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Abstract. In this paper, we address the problem of semi-supervised
feature selection from high-dimensional data. It aims to select the most
discriminative and informative features for data analysis. This is a re-
cent addressed challenge in feature selection research when dealing with
small labeled data sampled with large unlabeled data in the same set.
We present a filter based approach by constraining the known Laplacian
score. We evaluate the relevance of a feature according to its locality pre-
serving and constraints preserving ability. The problem is then presented
in the spectral graph theory framework with a study of the complexity of
the proposed algorithm. Finally, experimental results will be provided for
validating our proposal in comparison with other known feature selection
methods.
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1 Introduction and Motivation

Feature selection is an important task in machine learning for high dimensional
data mining. It is one of the effective means to identify relevant features for
dimension reduction [1]. This task has led to improved performance for several
UCI data sets [2] as well as for real-world applications over data such as digital
images, financial time series and gene expression microarrays [3].

Generally, feature selection methods can be classified in three types: filter,
wrapper or embedded. The filter model techniques examine intrinsic properties
of the data to evaluate the features prior to the learning tasks [4]. The wrapper
based approaches evaluate the features using the learning algorithm that will
ultimately be employed [5]. Thus, they “wrap” the selection process around the
learning algorithm. The embedded methods are locally specific to models during
their construction. They aim to learn the feature relevance with the associated
learning algorithm [6].

Moreover, Feature selection could be done in three frameworks according to
class label information. The most addressed framework is the supervised one,
in which feature relevance can be evaluated by their correlation with the class
label [7]. In unsupervised feature selection, without label information, feature
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relevance can be evaluated by their capability of keeping certain properties of
the data, such as the variance or the separability. It is considered as a much
harder problem, due to the absence of class labels that would guide the search
for relevant information [8].

The problem becomes more challenging when the labeled and unlabeled data
are sampled from the same population. It is more adapted with real-world appli-
cations where labeled data are costly to obtain. In this context, the effectiveness
of semi-supervised learning has been demonstrated [9]. The authors in [10] intro-
duced a semi-supervised feature selection algorithm based on spectral analysis.
Later, they exploited intrinsic properties underlying supervised and unsuper-
vised feature selection algorithms, and proposed a unified framework for feature
selection based on spectral graph theory [11]. The second known work in semi-
supervised selection deals with a wrapper-type forward based approach proposed
by [12] which introduced unlabeled examples to extend the initial labeled train-
ing set.

Furthermore, utilizing domain knowledge became an important issue in many
machine learning and data mining tasks [13,14,15]. Several recent works have
attempted to exploit pairwise constraints or other prior information in feature
selection. The authors in [16] proposed an efficient algorithm, called SSDR (with
different variants: SSDR-M, SSDR-CM, SSDR-CMU), which can simultaneously
preserve the structure of original high-dimensional data and the pairwise con-
straints specified by users. The main problem of these methods is that the pro-
posed objective function is independent of the variance, which is very important
for the locality preserving for the features. In addition, the similarity matrix
used in the objective function uses the same value for all pairs of data which are
not related by constraints. The same authors proposed a constraint score based
method [17,18] which evaluates the relevance of features according to constraints
only. The method carries out with little supervision information in labeled data
ignoring the unlabeled data part even if it is very large. The authors in [19]
proposed to solve the problem of semi-supervised feature selection by a simple
combination of scores computed on labeled data and unlabeled data respectively.
The method (called C4) tries to find a consensus between an unsupervised score
and a supervised one (by multiplying both scores). The combination is simple,
but can dramatically bias the selection for the features having best scores for
labeled part of data and bad scores for the unlabeled part and vice-versa.

In the contrast of all cited methods, our proposal uses a new developed score
by constraining the well known Laplacian score (unsupervised) [20] that we will
detail in the next section. The idea behind our proposal is to assess the ability
of features in preserving the local geometric structure offered by unlabeled data,
while respecting the constraints offered by labeled data.

