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Abstract—Web content providers and content distribution net-
work (CDN) operators often set up mirrors of popular content
to improve performance. Due to the scale and decentralized ad-
ministration of the Internet, companies have a limited number of
sites (relative to the size of the Internet) where they can place mir-
rors. We formalize the mirror placement problem as a case of con-
strained mirror placement, where mirrors can only be placed on
a preselected set of candidates. We study performance improve-
ment in terms of client round-trip time (RTT) and server load when
clients are clustered by the autonomous systems (AS) in which they
reside. Our results show that, regardless of the mirror placement
algorithm used, for only a surprisingly small range of values is in-
creasing the number of mirror sites (under the constraint) effective
in reducing client to server RTT and server load. In this range, we
show that greedy placement performs the best.

Index Terms—Constrained mirror placement, Internet experi-
ments, performance analysis, placement algorithms.

I. INTRODUCTION

T HERE ARE a growing number of frequently accessed
Web sites that employ mirror servers to increase the

reliability and performance of their services. Mirror servers,
or simply “mirrors,” replicate the whole content or the most
popular content of a web server, or “server.” A client requesting
the server’s content is then redirected to one of the mirrors (we
consider co-located mirrors to be a single mirror). Since each
mirror sees only a portion of the total requests, clients can be
served faster; furthermore, if clients are redirected to mirrors
closer to them than the server, download times can be reduced
(a more formal argument will be presented in Section III-A).

At first glance, Web caches appear to serve the same purpose
as mirrors. We differentiate mirrors from caches in that client
access to a mirror never results in a “miss.” A client is redi-
rected to a mirror only when the mirror has the requested con-
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tent. Accesses to Web caches, on the other hand, can result in
cache misses. In addition, mirrors can also serve some forms of
dynamic content and content customized for each client.

To keep mirrors’ content consistent, synchronization be-
tween mirrors and the main server is required whenever the
main server’s content changes. Various algorithms to keep Web
caches consistent have been proposed in the literature and may
be applicable to mirrors. We classify these algorithms into two
categories: those based on time-to-live [1], and those based on
server invalidation [2]. Without going into the details of the
algorithms, we note that the cost of keeping mirrors consistent,
in terms of the amount of traffic seen at the server (in the case
of [1]) or the total amount of traffic seen on the network (in
the case of [2]), increases linearly with the number of mirrors.
Thus, even if one assumes that larger number of mirrors provide
further reduction in server load or client download time, simply
increasing the number of mirrors with impunity will result in
higher consistency cost. Certainly, one would be willing to
pay the cost associated with a large number of mirrors if it
would be outweighed by the reduction in the overall system
cost. We show in this paper, however, assuming that clients
access the mirror which lowers their download time the most,
increasing the number of mirrors beyond a certain value does
not significantly reduce server load nor client download time.
Obviously, we are not considering the case where there is a
mirror on every client host or local area network (LAN).

Given a finite number of mirrors, we are interested in where
to place them to maximize performance. A content distribu-
tion network (CDN), for instance, may have a large number of
machines scattered around the Internet capable of hosting mir-
rors. A content provider with a busy Web server can rent re-
sources on these machines to host their mirrors. The question is
then: on which subset of the candidate machines should a con-
tent provider put mirrors of its content? Ideally, a mirror can be
placed where there is a cluster of clients interested in the content
of the server [3]. We only consider a model in which there is a
fixed number of candidate sites where mirrors can be placed. We
call this the constrained mirror placement (CMP) problem. We
discuss some of the current works in the area of mirror place-
ment in Section II. We then give a formal definition of the CMP
problem in Section III and look at various mirror placement al-
gorithms and heuristics. We describe our simulation and Internet
experiments in Section IV and our results in Section V. We con-
clude and discuss future works in Section VI.

II. RELATED WORK

There have been some recent works on mirror performance
and closest server selection. Myerset al. [4] measured nine
clients scattered throughout the United States retrieving
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documents from 47 Web servers, which mirrored three different
Web sites. Feiet al. [5] present a server selection technique
that can be employed by clients on end hosts. The technique in-
volves periodic measurements from clients to all of the mirrors
of a server. Seshanet al.[6] proposed a server selection scheme
based on shared passive end-to-end performance measurements
collected from clients in the same network. There are also
related works that focus on maintaining consistency among
cache servers, which can be applicable in keeping mirrors
consistent [2], [1]. These works studied different scalable Web
cache consistency approaches and showed various overhead of
keeping caches consistent.

Jaminet al. [7] used two graph theoretic algorithms,-HST
[8] and -center [9], to determine the number and the
placement ofinstrumentation boxesfor the purpose of network
measurement. The authors demonstrated the usefulness of a
network distance service by showing that the distance map
computed can be used to redirect clients to the closest (in
latency) of three server mirrors. While they used closest mirror
selection as a motivating problem, the three mirrors they
consider are manually placed at arbitrarily selected locations.
In this paper, we take a closer look at mirror placement on
the Internet under a more realistic setting where the number
of mirrors is small, but generally larger than three, and the
placement is restricted to a given set of hosts. Krishnamurthy
and Wang [3] proposed a scheme to group nearby Web clients
into clusters and evaluated it to be highly effective. They
further proposed and evaluated schemes for proxy placement
where a proxy is placed inside each such client cluster. In
parallel to an earlier version of our work [10], Qiuet al. [11]
studied placing replicas on client clusters to maximize
performance. Various placement schemes were proposed and
evaluated against a “super-optimal” algorithm, which provided
the performance lower bound for the optimal placement. The
placement algorithms were evaluated on artificially generated
topologies as well as the Internet autonomous systems (AS)
topology. The authors concluded that a greedy algorithm based
on client cluster provided performance that was close to the
optimal solution. The authors focused on finding the best place-
ment algorithm/heuristic given a certain constraint, while our
paper focuses on the performance limitations of all placement
algorithms under the constrained setting. We show that even
the best placement gives almost no performance improvements
after mirrors are placed on 20% of candidate sites.

