k + 1) = Ax̂(k) +Bu(k) +K(k)(y(k)¡ Cx̂(k))
§(k + 1) = (A§(k)¡K(k)C§(k))AT +Q

where the ¯lter is initialized with x̂(0) = E[x(0)], and §(0) = E[(x ¡ x(0))(x ¡
x(0))T ]. The Kalman ¯lter estimate x̂(k) is a Gaussian random variable with a

mean of x(k) and a covariance matrix of §(k).

Now suppose that we are given the s scalar constraints

ai(k) · ÁTi (k)x(k) · bi(k) i = 1; : : : ; s (3)

where ai(k) < bk(k). This is a two sided constraint on some linear function of the

state. If we have only a one sided constraint, then we set ai(k) = ¡1 or bi(k) =1.
Now suppose at time k that we have some estimate x̂(k) with covariance §(k). The

problem is to truncate the Gaussian PDF N(x(k);§(k)) at the s constraints given

in (3), and then ¯nd the mean ~x(k) and covariance ~§(k) of the truncated PDF.

These new quantities, ~x(k) and ~§(k), become the constrained state estimate and its

covariance.

In order to make the problem tractable, we will de¯ne ~xi(k) as the state estimate

after the ¯rst i constraints of (3) have been enforced, and ~§i(k) as the covariance

of ~xi(k). We therefore initialize

i = 0 (4)

~xi(k) = x̂(k)

~§i(k) = §(k)

Now perform the following transformation.

zi(k) = RW
¡1=2T T (x(k)¡ ~xi(k)) (5)

where T and W are obtained from the Jordan canonical decomposition of ~§i(k).

TWTT = ~§i(k) (6)

We see that T is orthogonal andW is diagonal (therefore its square root is very easy

to compute). Note that zi(k) has a mean of 0 and covariance matrix of identity.

NASA/TM—2006-214129 5



Next we use Gram-Schmidt orthogonalization to ¯nd the orthogonal R that satisifes

RW 1=2TTÁi(k) =
h
(ÁTi (k)

~§i(k)Ái(k))
1=2 0 ¢ ¢ ¢ 0

i
(7)

With these de¯nitions we see that the upper bound (3) is transformed as

ÁTi (k)x(k) · bi(k) (8)

ÁTi (k)TW
1=2RT zi(k) + Á

T
i (k)~xi(k) · bi(k)

(ÁTi (k)TW
1=2RT )zi(k)

(ÁTi (k)
~§i(k)Ái(k))1=2

· bi(k)¡ Ái(k)T ~xi(k)
(ÁTi (k)

~§i(k)Ái(k))1=2h
1 0 ¢ ¢ ¢ 0

i
zi(k) · bi(k)¡ Ái(k)T ~xi(k)

(ÁTi (k)
~§i(k)Ái(k))1=2

· di(k)

where di(k) is de¯ned by the above equation. Similarly we can see thath
1 0 ¢ ¢ ¢ 0

i
zi(k) ¸ ai(k)¡ Ái(k)T ~xi(k)

(ÁTi (k)
~§i(k)Ái(k))1=2

¸ ci(k)

where ci(k) is de¯ned by the above equation. We therefore have the normalized

scalar constraint

ci(k) ·
h
1 0 ¢ ¢ ¢ 0

i
zi(k) · di(k) (9)

Since zi(k) has a covariance of identity, its elements are statistically independent of

each other. Only the ¯rst element of zi(k) is constrained, so the PDF truncation

reduces to a one dimensional PDF trunction. The ¯rst element of zi(k) is distributed

as N(0; 1) (before constraint enforcement), but the constraint says that zi(k) must

lie between ci(k) and di(k). We therefore remove that part of the Gaussian PDF

that is outside of the constraints and compute the area of the remaining portion of

the PDF asZ di(k)

ci(k)

