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Abstract. In this paper, we develop a counterexample-guided abstrac-
tion refinement (CEGAR) framework for monotonic abstraction, an ap-
proach that is particularly useful in automatic verification of safety prop-
erties for parameterized systems. The main drawback of verification using
monotonic abstraction is that it sometimes generates spurious counterex-
amples. Our CEGAR algorithm automatically extracts from each spuri-
ous counterexample a set of configurations called a “Safety Zone” and
uses it to refine the abstract transition system of the next iteration. We
have developed a prototype based on this idea; and our experimenta-
tion shows that the approach allows to verify many of the examples that
cannot be handled by the original monotonic abstraction approach.

1 Introduction

We investigate the analysis of safety properties for parameterized systems. A
parameterized system consists of an arbitrary number of identical finite-state
processes running in parallel. The task is to verify correctness regardless of the
number of processes.

One of the most widely used frameworks for infinite-state verification uses
systems that are monotonic w.r.t. a well-quasi ordering < [2,24]. This framework
provides a scheme for proving termination of backward reachability analyses,
which has already been used for the design of verification algorithms of various
infinite-state systems (e.g., Petri nets, lossy channel systems) [7,21,23]. The
main idea is the following. For a class of models, we find a preorder < on the
set of configurations that satisfies the following two conditions (1) the system is
monotonic w.r.t. < and (2) =< is a well-quasi ordering (WQO for short). Then,
backward reachability analysis from an upward closed set (w.r.t. <) is guaranteed
to terminate, which implies that the reachability problem of an upward closed
set (w.r.t. <) is decidable.

However, there are several classes of systems that do not fit into this frame-
work, since it is hard to find a preorder that meets the aforementioned two
conditions at the same time. An alternative solution is to first find a WQO =
on the set of configurations and then apply monotonic abstraction [5,3,6] in
order to force monotonicity. Given a preorder < on configurations, monotonic
abstraction defines an abstract transition system for the considered model that is
monotonic w.r.t. <. More precisely, it considers a transition from a configuration



c1 to a configuration cs to be possible if there exists some smaller configuration
¢} =X c¢; that has a transition to cp. The resulting abstract transition system
is clearly monotonic w.r.t < and is an over-approximation of the considered
model. Moreover, as mentioned, if < is a WQO, the termination of backward
reachability analysis is guaranteed in the abstract transition system.

Monotonic abstraction has shown to be useful in the verification of heap ma-
nipulating programs [1] and parameterized systems such as mutual exclusion and
cache coherence protocols [3,5]. In most of the benchmark examples for these
classes, monotonic abstraction can generate abstract transition systems that are
safe w.r.t to the desired properties (e.g. mutual exclusion). The reason is that, for
these cases, we need only to keep track of simple constraints on individual vari-
ables in order to successfully carry out verification. However, there are several
classes of protocols where we need more complicated invariants in order to avoid
generating spurious counterexamples. Examples include cases where processes
synchronize via shared counters (e.g. readers and writers protocol) or reference
counting schemes used to handle a common set of resources (e.g. virtual memory
management). For these cases, monotonic abstraction often produces spurious
counterexamples, since it is not sufficiently precise to preserve the needed invari-
ants. Therefore, we introduce in this paper a counterezample-guided abstraction
refinement (CEGAR) approach to automatically and iteratively refine the ab-
stract transition system and remove spurious counterexamples.

The idea of the CEGAR algorithm is as follows. It begins with an initial
preorder =g, which is the one used in previous works on monotonic abstrac-
tion [5]. In the i-th iteration, it tries to verify the given model using monotonic
abstraction w.r.t. the preorder <;_1. Once a counterezample is found in the ab-
stract transition system, the algorithm simulates it on the concrete transition
system. In case the counterexample is spurious, the algorithm extracts from it a
set S of configurations called a “Safety Zone”. The computation of the “Safety
Zone” is done using interpolation [30,28]. The set S (“Safety Zone”) is then
used to strengthen the preorder that will be used in the next iteration. Mono-
tonic abstraction produces a more accurate abstract transition system with the
strengthened preorder. More precisely, in the (i + 1)-th iteration, the algorithm
works on an abstract transition system induced by monotonic abstraction and a
preorder <;:= {(¢,¢')] ¢ <41 ¢ and ¢ € S = ¢ € S}. Intuitively, the strength-
ened preorder forbids configurations inside a “Safety Zone” to use a transition
from some smaller configuration (w.r.t <;_1) outside the “Safety Zone”.