III. CONSTRAINED MIRROR PLACEMENT

We model the Internet as a graph, , where is the
set of nodes and the set of links. We define
to be the set of candidate hosts where mirrors can be placed,

the set of mirrors of a particular server and the
server’s clients. The objective of the CMP problem is to place
the set of mirrors on the set of candidate hosts such that some
optimization condition (defined in Section III-A) is
satisfied for the client set. How well the optimization condition
is satisfied depends on the sizes and topological placements of
the candidate hosts and client sets. We denote the sizes of the
candidate host, mirror, and client sets as , and , and

their topological placements as , and , re-
spectively. We use the notation , and to denote a spe-
cific size and placement of the sets. The constrained mirror
placement problem can now be formally stated.

Definition 1: Given a graph , a set of candidate hosts,,
a positive integer , and an optimization condition ,
the CMP problem is to find a set of mirrors, , of size such
that is minimized.

We include as part of the notation for to
emphasize that we are studying the effect of changingon
the performance of CMP. Specifically, we study the effect of
changing and while holding constant, with

, and . We experiment with
uniformly distributed and on nodes with the highest outdegrees
(outgoing links). We also experiment with both uniformly
distributed and trace-based . A major difference between
our formulation of the problem and the one in [11] is that
they assume mirrors can be placed within client clusters, i.e.,

. We do not consider it realistic for a CDN to always be
able to place mirrors inside client clusters.

A. Optimization Condition

We identify two goals commonly associated with placing mir-
rors on the Internet: reducing client download time and allevi-
ating server load. In the previous section, we mentioned the cost
of keeping mirrors consistent as a limiting factor in deploying
a large number of mirrors. We will show that even discounting
consistency cost, increasing the number of mirrors beyond a cer-
tain number does not significantly reduce client download time,
or assuming that clients access mirrors with the lowest client
server round-trip time (RTT), distribute server load. Without
loss of generality, we assume zero cost to keep mirrors con-
sistent for the remainder of this paper. With zero consistency
cost, we can treat the server itself as simply one of the mirrors.
Assuming one can add a mirror with no cost, we ask, “By how
much adding one more mirror reduces client download time and
alleviates load at existing mirrors (including the server)?” Client
download time can be affected by factors such as load at mir-
rors, bottleneck bandwidth, network latency (in terms of RTT),
etc.

We focus primarily on the network latency factor and
consider reducing RTT as oursole optimization condition,

. From a theoretic standpoint, network latency is
the most difficult factor to improve since it is limited by the
speed of light. A heavily loaded mirror can always be better
provisioned to meet the load requirements, e.g., by forming a
server cluster [12] (content providers and CDNs have incentives
to ensure that there is enough provisioning), and bottleneck
bandwidth may be upgraded1 ; however, we cannot “upgrade”
latency—in the same sense that we do for server load and
bandwidth—by simply “adding hardware.” From a practical
standpoint, transmission control protocol (TCP), the underlying
transport protocol for Web download, has well-known biases
against connections with long RTTs [13]. Routers drop packets
when there is network congestion. Upon detection of network

1There are certain financial constraints associated with such upgrades, but no
inherent technical constraints.
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congestion, TCP backs off its transmission window size and
slowly increases the window again based on successfully
acknowledged transmissions. Connections with longer RTTs,
thus, experience longer congestion recovery periods and lower
throughput [14]. In this paper, we study the use of the max-
imum, 95 percentile, and mean client–mirror distance2 in the
optimization conditions, denoted as , 0.95 ,
and , respectively. We do not factor in the time it
takes for a client to find its closest mirror because it can be
amortized over the number of client-to-server requests, and
any mechanism that improves this transaction can be equally
applied to any redirection scheme.

In order to direct clients to the closest mirrors, we need to
know the distances between each client and all of the mirrors. If
the network topology is known, the closest mirror to any client
can be identified, for example, by computing the shortest path
from the client to all mirrors, using Dijkstra’s shortest path al-
gorithm. When network topology is not known, such as in the
case of the Internet, client redirection can be done randomly.
Jaminet al.[7] showed that closest mirror selection using a dis-
tance map3 invariably gives better performance than random se-
lection. In comparing various mirror placement algorithms, we
require that the distances between candidate sites and clients
are known (in the case of -center, all pairs of distances
must be known), and the closest mirror to a client can be de-
terministically computed. Obviously, Internet topology isnot
knowna priori. In order to apply the placement algorithms we,
thus, need to first construct a virtual topology of the Internet. In
Section IV-B2, we present a methodology to construct a virtual
topology of the Internet.

B. Mirror Placement Algorithms and Heuristics

We now present three graph-theoretic algorithms and two
heuristics that we use in placing mirrors. We look at placement
algorithms that can optimize for all three of our performance
metrics such as cost-adjustable set cover and-greedy, as well
as -center that optimizes exclusively for . We
also look at two heuristics that do not require topological knowl-
edge of the network. In the subsequent discussion, in accor-
dance to the terminologies used in the literature, we use the term
“center” instead of “mirror.”

1) -Center: -center is a graph-theoretic algo-
rithm that finds a set of center nodes to minimize the maximum
distance between a node and its closest center. Given this defi-
nition, the -center problem is relevant only in the case of
optimization condition . The -center problem
is known to be NP-complete [15]; however, a 2-approximate al-
gorithm exists [9]. With the 2-approximate algorithm, the max-
imum distance between a node and its nearest center is no worse
than twice the maximum in the optimal case. For ease of refer-
ence, we include here our summary of the 2-approximate algo-
rithm presented in [7].

2We use the term “client–mirror distance” to mean the distance between client
and the closest mirror.

3By “distance map” we mean a virtual topology of the Internet constructed
by tracing paths on the Internet. An architecture to build such a distance map
was proposed in [7].

Fig. 1. Two-approximate algorithm for theminK -center problem.

The algorithm receives as input a graph where
is the set of nodes, , and the cost of an edge

, , is the cost of the shortest path between
and . All the graph edges are arranged in nondecreasing order
by cost, : , let ,
where . A square graphof , , is the
graph containing and edges wherever there is a path
between and in of at most two hops, and . An
independent setof a graph is a subset
such that, for all , the edge is not in . An
independent set of is, thus, a set of nodes in that are at
least three hops apart. We also define amaximalindependent set

as an independent set such that all nodes in are
at most one hop away from nodes in.