1p
2¼
exp(¡³2=2) d³ = 1

2

h
erf(di(k)=

p
2)¡ erf(ci(k)=

p
2)
i

(10)

where erf(¢) is the error function, de¯ned as

erf(t) =
2p
¼

Z t

0
exp(¡t2=2) dt (11)
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We normalize the truncated PDF so that is has an area of one, and we ¯nd that the

truncated PDF (i.e., the constrained PDF of the ¯rst element of zi(k)) is given by

PDF(³) = ® exp(¡³2=2) (12)

® =

p
2

p
¼
h
erf(di(k)=

p
2)¡ erf(ci(k)=

p
2)
i

We can compute the mean and variance of zi(k) as

¹ = E[zi(k)] (13)

= ®

Z di(k)

ci(k)
³ exp(¡³2=2) d³

= ®
h
exp(¡c2i (k)=2)¡ exp(¡d2i (k)=2)

i
¾2 = E

h
(zi(k)¡ ¹)2

i
= ®

Z di(k)

ci(k)
(³ ¡ ¹)2 exp(¡³2=2) d³

= ®
h
exp(¡c2i (k)=2)(c¡ 2¹)¡ exp(¡d2i (k)=2)(d¡ 2¹)

i
+ ¹2 + 1

The mean and variance of the transformed state estimate, after enforcement of the

¯rst constraint, are therefore given as

~zi+1(k) =
h
¹ 0 ¢ ¢ ¢ 0

i
(14)

Cov(~zi+1(k)) = diag(¾2; 1; ¢ ¢ ¢ ; 1)

We then take the inverse of the transformation (5) to ¯nd the mean and variance of

the state estimate after enforcement of the ¯rst constraint.

~xi+1(k) = TW 1=2RT ~zi+1(k) + ~xi(k) (15)

~§i+1(k) = TW 1=2RTCov(~zi+1(k))RW
1=2TT

We then increment i by one and repeat the process of (5){(15) to obtain the state

estimate after enforcement of the next constraint. After going through this process

s times (once for each constraint) we have the ¯nal constrained state estimate and

covariance at time k.

~x(k) = ~xs(k) (16)

~§(k) = ~§s(k)
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Figure 1 shows an example of a one-dimensional state estimate before and after

truncation. Before truncation the state estimate is outside of the state constraints.

After truncation, the state estimate is set equal to the mean of the truncated PDF.

Figure 2 shows another example. In this case the unconstrained state estimate

is inside the state constraints. However, truncation changes the PDF and so the

constrained state estimate changes to the mean of the truncated PDF.

Figure 1: The unconstrained estimate violates the constraints. The con-
strained estimate is the centroid of the truncated PDF.

3 Turbofan Engine Health Monitoring

Figure 3 shows a schematic representation of a turbofan engine [16]. A single inlet

supplies air°ow to the fan. Air leaving the fan separates into two streams: one

stream passes through the engine core, and the other stream passes through the

NASA/TM—2006-214129 8



Figure 2: The unconstrained estimate satis¯es the constraints. Nevertheless,
the truncation approach to constrained estimation shifts the estimate to the
centroid of the truncated PDF.

annular bypass duct. The fan is driven by the low pressure turbine. The air passing

through the engine core moves through the compressor, which is driven by the high

pressure turbine. Fuel is injected in the main combustor and burned to produce

hot gas for driving the turbines. The two air streams combine in the augmentor

duct, where additional fuel is added to further increase the air temperature. The air

leaves the augmentor through the nozzle, which has a variable cross section area.

Various turbofan simulation packages have been developed over the years [2, 3,

10, 15]. The simulation used in this paper is a gas turbine engine simulation soft-

ware package called MAPSS (Modular Aero Propulsion System Simulation) [16].

MAPSS is written using Matlab Simulink. The MAPSS engine model is based on

a low frequency, transient, performance model of a high-pressure ratio, dual-spool,
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Figure 3: Schematic representation of a turbofan engine.

low-bypass, military-type, variable cycle, turbofan engine with a digital controller.