The strengthening of the preorder has an important property: It preserves
WQO. That is, if <;_1 is a WQQO, then =; is also a WQO, for all ¢ > 0. There-
fore, the framework of monotonic systems w.r.t. a WQO can be applied to each
abstract transition system produced by monotonic abstraction and hence ter-
mination is guaranteed for each iteration. Based on the method, we have im-
plemented a prototype, and successfully used it to automatically verify several
non-trivial examples, such as protocols synchronizing by shared counters and
reference counting schemes, that cannot be handled by the original monotonic
abstraction approach.



Outline We define parameterized systems and their semantics in Section 2.
In Section 3, we first introduce monotonic abstraction and then give an overview
of the CEGAR algorithm. In Section 4, we describe the details of the CEGAR
algorithm. We introduce a symbolic representation of infinite sets of configura-
tions called constraint. In Section 4, we show that all the constraint operations
used in our algorithm are computable. In Section 6, we show that the termina-
tion of backward reachability checking is guaranteed in our CEGAR algorithm.
Section 7 describes some extension of our model for parameterized system. In
Section 8 we describe our experimentation. Finally, in Section 9, we conclude
with a discussion of related tools and future works.

2 Preliminaries

In this section, we define a model for parameterized systems. We use B to denote
the set {true, false} of Boolean values, N to denote the set of natural numbers,
and Z to denote the set of integers. Let P be a set and < be a binary relation
on P. The relation = is a preorder on P if it is reflexive and transitive. Let
Q C P, we define a strengthening of =< by @, written =g, to be the binary
relation < ={(¢,)| ¢ X and ¢’ € Q = ¢ € Q}. Observe that < is also a
preorder on P.

Let Xn be a set of numerical variables ranging over N. We use N (Xy) to
denote the set of formulae which have the members of {z —yoc,zoc| z,y €
Xn,c € Z,o € {>,=,<}} as atomic formulae, and which are closed under the
Boolean connectives =, A, V. Let X5 be a finite set of Boolean variables. We use
B(Xp) to denote the set of formulae which have the members of Xp as atomic
formulae, and which are closed under the Boolean connectives —, A, V. Let X’
be the set of primed variables {z’ | x € X}, which refers to the “next state”
values of X.

2.1 Parameterized System

Here we describe our model of parameterized systems. A simple running example
of a parameterized system is given in Fig. 1. More involved examples can be found
in the Appendix. The example in Fig. 1 is a readers and writers protocol that
uses two shared variables; A numerical variable cnt (the read counter) is used to
keep track of the number of processes in the “read” state and a Boolean variable
lock is used as a semaphore. The semaphore is released when the writer finished
writing or all readers finished reading (cnt decreased to 0).

A parameterized system consists of an unbounded but finite number of iden-
tical processes running in parallel and operating on a finite set of shared Boolean
and numerical variables. At each step, one process changes its local state and
checks/updates the values of shared variables. Formally, a parameterized system
is a triple P = (Q, T, X), where @ is the set of local states, T is the set of transi-
tion rules, and X is a set of shared variables. The set of shared variables X can
be partitioned to the set of variables X y ranging over N and X g ranging over B.

A transition rule t € T is of the form [q —7r: stmt], where ¢, € @ and
stmt is a statement of the form ¢n A ¢p, where o € N (Xny U X)) and ¢p €
B(XpUXE). The formula ¢ controls variables ranging over N and ¢p controls



Boolean variables. Taking the rule r; in Fig. 1 as an example, the statement
says that: if the values of shared variables cnt = 0 and lock = true, then we are
allowed to increase the value of cnt by 1, negate the value of lock, and change
the local state of a process from ¢ to r.

| shared lock: Boolean, cnt: nat ‘

it t—>r:cnt:O/\cnt/:cnt—i—l/\lock/\ﬁlock/}
To: =t—>r:cnt>:1/\cm§/:cnt—}—1}
r3: =rﬂtzcmﬁ>:1/\cm§’:cntfl}
T4t =THt:cnt:1/\cnt’:cntf1/\—\locl~c/\locl~€’}
wy: [t — w: lock A ﬂlock'}
wa: |w — t: —lock /\lock'}

Initial: ¢, lock

Fig. 1. Readers and writers protocol. Here t,r,w are “think”, “read”, and “write”
states, respectively.

2.2 Transition System
A parameterized system P = (Q,T, X) induces an infinite-state transition sys-
tem (C, —) where C'is the set of configurations and — is the set of transitions.

A configuration ¢ € C is a function Q U X — N UB such that (1) ¢(q) € N
gives the number of processes in state g if ¢ € @, (2) ¢(z) € Nif z € Xy and
(3) c(x) € Bif z € Xp. We use [z]*,x52,..., 207, b1,ba,...,by] to denote a
configuration ¢ such that (1) c¢(z;) = vy for 1 < i < n and (2) ¢(b) = true iff
be {bl,bg,. .. ,bm}.