The outline of the -center algorithm from [9] is shown
in Fig. 1. The basic observation is that the cost of the optimal
solution to the -center problem is the cost of, where is
the smallest index such that has a dominating set4 of size at
most . This is true since the set of center nodes is a dominating
set, and if has a dominating set of size, then choosing this
set to be the centers guarantees that the distance from a node to
the nearest center is bounded by. The second observation is
that a star topology in transfers into a clique (full mesh) in

. Thus, a maximal independent set of sizein implies
that there exists a set of stars in , such that the cost of each
edge in it is bounded by : the smaller the, the larger the

. The solution to the -center problem is the with
stars. Note that this approximation does not always yield a

unique solution.
We have to make further approximations in applying the

-center algorithm to the CMP problem. In the construc-
tion of the -center algorithm above, any node inmay
be selected to act as a “center.” In CMP, only nodes incan
host mirrors. Thus, to apply the -center algorithm, we
first run the algorithm on with . Should a node in

be selected as a center, we substitute it with a node inthat
is closest to it. Recall that we assume .

2) -Greedy: This algorithm places mirrors on the network
iteratively in a greedy fashion. First it exhaustively checks each
node in to determine the node that best satisfies the optimiza-
tion condition (see Section III-A) for a given. For 0, after
assigning the first mirror to this node, the algorithm greedily
looks for the best location for the next mirror, etc., until all
mirrors are placed. For any othervalue, the algorithm allows
for steps backtracking: it checks all the possible combinations
of removing of the already placed mirrors and replacing them

4A dominating set is a set ofD nodes such that everyv 2 V is either inD
or has a neighbor inD.
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Fig. 2. Algorithm`-greedy.

Fig. 3. Greedy set-cover algorithm.

with new mirrors. That is, of the already placed mirrors
can be moved around to optimize the gain. Fig. 2 summarizes
the algorithm.

3) Cost-Adjustable Set Cover:The setup of the set-cover
problem is as follows: given several subsets, each covering a
different set of elements, find the minimum number of these
subsets such that all elements are included or “covered.” Since
a set’s members may overlap with other sets’ members, some
elements may be covered by several sets. In our case, the ele-
ments are the clients of a Web server. This problem is NP-com-
plete [15]. Vazirani [9] gives a greedy approximate solution to
the minimum set-cover problem. We now describe this greedy
algorithm and explain how we apply it to the CMP problem.

In the greedy set-cover algorithm, each setis associated
with a “cost-effectiveness,” , which is the average cost of
the set. The greedy algorithm selects the most cost-effective set
iteratively until all elements are covered. The “cost-effective-
ness” of a set is computed by dividing the cost associated with
the setcost by the number of not-already-covered members
of the set. Recall that a set’s members may overlap with other
sets’ members and, therefore, some elements may be covered
by several sets. Fig. 3 shows the outline of the greedy set-cover
algorithm. Given a universe, , of elements and a collection of
subsets, , the algorithm finds the subsets to cover by se-
lecting the set with the minimum at each iteration. In the
description of the algorithm, we use “” to indicate the addition
of an element (the second operand) to an existing set, “” the

Fig. 4. Cost-adjustable greedy set-cover algorithm.

deletion of an element (the second operand) from an existing
set, and “ ” the union of two sets.

Ideally, we would apply the greedy set cover to the client
sets and obtain a set cover which is a collection of subsets, and
we can place a mirror in or near each such subset. However,
under constrained mirror placement, we cannot directly apply
the greedy set-cover algorithm for two reasons. First, we do not
have the collection of subsets,. Second, the greedy set-cover
algorithm only produces the “minimum” set cover with a fixed
number of mirrors, without allowing us the same flexibility of
placing a variable number of mirrors as in the -center or
-greedy algorithm.

In order to apply the greedy set cover problem to constrained
mirror placement, we need to define the collection,, of subsets
of clients, and the cost,cost , associated with each subset. We
obtain the subsets of clients by constructing sets of clients cen-
tered at each candidate site. For each candidate site, we order
the clients based on their distances from the candidate site. We
then add one client at a time to form a separate subset. One can
think of these subsets as concentric circles, each with one more
client added to the immediately preceding subset. The cost of
each such subset is simply the performance metric
of the subset. The use of as the cost of a subset is
consistent with the objective of cost-effectiveness since we want
to minimize the performance metric for as many clients as pos-
sible. A small performance metric along with a large set cardi-
nality makes a set cost-effective.

In the context of CMP, we need to examine the effect of dif-
ferent numbers of mirrors. Since the greedy algorithm can only
return the “minimum” number of subsets, we need to introduce
a parameter to the algorithm that allows us to tune the algorithm
to produce the placement of any desired number of mirrors. We
observe that the greedy algorithm uses the cost-effectiveness of
each set to decide which sets are included in the set cover; there-
fore, we can vary the cost-effectiveness of each set to favor set
covers of smaller or larger sizes than the “minimum,” hence pro-
ducing the placement of a larger or smaller number of mirrors.
We introduce an additive parameterto the set cost,cost ,
which we can use to vary the set costs. By increasing, we
make larger client sets more attractive since the cost-effective-
ness, which iscost divided by the number of elements in
, increases more for client sets of smaller sizes. By the same

argument, we can make smaller client sets more attractive by
decreasing . We call this variant of the set cover problem the
cost-adjustable set cover problem. We show the outline of the
cost-adjustable set cover in Fig. 4.
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Fig. 5. Ideal cost-effectiveness versus set size.

We now discuss how affects the overall performance of
the cost-adjustable greedy set-cover algorithm. In particular, we
study the relationship betweenand , the cost-effectiveness,
and show how the relationship affects the solution to the cost-ad-
justable greedy algorithm. Fig. 5 shows a sample curve of cost-
effectiveness, , versus the client subset size,. We note that
the shape of such a curve will generally be concave because

is the sum of two monotonic functions of different trends.
The first function, , is a monotonically decreasing function
with respect to , and the second function, , is
a monotonically nondecreasing function with respect tofor
all s because marginal increase (when a new client
is included) in is nonnegative. The sum of the two
functions may not be monotonic with respect toat all times,
depending on the magnitude of. By increasing , the first func-
tion will increase smaller sets’s more than larger sets,
thus, making larger sets more attractive to the greedy algorithm,
and decreasing makes smaller sets more attractive.