Therefore, our semi-supervised feature selection algorithm is based on a filter
approach. We think that one important motivation to have a filter method for
feature selection is the specificity of the semi-supervised data. This is because,
in this paradigm, data may be used in the service of both unsupervised and
supervised learning. On the one hand, semi-supervised data could be used in
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the goal of data clustering, then using the labels to generate constraints which
could in turns ameliorate the clustering. In this context, “good” features are
those which better describe the geometric structure of data. On the other hand,
semi-supervised data could be used for supervised learning, i.e. classification
or prediction of the unlabeled examples using a classifier constructed from the
labeled examples. In this context, “good” features are those which are better cor-
related with the labels. Subsequently, the use of a filter method makes the feature
selection process independent from the further learning algorithm whether it is
supervised or unsupervised. This is important to eliminate the bias of feature
selection in both cases, i.e. good features in this case would be those which com-
promise between better description of data structure and better correlation with
desired labels.

2 Related Work

In semi-supervised learning, a data set of N data points X = {x1, ..., xN} consists
of two subsets depending on the label availability: XL = (x1, ..., xl) for which
the labels YL = (y1, ..., yl) are provided, and XU = (xl+1, ..., xl+u) whose labels
are not given. Here data point xi is a vector with m dimensions (features), and
label yi ∈ {1, 2, ..., C} (C is the number of different labels) and l + u = N (N
is the total number of instances). Let F1, F2, ..., Fm denote the m features of X
and f1, f2, ..., fm be the corresponding feature vectors that record the feature
value on each instance.

Semi-supervised feature selection is to use both XL and XU to identify the
set of most relevant features Fj1, Fj2, ..., Fjk of the target concept, where k ≤ m
and jr ∈ {1, 2, ..., m} for r ∈ {1, 2, ..., k}.

2.1 Laplacian Score

This score was used for unsupervised feature selection. It not only prefers those
features with larger variances which have more representative power, but it also
tends to select features with stronger locality preserving ability. A key assump-
tion in Laplacian Score is that data from the same class are close to each other.
The Laplacian score of the rth feature , which should be minimized, is computed
as follows [20]:

Lr =

∑
i,j(fri − frj)2Sij

∑
i(fri − μr)2Dii

(1)

where D is a diagonal matrix with Dii =
∑

j Sij , and Sij is defined by the
neighborhood relationship between samples (xi = 1, .., N) as follows:

Sij =

{
e−

‖xi−xj‖2

λ if xi and xj are neighbors

0 otherwise
(2)

where λ is a constant to be set, and xi, xj are neighbors means that xi is among
k nearest neighbors of xj , μr = 1

N

∑
i fri.
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2.2 Constraint Score

In general, domain knowledge can be expressed in diverse forms, such as class
labels, pairwise constraints or other prior information.

The constraint score guides the feature selection according to pairwise instance
level constraints which can be classified on two sets: ΩML (a set of Must-Link
constraints) and ΩCL (a set of Cannot-Link constraints)

– Must-Link constraint (ML): involving xi and xj , specifies that they have
the same label.

– Cannot-Link constraint (CL): involving xi and xj , specifies that they
have different labels.

Constraint score of the rth feature, which should be minimized, is computed as
follows [17]:

Cr =

∑
(xi,xj)∈ΩML

(fri − frj)2
∑

(xi,xj)∈ΩCL
(fri − frj)2

(3)

3 Constrained Laplacian Score

The main advantage of Laplacian score is its locality preserving ability. However,
its assumption that data from the same class are close to each other, is not always
true. In fact, there are several cases where the classes overlap in some instances.
Thus, two close instances could naturally have two different labels and vis-versa.
Furthermore, for constraint score, the principle is mainly based on the constraint
preserving ability. This few supervision information is certainly necessary for fea-
ture selection, but not sufficient when ignoring the unlabeled data part especially
if it is very large. For that, we propose a Constrained Laplacian Score (CLS)
which constraints the Laplacian score for an efficient semi-supervised feature
selection. Thus, we define CLS, which should be minimized, as follows:

CLSr =

∑
i,j(fri − frj)2Sij

∑
i

∑
j|∃k,(xk,xj)∈ΩCL

(fri − αi
rj)2Dii

(4)

where :

Sij =

⎧
⎨

⎩
e−

‖xi−xj‖2

λ if xi and xj are neighbors or (xi, xj) ∈ ΩML

0 otherwise
(5)

and:

αi
rj =

{
frj if (xi, xj) ∈ ΩCL

μr otherwise
(6)

Since the labeled and unlabeled data are sampled from the same population
generated by target concept, the basis idea behind our score is to generalize
the Laplacian score for semi-supervised feature selection. Note that if there are
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no labels (l = 0, X = XU ) then CLSr = Lr and when (u = 0, X = Xl), CLS
represents an adjusted Cr, where the ML and CL information would be weighted
by Sij and Dii respectively in the formula.

With CLS, on the one hand, a relevant feature should be the one on which
those two samples (neighbors or related by an ML constraint) are close to each
other. On the other hand, the relevant feature should be the one with a larger
variance or on which those two samples (related by a CL constraint) are well
separated.

4 Spectral Graph Based Formulation

The spectral graph theory [11] represents a solid theoretical framework which
has been the basis of many powerful existing feature selection methods such as
ReliefF [21], Laplacian [20] , sSelect [10], SPEC[22] and Constraint score [17].

Similarly, we give a graph based explanation for our proposed Constrained
Laplacian Score (CLS). A reasonable criterion for choosing a relevant feature is
to minimize the object function represented by CLS. Thus, the problem is to
minimize the first term T1 =

∑
i,j(fri − frj)2Sij and maximize the second one

T2 =
∑

i

∑
j|∃k,(xk,xj)∈ΩCL

(fri − αi
rj)

2Dii. By resolving these two optimization
problems, we prefer those features respecting their pre-defined graphs, respec-
tively. Thus, we construct a k-neighborhood graph Gkn from X (data set) and
ΩML (ML constraint set) and a second graph GCL from ΩCL (CL constraint
set).

Given a data set X , let G(V, E) be the complete undirected graph constructed
from X , with V is its node set and E is its edge set. The ith node vi of G
corresponds to xi ∈ X and there is an edge between each nodes pair (vi, vj),

whose weight wij = e−
‖xi−xj‖2

λ is the dissimilarity between xi and xj .
Gkn(V, Ekn) is a subgraph which could be constructed from G where Ekn is

the edge set {ei,j} from E such that ei,j ∈ Ekn if (xi, xj) ∈ ΩML or xi is one of
the k-neighbohrs of xj . GCL(VCL, ECL) is a subgraph constructed from G with
VCL its node set and {ei,j} its edge set such that ei,j ∈ ECL if (xi, xj) ∈ ΩCL.

Once the graphs Gkn and GCL are constructed, their weight matrices, denoted
by Skn and SCL respectively, can be defined as:

Skn
ij =

{
wij if xi and xj are neighbors or (xi, xj) ∈ ΩML

0 otherwise
(7)

SCL
ij =

{
1 if(xi, xj) ∈ ΩCL

0 otherwise
(8)

Then, we can define :
– For each feature r, its vector fr = (fr1, ..., frN)T

– Diagonal matrices Dkn
ii =

∑
j Skn

ij and DCL
ii =

∑
j SCL

ij

– Laplacian matrices Lkn = Dkn − Skn and LCL = DCL − SCL
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Algorithm 1. CLS
Input: Data set X
1: Construct the constraint set (ΩML and ΩCL) from YL

2: Construct graphs Gkn and GCL from (X, ΩML) and ΩCL respectively.
3: Calculate the weight matrices Skn, SCL and their Laplacians Lkn, LCL respec-
tively.
for r = 1 to m do

4: Calculate CLSr

end for
5: Rank the features r according to their CLSr in ascending order.