The controller update rate is 50 Hz, and the component level model simulates the dy-

namics of the engine components at a rate of 2500 Hz. The three state variables used

in MAPSS are low-pressure rotor speed (XNL), high-pressure rotor speed (XNH),

and the average hot section metal temperature (TMPC) (measured from aft of the

combustor to the high pressure turbine). The discretized time invariant equations

that model the turbofan engine can be summarized as follows.

x(k + 1) = f [x(k); u(k); p(k)] +wx(k) (17)

p(k + 1) = p(k) + wp(k)

y(k) = g[x(k); u(k); p(k)] + e(k)

where k is the time index, x is the 3-element state vector, u is the 3-element con-

trol vector, p is the 10-element health parameter vector, and y is the 11-element

measurement vector. The health parameters change slowly over time. Between

measurement times their deviations can be approximated by the zero mean noise

wp(k). The noise term wx(k) represents inaccuracies in the system model, and e(k)

represents measurement noise. An extended Kalman ¯lter can be used with (17) to

estimate the state vector x and the health parameter vector p.
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The states, controls, health parameters, and measurements are summarized in

Tables 1{4, along with their values at the nominal operating point considered in

this paper (a power lever angle of 21o at zero speed at sea level). Table 4 also shows

typical signal-to-noise ratios for the measurements, based on NASA experience and

previously published data [14]. Sensor dynamics are assumed to be high enough

bandwidth that they can be ignored in the dynamic equations. In Tables 1{4, LPT

is used for Low Pressure Turbine, HPT is used for High Pressure Turbine, LPC is

used for Low Pressure Compressor, and HPC is used for High Pressure Compressor.

State Nominal Value

LPT Rotor Speed 7 264 RPM
HPT Rotor Speed 12 152 RPM
Average Hot Section Metal Temperature 1 533 oR

Table 1: MAPSS turbofan model states and nominal values.

Control Nominal Value

Main Burner Fuel Flow 2 454 lbm / hr
Variable Nozzle Area 343 in2

Rear Bypass Door Variable Area 154 in2

Table 2: MAPSS turbofan model controls and nominal values.

Constraints can be incorporated in the state estimator by using heuristic knowl-

edge of the behavior of the health parameters. For example, it is known that health

parameters never improve with time. It is also known that they degrade within a

speci¯c envelope.

pm(k) · pmaxm (k + 1); m 2 [1¡ 10] (18)

pm(k) ¸ pminm (k + 1)

This envelope constraint is in the linear form required in the constrained ¯ltering

problem statement (3) and is therefore amenable to the approach presented in this

NASA/TM—2006-214129 11



Health Parameter Nominal Value

Fan air°ow 1
Fan e±ciency 1
Booster tip air°ow 1
Booster tip e±ciency¤ 1
Booster hub air°ow 1
Booster hub e±ciency 1
High pressure turbine air°ow 1
High pressure turbine e±ciency 1
Low pressure turbine air°ow 1
Low pressure turbine e±ciency 1

Table 3: MAPSS turbofan model health parameters and nominal values.
(¤) The fourth health parameter is not yet implemented in MAPSS.

paper. Note that this does not take into account the possibility of abrupt changes in

health parameters due to discrete damage events. That possibility must be addressed

by some other means (e.g., residual checking [6]) in conjuction with the methods

presented in this paper.