The set of transitions is defined by —:= {J,c; ——. Let ¢,¢ € C be two
configurations and t = [¢ — r : stmmt ] be a transition rule. We have (c, ) e+
(written as ¢ — ¢/} if (1) ¢(q) = c(q) —1, (2) €(r) = ¢(r)+1, and (3) substitut-
ing each variable z in stmt with ¢(x) and its primed version 2’ in stmt with ¢/(z)
produces a formula that is valid. For example, we have [ro, w?, 3, ent?, lock] AT

[7t, w2, ent!] in the protocol model of Fig. 1. We use = to denote the tran-
sitive closure of — .

3 Monotonic Abstraction and CEGAR

We are interested in reachability problems, i.e., given sets of initial and bad con-
figurations, can we reach any bad configuration from some initial configuration
in the transition system induced by a given parameterized system.

We first recall the method of monotonic abstraction for the verification of
parameterized systems and then describe an iterative and automatic CEGAR ap-
proach. The approach allows to produce more and more precise over-approximations
of a given transition system from iteration to iteration. We assume a transition
system (C, —) induced by some parameterized system.

3.1 Monotonic Abstraction

Given an ordering < defined on C, monotonic abstraction produces an abstract
transition system (C,~») that is an over-approximation of (C,—) and that is
monotonic w.r.t. <.



Definition 1 (Monotonicity). A transition system (C,~») is monotonic (w.r.t.
<) if for each c1,c2,c3 € C, c1 Jea Ay seg = Feq. 03 Deg Aeg o ey

The idea of monotonic abstraction is the following. A configuration c is al-
lowed to use the outgoing transitions of any smaller configuration ¢’ (w.r.t ).
The resulting system is then trivially monotonic and is an over-approximation of
the original transition system. Formally, the abstract transition system (C,~~)
is defined as follows. The set of configurations C' is identical to the one of
the concrete transition system. The set of abstract transitions is defined by
~i= User L, where (c1,¢3) el (written as ¢ L cg) iff dea <. o ey Tt
is clear that 5D for all t € T, i.e., (C,~») over-approximates (C, —).

In our previous works [3,5], we defined < to be a particular ordering <C
C x C such that ¢ < ¢ iff (1) Vg € Q.c(q) < (q), (2) Vn € Xy. ¢(n) < (n),
and (3) Vb € Xp. ¢(b) = ¢/(b). Such an ordering has shown to be very useful in
shape analysis [1] and in the verification of safety properties of mutual exclusion
and cache coherence protocols [3,5]. In the CEGAR algorithm, we use < as the
initial preorder.

3.2 Refinement of the Abstraction

(€ —) %o
Reachability Checker “Safe”
(Algorithm 1)
Strengthened
Ordering =<; “No”, Trace
“Real Error”
Counterexample Analyzer Trace
“Spurious Error” (Algorithm 2)

Fig. 2. An overview of the CEGAR algorithm (Algorithm 3).

Figure 2 gives an overview of the counterexample-guided abstraction refine-
ment (CEGAR) algorithm. The algorithm works fully automatically and iter-
atively. In the beginning, a transition system (C,—) and an initial preorder
<o (which equals the preorder < defined in the previous subsection) are given.
The CEGAR algorithm (Algorithm 3) consists of two main modules, the reach-
ability checker (Algorithm 1) and the counterexzample analyzer (Algorithm 2).
In the i-th iteration of the CEGAR algorithm, the reachability checker tests if
bad configurations are reachable in the abstract transition system obtained from
monotonic abstraction with the preorder <;_;. In case bad configurations are
reachable, a counterexample is sent to the counterexample analyzer, which re-
ports either “Real Error” or “Spurious Error”. The latter comes with a strength-
ened order =<; (i.e., %;,C=;_1). The strengthened order =<, will then be used in
the (i 4+ 1)-th iteration of the CEGAR loop. Below we describe informally how
=<;—1 is strengthened to =<;. The formal details are given in Section 4.



Strengthening the Preorder. As an example, we demonstrate using the
protocol of Fig. 1 how to obtain <; from =<y. The set of bad configurations
Bad = {c | ¢(r) > 1 Ac(w) > 1} contains all configurations with at least one
process in the “write” state and one process in the “read” state. The set of
initial configurations Init = {c | ¢(w) = ¢(r) = ¢(ent) = 0 A ¢(lock)} contains
all configurations where all processes are in the “think” state, the value of the
“cnt” equals 0, and the “lock” is available.