The parameter introduces concave instances in the “
versus ” curve, which make subsets of rather different sizes
appear to have identical or similar costs. A horizontal line
cutting across the curve would intersect the “versus ”
curve at two different points, which correspond to two subsets
of different sizes. This does not present a problem since neither
intersection would have the minimum. Thus, we use this
parameter to “force” the algorithm to produce the set with
size . If we get a smaller-than-expected set cover, we increase

, and in case of a large set cover (with respect to), we
decrease . We stop the algorithm when we get the desired
set-cover size, or if getting the exact cover size is not possible,
the largest set-cover size that is smaller than the desired value.

4) Heuristics: In addition to the above placement algo-
rithms, we also look at the following heuristics that do not
require knowledge of the network topology.

• Transit Node: The outdegree of a node is the number
of other nodes it is connected to. Assuming that nodes
with the highest outdegrees can reach more nodes with
lower latencies, we place mirrors on candidate hosts in
descending order of outdegree. We call this thetransit
node heuristic under the assumption that nodes in the
core of the Internet that act as transit points will have the
highest outdegrees.

• Random Placement: Under random placement, each can-
didate host has a uniform probability of hosting a mirror.

C. Performance Analysis

In this section, we present an analysis of the performance of
unconstrained mirror placement to illustrate what could be ex-
pected of mirror placement in the ideal setting. In particular, the
analysis shows that, under optimal mirror placement, there is a
diminishing return in reducing client–mirror distance5 with re-
spect to the number of mirrors, which agrees with our intuition.
The analysis also shows that the ratio of expected maximum
client–mirror distance between optimal and random placement
increases logarithmically; however, under random placement,
most clients are still close enough to their closest mirrors, and
only a small portion of the clients are actually very “far” from
their closest mirrors as the number of mirrors increases. This
further illustrates the diminishing return in using the optimal
placement as the number of mirrors increases.

To abstract the unconstrained mirror placement problem, we
can picture the network as a continuous plane on which clients
can be uniformly spread over the infinitely many points (). We
want to place a given number of mirrors such that the maximum
distance of any client to its closest mirror is minimized. This
measure of quality translates into finding a placement such that
the radius of the largest circle one can draw in the plane that
does not include any mirror is minimized.

Solving this problem analytically is cumbersome, instead we
study the same problem in one dimension only. We can trans-
form the problem into one dimension by distributing the clients
uniformly on the segment (0, 1) and placing mirrors on the same
segment. Clearly, the optimal allocation of mirrors given the
maximum distance criterion is to separate the mirrors by the
same distance apart. Thus, if one needs to place1 mirrors,
the optimal location is at locations , 1, and the
maximum distance from any client to its closest mirror is .6

It is clear that there is diminishing return in client–mirror dis-
tance as the number of mirrors increases. We can also see that
each mirror site will have approximately the same number of
clients if each client is directed to its closest mirror.

The optimal placement could be difficult to achieve in real
life. Hence, we would like to quantify how good random place-
ment is compared with the optimal placement in terms of the ex-
pected maximum client–mirror distance. Under random place-
ment, 1 points (mirrors) are uniformly distributed in the in-
terval (0, 1). Now, let be the random variable representing
the longest segment length, the density function, and
the cumulative distribution function. Using known results from
order statistics [17, Sec. 5.4], we have

(1)

5We use the term client–mirror distance to mean the distance between client
and the closest mirror.

6The actual optimal locations forn mirrors should be at(1=2n) + (i=n),
but the importance of this boundary condition diminishes withn. For ease of
analysis, we consider only the limit case withn going to infinity.
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Fig. 6. Expected maximum segment length on the unit interval.

Fig. 7. Expected maximum segment length on the unit interval (details).

The expected value of the maximum segment between two
neighboring points is, thus, given by

Fig. 6 depicts the computed expected maximum segment
length together with numerical simulation results. Each point
in the simulation represents the mean of 1000 experiments; in
each, 1 points are randomly placed on the unit interval with
uniform probability and the maximum segment is computed.
The confidence interval is negligible in most cases. It is clear
that the simulation and the numerical calculation are almost
identical. The detailed enlargement in Fig. 7 (also in Fig. 8)
shows that some outliers are observable in different scales.
There is a clear knee around 60 after which the return
from adding additional mirrors diminishes. Comparing the
segment length to the optimal length shows that for a large
range, 150, the difference is substantial.

Fig. 8. Ratio of the random placement over the optimal placement.

Fig. 8 shows the ratio of expected maximum segment length
between the random placement and the optimal for both the
simulated data and the calculated data. Surprisingly, it seems
that the ratio increases logarithmically with the number of mir-
rors (we saw before that the absolute difference diminishes). To
check this we fitted the exponent of the ratio with the best (mean
square) linear function of the form . The resulting fitted
curve is 2.675 1.78 . Plotting the fit for the expected max-
imum length in Fig. 6, 2.675 1.78 , we could not dis-
tinguish it from the calculated one in all but the microscopic
scale.

One might be tempted to discount random placement algo-
rithm based on the above result. However, we show next that
random placement under the unconstrained regime studied here
is really not all that bad by examining what portion of the client
population is within a “good distance” from its closest mirror
given random placement. In the optimal placement, a client is
at most away from its closest mirror. In the case of random
placement, we are interested in computing the portion of clients
that are farther away from their closest mirror by more than a
factor of from optimal, i.e., by more than . This is done
by looking at the probability that, for a random point, no mirror
is placed at a segment of length around it (a one dimensional
ball of radius ), which is given by

distance (2)

As grows, we can write

distance (3)

Thus, as the number of mirrors grows, a fixed portion of the
clients are away by a certain stretch from optimal. Specifically,

of the clients are at distance farther than the worst case of
the optimal distance. Fig. 9 shows the result of an experiment
we conducted to test the above analysis. As one can see, the
probability converges to for values well below 100 (the
limit values are plotted in Fig. 9 as small symbols at ).