Following some simple algebraic steps, we see that:

T1 =
∑

i,j

(fri − frj)2Skn
ij =

∑

i,j

(f2
ri + f2

rj − 2frifrj)Skn
ij (9)

= 2(
∑

i,j

f2
riS

kn
ij −

∑

i,j

friS
kn
ij frj) (10)

= 2(fT
r Dknfr − fT

r Sknfr) (11)

= 2fT
r Lknfr (12)

Note that satisfying the graph-strutures is done according to αi
rj in the equation

(6). In fact, when ΩCL = ∅, we should maximize the variance of fr which would
be estimated as:

var(fr) =
∑

i

(fri − μr)2Dkn
ii (13)

The optimization of (13) is well detailed in [20]. In this case, CLSr = Lr =
fT

r Lknfr

fT
r Dknfr

. Otherwise, we develop as above the second term (T2) and obtain

2fT
r LCLDknfr. Subsequently, CLSr = fT

r Lknfr

fT
r LCLDknfr

seeks those features that
respect Gkn and GCL. The whole procedure of the proposed CLS is summarized
in Algorithm 1.

Lemma 1. Algorithm 1 is computed in time O(m × max(N2, Log m)).
Proof. The first step of the algorithm requires l2 operations. Steps 2-3 build
the graph matrices requiring N2 operations. Step 4 evaluates the m features
requiring mN2 operations and the last step ranks features according to their
scores with m Log(m) operations. �
Note that the “small-labeled” problem becomes an advantage in our case, be-
cause it supposes that the number of extracted constraints is smaller since it
depends on the number of labels, l. Thus, the cost of the algorithm depends
considerably on u, the size of unlabeled data XU .

To reduce this complexity, we propose to apply a clustering on XU . The idea
aims to substitute this huge part of data by a smaller one X ′

U = (p1, ..., pK) by
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preserving the geometric structure of XU , where K is the number of clusters. We
propose to use Self-Organizing Map (SOM) based clustering [23] that we briefly
present in the next section.

Lemma 2. By clustering XU the complexity of Algorithm 1 is reduced to
O(m × max(u, Log m)).

Proof. The size of labeled data is very smaller than the one of unlabeled
data, l << u < N and the clustering of XU provides at most K =

√
u clusters.

Therefore, Algorithm 1 is applied over a data set with size equal to
√

u+ l � √
u.

This allows to decrease the complexity to O(m × max(u, Log m)). �

4.1 SOM Algorithm

SOM is a very popular tool used for visualizing high dimensional data spaces. It
can be considered as doing vector quantization and/or clustering while preserving
the spatial ordering of the input data rejected by implementing an ordering of
the codebook vectors (also called prototype vectors, cluster centroids or reference
vectors) in a one or two dimensional output space. The SOM consists of nodes
organized on a regular low-dimensional grid, called the map. More formally, the
map is described by a graph (V, E). V is a set of K interconnected nodes having
a discrete topology defined by E. For each pair of nodes (c, s) on the map, the
distance δ(c, s) is defined as the shortest path between c and s on the graph.
This distance imposes a neighborhood relation between nodes.

Each node c is representedby an m-dimensional reference vector pc = p1
c , ...., p

m
c

from M (the set of all map’s nodes), where m is equal to the dimension of the in-
put vectors xi ∈ XU (unlabeled data set). The SOM training algorithm resembles
K-means. The important distinction is that in addition to the best matching ref-
erence vector, its neighbors on the map are updated.

More formally, we define an assignment function γ from R
m (the input space)

to M (the output space), that associates each element xi of R
m to the node

whose reference vector is “closest” to xi. This function induces a partition P =
Pc; c = 1...K of the set of observations where each part Pc is defined by: Pc =
{xi ∈ XU ; γ(xi) = c}.