4 Simulation Results

We simulated the methods discussed in this paper using Matlab. We measured a

steady state 3 second burst of engine data at 10 Hz during each °ight. Each of

these routine data collections was performed at the single operating point shown in

Tables 1{4, except the engine's health parameters deteriorated a small amount each

°ight. The signal-to-noise ratios were determined on the basis of NASA experience

and previously published data [14] and are shown in Table 4. The models on which

this work was based are fairly comprehensive, so we assumed that the process noise

for each component of the state derivative equation (17) was zero. However, in the

Kalman ¯lter we used a one-sigma state process noise equal to 0.005% of the nominal

state values to allow the ¯lter to be responsive to changes in the state variables. We

also set the one sigma process noise for each component of the health parameter

NASA/TM—2006-214129 12



Measurement Nominal Value SNR

LPT exit pressure 19.33 psia 100
LPT exit temperature 1394 oR 100
Percent low pressure spool rotor speed 63.47% 150
HPC inlet temperature 580.8 oR 100
HPC exit temperature 965.1 oR 200
Bypass duct pressure 20.66 psia 100
Fan exit pressure 17.78 psia 200
Booster inlet pressure 20.19 psia 200
HPC exit pressure 85.06 psia 100
Core rotor speed 12 152 RPM 150
LPT blade temperature 1179 oR 70

Table 4: MAPSS turbofan model measurements, nominal values, and signal-
to-noise ratios.

to 0.01% of the nominal parameter value. These values were obtained by tuning.

They were small enough to give reasonably smooth estimates, and large enough to

allow the ¯lter to track slowly time-varying parameters. In the enforcement of the

constraints in (18) we chose the constraint envelope as follows.

1. For the turbine air°ow health parameters (m 2 [7; 9]), whose values increase
with time (i.e., an increase corresponds to a degradation), pmaxm (k) was set

equal to a linear-plus-exponential degradation that was initialized to zero (i.e.,

pmaxm (0) = 0) and reached a maximum of 6% after 500 °ights, while pminm (k)

was set equal to 0 for all k.

2. For the other health parameters (m 2 [1 ¡ 6; 8; 10]), whose values decrease
with time (i.e., a decrease corresponds to a degradation), pminm (k) was set

equal to a linear-plus-exponential degradation that was initialized to zero (i.e.,

pminm (0) = 0) and reached a maximum magnitude of {6% after 500 °ights,

while pmaxm (k) was set equal to 0 for all k.

We simulated a linear-plus-exponential degradation of the 10 health parameters

over 100 °ights. The initial health parameter estimation errors were assumed to be

NASA/TM—2006-214129 13



zero. The simulated health parameter degradations were representative of turbofan

performance data reported in the literature [17].

Figure 4 shows a typical plot of the true deviation of health parameter 10,

along with the constraint envelope, the unconstrained estimate, and the constrained

estimate. It is seen that even though the unconstrained estimate lies within the

constraint envelope, the constrained estimate is more accurate. Figure 5 shows a

di®erent type of example where the true health parameter deviation is closer to the

constraint envelope. In this case there are times when the unconstrained estimate

lies outside of the constraint envelope, but the enforcement of constraints forces the

constrained estimate to remain within the envelope.

Figure 4: In this example, constraint enforcement decreases the RMS estima-
tion error from 12.2% to 9.2%.

We ran 20 Monte Carlo simulations, each with a di®erent noise history. We

obtained estimates of the health parameters using three di®erent methods.
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Figure 5: In this example, constraint enforcement decreases the RMS estima-
tion error from 13.4% to 6.6%.

1. Unconstrained (standard) Kalman ¯ltering.

2. Constrained Kalman ¯ltering using the projection approach [20, 21].

3. Constrained Kalman ¯ltering using the projection approach and constraint

tuning [23].

4. Constrained Kalman ¯ltering using the truncation approach discussed in this

paper.

Table 5 shows the performance of the ¯lters averaged over all 20 simulations. The

standard Kalman ¯lter estimates the health parameters to within 7.4% of their ¯nal

degradations. The projection-based constrained ¯lter estimates the health param-

eters to within 6.5% of their ¯nal degradations. The projection-based constrained
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¯lter with the addition of residual-based tuning estimates the health parameters to

within 6.1% of their ¯nal degradations. Finally, the use of the truncation approach

for constrained ¯ltering estimates the parameters to within 6.1% of their ¯nal degra-

dations. These numbers show the improvement that is possible with the truncation

approach to constrained Kalman ¯ltering. Although we may be able to get just as

good performance using the tuned projection ¯lter, a lot more tuning is required

than with the truncation approach [23].