The above analysis shows that, under optimal placement,
the reduction in client–mirror distance has diminishing return
with a well-defined “knee” as the number of mirrors increases.
When clients are uniformly distributed, the optimal placement
can achieve good load balancing while directing clients to the
closest mirrors. The analysis also shows that even though the
optimal placement increasingly outperforms random placement
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Fig. 9. Probability a client under random placement is farther than a stretcht

of the distance bound in the optimal placement.

in terms of expected maximum client–mirror distance as the
number of mirrors increases, the worst case maximum distances
occur very rarely under random placement. We will refer to
these results in interpreting our empirical data in Section V-A.

IV. PERFORMANCEEVALUATION

Our goal in conducting performance evaluation is to study the
effect of changing and on the optimization condi-
tion . For our performance evaluation, we conduct
both simulations on random topologies and experiments using
Internet AS topology. For each set of experiments, we vary ei-
ther or while holding all the other variables con-
stant. We now describe our simulation setup and scenarios, fol-
lowed by a description of our Internet experiment setup.

A. Simulation Setup

The most accurate form of simulation for CMP would be on
the host level, where individual servers and clients are repre-
sented as nodes in a network. There are two main difficulties
with this approach: the computational overhead of large network
and the representation of host-level topology capturing proper-
ties of the Internet. We are not aware of any current topology
generator that generates a network of a reasonable (thousands
of nodes) size with Internet like characteristics. Instead of sim-
ulating at the host level, we decide to simulate at the AS level,
which has several advantages. Instead of simulating hundreds
of thousands of hosts, we could represent the AS-level topology
with just a few thousands nodes, thus, cutting down the compu-
tation cost and make the simulation feasible. Second, since an
AS is under a single administration, a caching solution can be
employed within the AS to avoid redundant client requests. In
the best case, only a single cache server needs to make request
on behalf of all clients inside the AS [3], effectively merging
all the real clients into a single caching client. There are some
issues that should be examined with using the AS-level topolo-
gies. Many ASs on the Internet are diverse in geographic loca-
tion and span different continents, while others are small and
confined to a single geographic location. From mirrors’ stand-
point, there are more potential clients inside large ASs, so rep-
resenting a large AS as a single node masks many potential
clients. However, we have already stated that having a cache
proxy would essentially reduce redundant client requests within

an AS into a single unique request from the cache proxy, ef-
fectively making each AS look like a single client node. From
clients’ standpoint, mirrors servers inside large ASs are prefer-
able to mirrors inside smaller ASs due to better connectivity and
bandwidth provisioning inside large ASs. By modeling each AS
as a node actually makes mirrors in different ASs appear equally
good, therefore, offering more available mirrors to choose from
for each client than in reality. In other words, clients on the In-
ternet are likely to select the closest mirrors from fewer candi-
dates sites than in our simulations. Overall, using the AS-level
topology model is a good abstraction for client requests while
representing a more optimistic mirroring setup than in the In-
ternet.

The AS topologies used in our simulations are generated
using the Inet topology generator [18]. For this study, we gen-
erate several random topologies with 3037 nodes each.7 Each
generated network is a connected graph on a plane, with each
node representing an AS; a link between two nodes represents
AS connectivity, and its Euclidean distance the latency between
the two connected nodes.

In each simulation, we first select 50 nodes to act as candi-
date hosts. We experiment with two candidate host selection
methods. We simulate brute-force candidate placement with
uniform random selection, whereby each node has an equal
probability of being selected. We also simulate a more intel-
ligent placement on nodes with largest outdegrees, which are
generally perceived to be close to the core of the Internet. After
the candidate hosts are selected, we randomly, with uniform
probability, select 1000 of the remaining nodes to act as clients.
For each mirror placement algorithm, we compute 1 ,

0.95 and . We compute each
for ranging from 2 to 50. Client redirection is done by
either redirection to the mirror with the smallest latency or
randomly. We present the simulation results in Section V.

B. Internet Experiments

In addition to studying CMP on generated topologies, we
also evaluate it with trace-based experiments on the Internet.
In particular, we study the effect of optimizing the number and
placement of mirrors on client download time when CMP is ap-
plied to clients extracted from several Web server logs. We con-
ducted two experiments, the first one in December 1999 and
the second in November 2000. The first experiment is based on
Bell Labs Web server log, and the second experiment is based
on Web server logs from nonprofit organizations Amnesty Inter-
national and the Apache Software Foundation, and commercial
businesses Sun Microsystems and Marimba. The use of these
sites give our experiments a variety of client bases.

1) Candidate Host Set:We do not have access to 50
machines distributed across the Internet that can act as can-
didate hosts. Given our optimization condition of minimizing
the latency experienced by clients, we observe that for the
purpose of performance evaluation, CMP can be emulated on
the Internet as long as we can determine the RTTs between

sites on the Internet and our client sets. We use multiple

7This was the size of the Internet in November 1997; our Internet experiments
from December 1999 and November 2000 (not included in this paper) indicate
that observations made in this paper also apply to larger networks.
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TABLE I
LOCATIONS OF THE89 TRACEROUTEGATEWAYS (MTGS)

traceroute gateways (MTGs) [19] to serve as our candidate
host sites. Traceroute gateways are Web servers made available
to the public for measurement purposes by volunteers around
the world. Given a host name or address, a traceroute gateway
runs traceroute to that host and reports the result back to
the user. In our experiments, we only need the RTTs between
MTGs and clients, so using the MTGs is sufficient.

Table I lists the geographical locations of the 89 traceroute
gateways used in the first experiment. The table reflects a rea-
sonable diversity of the geographic locations of the traceroute
gateways. Unfortunately, by the time we conducted our second
experiment, only 50 of the 89 traceroute gateways were still op-
erational.