Next, an adaptation step is performed when the algorithm updates the ref-
erence vectors by minimizing a cost function, noted E(γ,M). This function has
to take into account the inertia of the partition P , while insuring the topology
preserving property. To achieve these two goals, it is necessary to generalize the
inertia function of P by introducing the neighborhood notion attached to the
map. In the case of individuals belonging to R

m, this minimization can be done
in a straight way. Indeed, new reference vectors are calculated as:

pt+1
s =

∑u
i=1 hsc(t)xi∑u
i=1 hsc(t)

(14)

where c = arg mins ‖xi −ws‖, is the index of the best matching unit of the data
sample xi, ‖.‖ is the distance mesure, typically the Euclidean distance, and t
denotes the time. hsc(t) is the neighborhood function around the winner unit c.
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Fig. 1. Semi-supervised feature selection framework

In practice, we often use hsc = e−
δsc
2T2 where T represents the neighborhood

raduis in the map. It is decreased from an initial value Tmax to a final value
Tmin.

Subsequently, as explained above, SOM will be applied on the unsupervised
part of data (XU ) for obtaining X ′

U with a size equal to the number of SOM’
nodes (K). Therefore, CLS will be performed on the new obtained data set
(XL + X ′

U ). Note that any other clustering method could be applied over XU ,
but here SOM is chosen for its ability to well preserve the topological relationship
of data and thus the geometric structure of their distribution. Finally, the feature
selection framework is represented in the Figure 1.

5 Results

5.1 Data Sets and Methods

In this section, we present an empirical study on several databases downloaded
from different repositories. “Iris”, “Wave”, “Ionosphere”, “Sonar” and “Soy-
bean” in [2]. Microarray data sets, “Leukemia” and “Colon cancer” in [24] and
[25] respectively. Face-image data sets, “Pie10P” and “Pix10P” which can be
found in http://featureselection.asu.edu/datasets.php. The whole data sets in-
formation is detailed in Table 1.

The data sets are voluntarily chosen for evaluating the clustering performance
of our proposal, CLS, and comparing it with other state of the art techniques.
The concerned methods are listed below:
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Table 1. Data sets

Data sets N m #classes

Iris 150 4 3
Wave 5000 40 3

Ionosphere 351 34 2
Sonar 208 60 2

Soybean 47 35 4
Leukemia 72 7129 2

Colon cancer 62 2000 2
Pie10P 210 2420 10
Pix10P 100 10000 10

– Variance score, is based on variance for feature selection [26].
– Fisher score, is based on variance and all labels for feature selection [27].
– Laplacian score, is only based on geometric structure of data [20].
– Constraint score (CS or CScore), selects the feature according to few super-

vision information, extracted from labeled data [17].
– C4, is a semi-supervised feature selection by a simple combination of Lapla-

cian score and CS [19].
– ReliefF, estimates the significance of features according to how well their

values distinguish between the instances of the same and different classes
that are near to each other [21].

– F2+r4 and F3+r (SPEC), spectral feature selection methods [22].

The experimental results will be presented on three folds. First, we test our
algorithm on data sets whose the relevant features are known. Second, we do
some comparisons with known powerful feature selection methods and finally,
we apply the algorithm on databases with huge number of features. In most
experiments, the λ value is set to 0.1 and k = 10 for building the neighborhood
graph. For the semi-supervised data, we chose the first labeled examples for
all data sets (with different labels). We did no selection neither on the level of
examples to be labeled, nor on the generated constraints.

5.2 Validation of Feature Selection

In this section, we are particularly interested on the two first data sets (“Iris”
and “Wave”) which are popularly used in machine learning and data mining
tasks.

In “Iris”, one class is linearly separable from the other two which are not
linearly separable from each other. Out of the four features it is known that
the features F3 (petal length) and F4 (petal width) are more important for
the underlying clusters than F1 (sepal length) and F2 (sepal width) Figure 2.
The sub-figure (c) shows the data projected on the subspace constructed by F3
and F4, whereas the sub-figure (b) shows the data projected on the subspace
of F1 and F2. In [20], it was reported that by using variance score [26], the
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Fig. 2. 2D-Visualization of “Iris”