Estimation Error (%)

Unconstrained Projection Tuned Truncated
Health Parameter Filter Filter Filter Filter

Fan air°ow 12.9 9.2 8.2 7.5
Booster hub air°ow 6.9 6.2 6.0 5.8
Booster tip air°ow 10.9 10.6 10.0 10.5
Booster tip e±ciency¤ N/A N/A N/A N/A
Booster hub air°ow 7.4 6.8 6.3 6.4
Booster hub e±ciency 3.8 3.1 3.0 3.7
High pressure turbine air°ow 4.3 3.3 3.2 4.0
High pressure turbine e±ciency 4.2 3.8 3.7 4.2
Low pressure turbine air°ow 3.6 3.3 3.2 3.8
Low pressure turbine e±ciency 11.3 11.2 11.1 8.8

Average 7.4 6.5 6.1 6.1

Table 5: Health parameter estimation errors (percent) of the Kalman ¯lters.
(¤) The fourth health parameter is not yet implemented in MAPSS.

The improved performance of the constrained ¯lter comes with a price, and that

price is computational e®ort. The algorithm outlined in (5){(15) requires Jordan

decomposition and Gram-Schmidt orthogonalization. However, if the constraints

of (3) are decoupled (as they are in our example) then the computational e®ort

can be largely reduced by ignoring the cross-covariance terms in the state estimator

and hence avoiding these matrix computations. In any case, computational e®ort is

not a critical issue for turbofan health estimation since the ¯ltering is performed on

ground-based computers after each °ight.

NASA/TM—2006-214129 16



Note that the Kalman ¯lter works well only if the assumed system model matches

reality fairly closely. The method presented in this paper, by itself, will not work well

if there are large sensor biases or hard faults due to severe component failures. A

mission-critical implementation of a Kalman ¯lter should always include some sort

of additional residual check to verify the validity of the Kalman ¯lter results [9],

particularly for the application of turbofan engine health estimation considered in

this paper [6].

5 Conclusion and Discussion

We have presented a PDF truncation based method for incorporating constraints

into a Kalman ¯lter. If the system whose state variables are being estimated has

known state variable constraints, then those constraints can be incorporated into

the Kalman ¯lter as shown in this paper. For the aircraft turbofan engine health

estimation problem, the use of constraints generally improves the accuracy of health

estimatation. At ¯rst this seems counterintuitive, since the unconstrained Kalman

¯lter is by de¯nition the minimum variance ¯lter. However, we have changed the sys-

tem by introducing state variable constraints. Therefore, the unconstrained Kalman

¯lter is no longer the minimum variance ¯lter, and we can do better with the con-

strained Kalman ¯lter.

We have seen that the constrained ¯lter requires more computational e®ort than

the standard Kalman ¯lter. This is due to the addition of s matrix decompositions

that must be performed at each time step (one for each constraint). The engineer

must therefore perform a tradeo® between computational e®ort and estimation ac-

curacy. For real time applications the improved estimation accuracy may or may

not be worth the increase in computational e®ort.

The Kalman ¯lter works well only if the assumed system model matches reality

fairly closely. The constraint enforcement and constraint tuning methods presented

in this paper will not work well if there are large sensor biases or hard faults due

to severe component failures. A mission-critical implementation of a Kalman ¯lter

should always include some sort of residual check to verify the validity of the Kalman
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¯lter results, particularly for the application of turbofan engine health estimation

considered in this paper [6, 9].

Although we have considered only linear state constraints, it is not conceptually

di±cult to extend this paper to nonlinear constraints. If the state constraints are

nonlinear they can be linearized as discussed in [19]. Further work could explore

ways to optimally tune the constraints of the truncated Kalman ¯lter.
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