In our experiments, we apply theTransit heuristic by
placing mirrors on candidate hosts in descending order of
outdegrees. Since we do not know the outdegrees of the
traceroute gateways, we associate with each traceroute gateway
the outdegree of the AS in which it is located. We first map
the IP address of a traceroute gateway to its AS using a tool
called prtraceroute , which is part of the routing arbiter
project toolkit (www.irrd.net). Then, to determine the ASs
outdegree, we use the AS summary information available at
National Laboratory for Applied Network Research (NLANR)
(moat.nlanr.net/AS/), which lists the outdegree of each AS.
If the destination traceroute gateway’s AS has a single con-
nection to the rest of the Internet, we assign it the outdegree
of its closest upstream AS with outdegree larger than one.
The motivation here is to differentiate singly connected ASs
that have well-connected parents and those that have poorly
connected parents. Our intuition is that CMP can perform
better by selecting well-connected degree-one ASs to host
mirrors than fringe ASs that have higher degrees. On the other
hand, the performance may be worse if the latencies between
the singly connected ASs and their well-connected parents are
large. From examining the data, we find that the latter case is
not likely. However, we are not able to quantify the probability
of it occuring given the limited granularity of the data.

2) Client Set: The client sets in our experiments are the IP
addresses extracted from Web server logs of Bell Labs, Amnesty
International, Apache Software Foundation, Sun Microsystems,
and Marimba Inc. All of the logs except the Amnesty Interna-
tional log store the client addresses as dotted decimal IPs. The
Amnesty International log stores the clients’ fully qualified do-
main names (FQDN) instead. Since we determine unique clients
by comparing IP addresses, it is necessary to perform DNS

TABLE II
HOST STATISTICS FROM INTERNET EXPERIMENT

lookup on the Amnesty International clients to resolve their IP
addresses. Only 2% of the domain name system (DNS) lookups
failed. We present the number of unique clients extracted from
all of the logs in Table II.

Due to the dynamic nature of the Internet, some IP addresses
in the log file may no longer exist. Furthermore, dial-up connec-
tions with short lifetimes also prevent clients from being reached
by MTGspost facto. Unreachable clients causetraceroute
to wait until a timeout occurs, which could take up to 450 s (5
s/probe 3 probes/hop 30 hops). Not only do unreachable IPs
greatly lengthen the experiment, but they also place extra strain
on the MTGs with prolonged connections. Since we do not
have control over the MTGs and cannot change theirtracer-
oute ’s timeout behavior, we attempt to send only “live” IPs to
the MTGs.

In our first experiment with the Bell Labs clients, we use a
“TCP probe” to test for “live” IPs. With the “TCP probe,” we
open a TCP connection to port 80 (HTTP) of each IP address,
and look for either a TCP SYN-ACK or RST reply from the
IP. Either of these replies indicate the IP is “live,” regardless of
whether anything is listening on port 80 to accept the connec-
tion. If we receive no reply to the connection attempt, then the
host is not reachable by the probe. We do this probe from two
different sites (one in Michigan and the other in California), and
eliminate IPs that are not reachable by at least one of the two
probes. Even after this check for live IPs, only 63% of the IPs
which passed our test were able to be reached by the MTGs.

For our second experiment, we take a different approach to
determining “live” IPs. In the year between experiments, many
networks have become much more suspicious of unsolicited
traffic. To minimize the likelihood that our measurements are
misconceived as malicious, we add another layer of filtering to
our list of IPs. We use a standard “ICMP echo request” as the
first check on each IP. Many security conscious networks block
these requests, and we choose to interpret a failed request as a
sign that they are unwilling to be measured. To each host, we
send three packets spaced five seconds apart, with a five second
timeout on each packet. If any of the probes successfully com-
pletes, we consider the host measurable. Otherwise, we remove
the host from our list of unique IPs. We then send these IPs to
MTGs to traceroute ; despite being reachable to our ICMP
probes, only about 50% of these IPs are reachable by the MTGs.
To prevent these unreachable IPs from holding up the MTGs,
we install an additional filtering step. Right before sending an
IP to an MTG, we first sent another ICMP echo packet to the
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Fig. 10. Experiment setup.

host to test its reachability from our local machine. If the host is
reachable, we then forward the IP to the MTGs. If an IP is not
reachable, it is placed on a retry list to be tried again later; if a
retried IP is still not reachable, it is permanently removed. The
statistics on hosts that MTGs were able totraceroute are
presented in Table II. We consider an IP address MTG-reach-
able when atraceroute from anyMTG is successful.

The virtual network on which we conduct our CMP experi-
ments, thus, consists of 89 (later 50) traceroute gateways as our
candidate hosts, and the IP addresses found in the Web server
logs as our clients. The “edges” of these virtual network consist
of RTT measurements from each traceroute gateway to all of the
other traceroute gateways and to all of the clients. For illustrative
purposes, Fig. 10 shows a sample virtual network consisting of
three traceroute gateways and four clients. The traceroute gate-
ways measure RTTs between each other and RTTs to the four
clients. The RTT measurements between traceroute gateways
are bidirectional, while those between traceroute gateways and
clients are unidirectional, as indicated in the figure.

V. EXPERIMENT RESULTS

Recall from Section IV-A that in all of our simulations we
use a network of 3037 nodes, of which 50 are selected
as candidate hosts. The choice of which host is selected to be
a candidate host is determined either randomly with uniform
probability for all nodes, or by the node outdegree. The client set
consists of 1000 nodes randomly selected, with uniform prob-
ability, from the remaining nodes. Recall also that we define
three optimization conditions: 1 , 0.95 , and

. For each optimization condition, we run a set of
simulations. In each set of simulation, we first pick , the
number of mirrors. For the given number of mirrors, we run
one simulation for each mirror placement algorithm :

-center, 0-greedy, 1-greedy, 2-greedy, cost-adjustable set
cover, and Transit. Since random placement of mirrors gives dif-
ferent results based on the sites selected, for random placement,
we run ten simulations for a given mirror set size and compute
the mean of the observed . Then, we repeat all simu-
lations for the next . In our simulations, we experiment with

ranging from 2 to 50, stepping by 2 up to 26, and stepping
by 5 afterwards. We then repeat each set of simulations on ten
different Inet generated networks of 3037 nodes each. We do the

(a)

(b)

Fig. 11. Minimizing maximum RTTs between clients and closest mirrors.
(a) Random candidate placements. (b) Outdegree-based candidate placements.

above on 50 randomly selected candidate hosts first. We then
repeat everything on 50 candidate hosts selected based on de-
creasing outdegrees, except that we do not simulate the 1-greedy
and 2-greedy algorithms as they do not show marked improve-
ment over the 0-greedy case in the former scenarios. Hence in
total we ran 7350 simulations on randomly selected candidate
hosts, and 6630 simulations on candidate selection based on out-
degree.