four features are sorted as (F3, F1, F4, F2). With k ≥ 15, Laplacian score
sorts these four features as (F3, F4, F1, F2). It sorts them as (F4, F3, F1, F2)
when 3 ≤ k < 15. By using CLS, the features are sorted as (F3, F4, F1, F2)
for any value of k (between 1 and 20). For explaining the difference between
the two scores, we chose for this data set, l = 10 generating 45 constraints.
Two of CL-type constraints are constructed from the pairs (73th, 150th) and
(78th, 111th) according to the labels of the points Figure.2(a)1 (The concerned
points are represented by rounds). Since, the data points between brackets are
close, with the Laplacian score, the edges e73,150 and e78,111 are constructed in
the associated k-neighborhood graph and affect the feature selection process.
With our method, these edges never exist because of the CL constraint property
even if k is small. For that, the scores obtained by CLS are smaller than the
ones obtained by Laplacian score. We also observed an important gap on scores
between the relevant variables (CLS3 = 1.4 × 10−3, CLS4 = 2.7 × 10−3) and
the irrelevant ones (CLS1 = 1.07 × 10−2, CLS2 = 1.77 × 10−2). In fact, In
the region where the points belong to the two non-linearly separable classes,
Laplacian score is biased by the dissimilarity which could affect the ranking of
features for their selection, while CLS is able to control this problem with the
help of constraints.

The waveform of Brieman data set “Wave” consists of 5000 instances divided
into 3 classes. This data set is composed of 21 relevant features (the first ones)
and 19 noise features with mean 0 and variance 1. Each class is generated from
a combination of 2/3 “base” waves. We tested our feature selection algorithm

1 Figure 2(a) is obtained by PCA.
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Fig. 3. Results of CLS on features of “Wave” data set

with l = 8 (28 constraints) and the dimension of the map (26 × 14) for SOM
algorithm. We can see in Figure 3 that the features (21 to 40) have high values
on CLS. The noise represented by these features is clearly detected.

5.3 Comparison of the Feature Selection Quality

For comparing our feature selection approach with another ones, the nearest
neighborhood (1-NN) classifier with Euclidean distance is employed for classifi-
cation after feature selection. For each data set, the classifier is learned in the
first half of samples from each class and tested on the remaining data. We tested
the Accuracy behavior of the ranking feature function represented by CLS for
comparing it with those of other methods cited in [17]. These experiments were
applied on three data sets “Ionosphere”, “Sonar” and “Soybean” with 5 labeled
instances for each one (so 10 pairwise constraints were generated).

Figure 4 indicates that, in most cases, the performance of CLS is comparable
to Fisher Score [26] and significantly better than that of Variance, Laplacian and
Constraint scores. This verifies that merging supervision information of labeled
data with geometrical structure of unlabeled data is very useful in learning fea-
ture scores. Table 2 compares the averaged accuracy under different number of
selected features. Here the values after the symbol ± denote the standard devi-
ation. From Table 2 and Figure 4 we can find that, the performance of CLS is
almost always better than that of Variance, Laplacian score and Constraint score
and is comparable with Fisher Score. More specifically, CLS is superior to Fisher
Score on “Soybean” and “Ionosphere” and is inferior on “Sonar”. Note that Fisher
score uses all labels when CLS score uses just 5 labels for each data set.

Then, we compare the performance of CLS with that of Fisher and constraint
scores when different levels of supervision are used. Figure 5 shows the plots
for accuracy under desired number of selected features vs. different numbers of
labeled data (for Fisher Score) or pairwise constraints (for CScore and CLS)
on the three data sets (“Ionosphere”, “Sonar” and “Soybean”). Here the desired
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Fig. 4. Accuracy vs different numbers of selected features

Table 2. Averaged accuracy of different algorithms on “Ionosphere”, “Sonar” and
“Soybean”

Data sets Variance Laplacian Fisher CS CLS

Ionosphere 82.2±3.8 82.6±3.6 86.3±2.5 85.1±2.9 86.73±2.1
Sonar 79.3±6.3 79.5±7.2 86.4±6.9 80.7±7.8 83.3±1.7