For the first Internet-based experiment, we repeat the above
scenario with the 89 traceroute gateways acting as candidate
hosts. Mirror set sizes range from 3 to 89, stepping by 3 up to 45,
and stepping by 5 afterwards. Since there is only one virtual net-
work, we do not repeat the set of simulations ten times; we do,
however, still repeat the experiment ten times for each mirror
set size when the mirror placement algorithm used is random
placement. This means we run 1014 experiments on the virtual
network. In the second experiment, the mirror set sizes range
from 2 to 50 with an increment of 2. Again, we perform ten
experiments for random mirror placement as in the first exper-
iment. Both sets of experiments show qualitatively similar re-
sults, hence, for ease of exposition, we discuss only the results
of the first experiment in the rest of this paper. Results from the
second experiment are presented in the Appendix.

A. Optimization Condition

We first consider the optimization condition .
Figs. 11(a), (b), and 12(a) show the maximum values of the
client–mirror RTTs for . The axis of each figure
lists the number of mirrors, and theaxis the maximum value
of the RTTs between clients and their closest mirrors. The

axes for the simulation results range from 0 to 50, while
those for Internet experiments range from 0 to 90. Theaxis
in the various figures have different ranges. In the simulation
results, the “distance” between two nodes is the Euclidean
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(a)

(b)

Fig. 12. Internet experiments based on Bell Labs’ clients. (a) Minimizing
maximum RTTs between clients and closest mirrors. (b) Minimizing 95
percentile RTTs between clients and closest mirrors.

distance between them on the simulated plane. In the Internet
experiments, distance is in milliseconds. The numbers for
all placement algorithms, except for random placement, are
averaged over simulations on ten random topologies to obtain
the mean, the maximum, and minimum. For clarity, we only
show the mean values in the figures, but we note that the
maximum and minimum values are typically within 20% of
the mean. Recall that for each of the ten random topologies,
we simulate random placement ofmirrors ten times. From
these ten random placements, we obtain the mean client–mirror
RTTs. For random placement, the figures show the means of
these mean values over the ten random topologies.

From these figures, we observe that optimizing
yields very little improvement as the number of mirrors in-
creases, both in simulations and actual Internet experiments.
The results from our remaining Internet experiments are
presented in the Appendix and are consistent with the obser-
vations here. Under constrained mirror placement, the distance
between clients and mirrors cannot be improved incrementally
much beyond the first ten mirrors because mirrors cannot be
placed progressively closer to the clients. Both candidate site
placement and mirror placement can contribute to this problem.
First, the optimal mirror placement is very “location-sensitive”
in that it has very specific requirements on where the candidate
sites should be, i.e., separated by an equal distance. Also, the
optimal solutions for different mirror value have very little
overlap so it is impossible for all optimal locations (at
{1/2}, {1/3, 2/3}, {1/4, 1/2, 3/4}, … in the case of the mirror
placement on the [0, 1] line segment studied in Section III-C)
to be occupied if only candidate sites are selected. Second,
adding more mirrors cannot improve the minimum distance
between a client and its closest candidate site (therefore the
client’s closest mirror) further, once the candidate site is

selected for mirror placement. This problem can be exacerbated
when the number of candidate sites is small relative to the
client population.

Recall that solution to the -center problem is
applicable only in the case of optimization condition

1 . Hence, for optimization conditions
and 0.95 , we consider only the-greedy, in partic-
ular 0-greedy, and the cost-adjustable set-cover algorithms.
Fig. 12(b) shows the Internet experiment result for all place-
ment algorithms when 0.95 is used. We observe that
0-greedy outperforms the cost-adjustable set cover even though
both can optimize for 0.95 . Our explanation is that
the two greedy algorithms are actually quite similar except
that cost-adjustable set cover optimizes for the average of the

by dividing the of a client set by the
cardinality of the set. The division of the actual optimization
condition causes cost-adjustable set cover to optimize for a
different objective even though it is qualitatively consistent
with the optimization condition, . Hence, we will
only consider 0-greedy algorithm for optimization conditions,

0.95 and .
Fig. 13 shows the mean and 95 percentile of client–mirror dis-

tances when candidate sites are selected based on outdegrees,
and mirror placement is by the 0-greedy algorithm. Both the
95 percentile and mean client–mirror graphs show diminishing
return and a well-defined “knee,” which confirms the theoret-
ical analysis and our intuition. We observe very similar perfor-
mance between the two curves, reflecting 0.95 and

optimization conditions, and attribute this to the po-
tentially long, but nonetheless not heavy tail of the client–mirror
RTT distribution in our setups (which means that the 95 per-
centile is not that far from the mean). In the remainder of this
paper, we use 0.95 as our optimization condition.

B. Effect of and on

Figs. 12(b) as well as 14(a), and (b) show the observed 95
percentile RTTs between clients and their closest mirrors when

0.95 is used. Note that in most cases, especially when
the 0-greedy algorithm for mirror placement is used, there is
little improvement in 95 percentile RTT beyond ten mirrors.

One important observation with regard to is that place-
ment is very important when the number of mirrors is small. In
all cases, when is small, there is a significant difference in
observed latency between using the greedy placement algorithm
and random placement. When is uniform, nonrandom

outperforms random placement. Even when is
nonrandom, as in the case of outdegree-based candidate selec-
tion, using greedy placement improves 0.95 by 10%
to 20% as shown in Fig. 14 (note the difference in-axis ranges).

We conclude that increasing the number of mirrors beyond a
small portion of the candidate sites (ten, in our examples) does
not necessarily improve client to closest mirror latency. Further-
more, careful placement of mirrors on a small number of can-
didate sites can provide the same performance gain as placing
mirrors on all candidate sites. These results suggest that candi-
date site placement can be just as important and possibly more
important than mirror placement itself. We note that, in practice,
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Fig. 13. Mean and 95 percentile RTTs. (a) Mean RTTs with outdegree-based
candidate placement. (b) 95 percentile RTTs with outdegree-based candidate
placement. (c) Mean RTTs on Bell Labs experiments. (d) 95 percentile RTTs
on Bell Labs experiments.

candidate sites are often determined by administrative and fi-
nancial constraints rather than technical ones.

C. Mirror Load Distribution

We now show that using 0.95 as the optimization
condition, mirror load distribution is not improved much even
with larger numbers of mirrors. Fig. 15 plots client distribution
among mirrors when the number of mirrors is increased from 2
to 50 (3 to 89, in the Internet experiment). Theaxis is the popu-
larity rank of each mirror, and theaxis is the number of clients
redirected to a particular mirror, with the most popular one get-
ting the most redirections. Each curve in the graphs represents
a specific mirror set size. For the simulations, the candidate sets

(a)

(b)

Fig. 14. Minimizing the 95 percentile RTTs between clients and mirrors. (a)
Random candidate placements. (b) Outdegree-based candidate placements.

(a)

(b)

Fig. 15. Client population distribution under 95 percentile RTT optimization.
(a) Simulation results. (b) Bell Labs experiment.

are chosen based on decreasing outdegrees. In all cases, the op-
timization condition is 0.95 , and the mirror placement
algorithm is 0-greedy. In the simulation, only a small number of
clients (less than 1% of mirrors) get redistributed with each ad-
ditional mirror once the number of mirrors is above 15. Client
redistribution is also infrequent in our Internet experiments.

Again, we point to our analysis in Section III-C, where
we showed that the optimal placement produces good load
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Fig. 16. 95 percentile RTT optimization with different numbers of candidates
in simulation.

Fig. 17. 95 percentile RTT optimization under different redirection schemes
in Bell Labs experiment.

balancing among mirrors as the number of mirrors increases.
We have already shown that it is difficult to reproduce the ideal
setting when mirror placement is constrained so perhaps it is
not surprising that the ability to load-balance is also lost.

D. Effect of on

Thus far in simulation, we have shown that given 50 candi-
date sites, we observe rapid diminishing return as more mir-
rors are placed on candidate sites. It is important to validate
this result when more candidate sites are available. We repeat
the simulations outlined in Section IV-A except now instead of
selecting only 50 candidate sites, we select 100 and 200 can-
didates sites based on outdegree. We perform the 95 percentile
optimization on RTTs between clients and closest mirrors using
the 0-greedy algorithm. Fig. 16 shows the results of having 100
and 200 candidate sites along with the case of 50 candidate sites.
The axis is the percentage of the candidate sites with mirrors
placed, and the axis is the 95 percentile RTT between clients
and closest servers. Again, we average our results over the ten
Inet topologies as stated before. We make two observations: as
expected, having more candidates improves performance—the
95 percentile RTT can be further improved with additional can-
didate sites; the rapid diminishing return is observed under all
three scenarios. We believe our conclusion that a careful place-
ment algorithm is required to place mirrors on a small fraction
of candidate sites, holds for larger numbers of candidate sites.

E. Effect of Redirection Methods

Up to now, we have assumed that client–mirror distances can
be directly measured. In this section, we consider the case where
only ten of the highest outdegree traceroute gateways are able to
perform traceroute . In this situation, distances among the
other traceroute gateways and from a traceroute gateway, other

Fig. 18. Minimizing maximum RTTs between clients and closest mirrors.
(a) Apache. (b) Amnesty International. (c) Sun. (d) Marimba.

than these ten, to a client must be estimated by doing triangu-
lation on the distances measured by these ten traceroute gate-
ways only. This simulates the case where the underlying net-
work topology is not known (such is the case with the Internet),
and a “distance map” of the underlying topology must be es-
timated by placing measurement boxes on the network. It was
shown by simulations in [7] that when the underlying network
topology is not known, nearest mirror redirection using some
form of distance map outperforms random redirection. We now
show that similar results can also be observed on the Internet.
Fig. 17 shows the 95 percentile of client–mirror RTTs under

0.95 when distances are known, with random redi-
rection, and with redirection using a distance map. The results
were obtained from Internet-based experiments, when mirrors
are placed using the 0-greedy algorithm.
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Fig. 19. Minimizing 95 percentile RTTs between clients and closest mirrors.
(a) Apache. (b) Amnesty International. (c) Sun. (d) Marimba.

VI. CONCLUSION

In this paper, we take a detailed look at the problem of placing
mirrors of Internet content on a restricted set of hosts. We intro-
duce a formal model to study the constrained mirror placement.
Using both simulation and real Internet delay data, we examine a
number of placement and redirection algorithms for placing var-
ious numbers of mirrors and their effects on client response time
and mirror load distribution. We determine that the-greedy al-
gorithm gives the best performance in CMP. We observe that
there is a rapidly diminishing return to placing more mirrors in
terms of both client latency and server load balancing. We hy-
pothesize that the presence of the locality constraint has elimi-
nated some of the necessary conditions for obtaining the optimal

(a)

(b)

(c)

(d)

Fig. 20. Client population distribution under 95 percentile RTT optimization.
(a) Apache. (b) Amnesty International. (c) Sun. (d) Marimba.

solution and the subsequent performance benefits. Even under
the more elaborate placement schemes, simply increasing the
number of mirrors yields very little performance improvement
beyond that of a relative small number of mirrors.

APPENDIX

We present in this appendix results from our second Internet
experiment described in Section V. Fig. 18 corresponds to
Fig. 12(a), Fig. 19 corresponds to Fig. 12(b), and Fig. 20
corresponds to Fig. 15. Please see our discussions of the corre-
sponding figures on how to read and interpret these figures.
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