Soybean 88.9±12.7 79.4±28.4 94.5±12.1 93.5±11.6 95.06±1.3

Fig. 5. Accuracy vs. different numbers of labeled data (for Fisher Score) or pairwise
constraints (for CScore and CLS)

number of selected features is chosen as half of the original dimension of samples.
For all scores, the results are averaged over 100 runs. As shown in Figure 5, except
on “Sonar”, CLS is much better than the other two algorithms especially when
only a few labeled data or constraints are used. On “Sonar”, both CScore and
CLS are inferior to Fisher Score when the number of labeled data (or constraints)
is great; CLS is always better when this number is small. A closer study on
Figure 5 reveals that, generally, the accuracy of CLS increases steadily and
fast in the beginning (with few constraints) and slows down at the end (with
relatively more constraints). It implies that too many constraints won’t help
too much to further boost the accuracy, and only a few constraints are required
in CLS, which corresponds exactly to our initial problem concerning “small-
labeled” data. While Fisher Score typically requires relatively more labeled data
to obtain a satisfying accuracy.

5.4 Results on Gene Expression Data Sets

“Leukemia” and “Colon cancer” are gene expression databases with huge num-
ber of features. The microarray Leukemia data is constituted of a set of 72
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Fig. 6. Accuracy vs. different numbers of selected features on gene expression data sets

Fig. 7. Accuracy vs. different numbers of selected features on face-image data sets

samples, corresponding to two types of Leukemia called ALL (Acute Lympho-
cytic Leukemia) and AML (Acute Myelogenous Leukemia), with 47 ALL and 25
AML. The data set contains expressions for 7129 genes. While “Colon cancer”
is a data set of 2000 genes measured on 62 tissues (40 tumors and 22 “normal”).
We present our results on these data sets on comparison with Laplacian, Fisher,
C4 and CS scores, and that in case of Accuracy vs. Selected features. The results
(Figure6) show that CLS records a comparable performance with other scores
when the number of features is inferior to 2500 for “Leukemia” data set, and 500
for “Colon cancer” data set, then the performance of CLS is superior to other
scores performance when increasing the number of features.

5.5 Results on Face-Image Data Sets

“Pie10P” and “Pix10P” are face-image data sets, each containing 10 persons.
The validation on these data sets is presented in comparison with Laplacian, Re-
liefF scores on both data sets. In addition, results were compared with (F2+r4)
score on “Pix10P” data set and with (F3+r) score on “Pie10P” data set. We
chose to compare our results with (F3+r) and (F2+r4) because they achieved
best results over the other variant scores proposed by authors in [22]. Experi-
mentation results in Figure7 show that CLS outperforms significantly the other
scores whatever the exploited number of features. Meanwhile, on “Pie10P” data
set, CLS is higher than Laplacian and (F3+r) scores and inferior to ReliefF. Nev-
ertheless, it could be shown that CLS has an excellent accuracy on “Pix10P”
data set and very good one on “Pie10P” data set.
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6 Conclusion

In this paper, we proposed a filter approach for semi-supervised feature selection.
A new score function was developed to evaluate the relevance of features based
on both, the locally geometrical structure of unlabeled data and the constrains
preserving ability of labeled data. In this way, we combined two powerful scores,
unsupervised and supervised, in a new one which is more generic for a semi-
supervised paradigm. The proposed score function was explained in the spectral
graph theory framework with the study of the complexity of the associated
algorithm. For reducing this complexity we proposed to cluster the unlabeled
part of data by preserving its geometrical structure before feature selection.
Finally, experimental results on five UCI data sets and one microarray database
show that with only a small number of constraints, the proposed algorithm
significantly outperforms other filter based features selection methods.

There are a number of interesting potential avenues for future research. The
choice of (λ, k) is discussed in [20] and [10], we tried to keep the same values that
the authors used in their experiments in order to compare with their results. But
even, the study of the influence of (λ, k) on our function score (with the treatment
of constraints) is still interesting.

Another line of our future work is to study the constraint utility before in-
tegrating them for feature selection. In our proposal, we used the maximum
number of constraints which could be generated from the labeled data. This
could have ill effects over accuracy when constraints are incoherent or inconsis-
tent. It would be thus more interesting to investigate in constraint selection for
more efficient semi-supervised feature selection.
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