By Bs

—c(lock)
c(ent)>1
c(t)>1
c(r)>1

B> By

—c(lock)
c(ent)>1
c(r)>2

c(lock)
c(r)>1
c(t)>1

c(lock)
c(t)>2

Fig. 3. The counterexample produced by backward reachability analysis on the readers
and writers protocol. Notice that in the counterexample, Init N By # .

In iteration 1 of the CEGAR algorithm, the reachability checker produces a
counterexample (described in Fig. 3) and sends it to the counterexample analyzer.
More precisely, the reachability checker starts from the set Bad and finds the
set B contains all configurations that have (abstract) transitions ~3 to the set
Bad. That is, each configuration in B; either has a concrete transition —- to
Bad or has some smaller configuration (w.r.t <o) with a concrete transition —-
to Bad. It then continues the search from B; and finds the set By that have
(abstract) transitions in A3 to B;. The sets By and By can be found in a similar
way. It stops when By is found, since By N Init # (.

InitNBy Bad

Fig. 4. Simulating the counterexample on the concrete system. Here Fy = Init N By =
{c | e(t) > 2N c(w) = c(r) = clent) = 0A c(lock)}, Fzs = {c | c(t) > 1A c(w) =
0Ac(r) = c(ent) = 1 A —c(lock)}, Fo = {c| c(ent) = c(r) = 2 A c(w) = 0 A —¢(lock)},
and Fy = {c | c(ent) =1 Ac(r) > 1 A ~c(lock)}

The counterexample analyzer simulates the received counterexample in the
concrete transition system. We illustrate this scenario in Fig. 4. It starts from the
set of configuration F; = Init N B,' and checks if any bad configurations can be
reached following a sequence of transitions ——;—2;—:; % Starting from Fy, it
finds the set F3 which is a subset of B3 and which can be reached from Fj via the
transition —. It continues from F3 and then finds the set F in a similar manner

. o K . o T .
via the transition —. However, there exists no transition — starting from any

! The set of initial configurations that can reach bad configurations follows the se-
quence of transitions 3;3;3;1«% in the abstract transition system



configuration in Fy = {c | ¢(ent) = ¢(r) = 2 A e¢(w) = 0 A =¢(lock)}. Hence the
simulation stops here and concludes that the counterexample is spurious.

In the abstract transition system, all configurations in F5 are able to reach B,
via transition ~> and from which they can reach Bad via transition ~+. Notice
that there exists no concrete transition —% from Fj to B, but the abstract
transition ~ from Fj to By does exist. The reason is that all configurations in
F, have some smaller configuration (w.r.t. <o) with a transition — to Bj. Let
F} be the set of configurations that indeed have some transition — to By. It is
clear that F» and Fj are disjoint.

Therefore, we can remove the spurious counterexample by preventing con-
figurations in F» from falling to some configuration in Fj (thus also preventing
them from reaching Bj). This can be achieved by first defining a set of configu-
rations S called a “Safety Zone” with F, C S and F; NS = () and then use it to
strengthen the preorder =g, i.e., let <1:= {(¢,d)| ¢ 2o ¢ and ¢ € S = c € S}.
In Section 4, we will explain how to use interpolation techniques [30, 28] in order
to automatically obtain a “Safety Zone” from a counterexample.

4 The Algorithm

In this section, we describe our CEGAR algorithm for monotonic abstraction.
First, we define some concepts that will be used in the algorithm. Then, we ex-
plain the two main modules, reachability checker and counterexample analyzer.
The reachability checker (Algorithm 1) is the backward reachability analysis
algorithm on monotonic systems [2], which is possible to apply since the ab-
straction induces a monotonic transition system. The counterexample analyzer
(Algorithm 2) checks a counterexample and extracts a “Safety Zone” from the
counterexample if it is spurious. The CEGAR algorithm (Algorithm 3) is ob-
tained by composing the above two algorithms. In the rest of the section, we
assume a parameterized system P = (Q, T, X) that induces a transition system
(C,—).

4.1 Definitions

A substitution is a set {x1 «— e1,x3 «— ea,..., Ty — e,} of pairs, where z; is a
variable and e; is a variable or a value of the same type as x; for all 1 <1i <mn.
We assume that all variables are distinct, i.e., z; # x; if i # j. For a formula
6 and a substitution S, we use 6[S] to denote the formula obtained from 6 by
simultaneously replacing all free occurrences of x; by e; for all x; «— e; € S. For
example, if 0 = (x1 > x3) A (z2 + 3 < 10), then O]z «— y1, 22 — 3,23 — y2| =
(1 > y2) A (3492 < 10).

Below we define the concept of a constraint, a symbolic representation of
configurations which we used in our algorithm. In this section, we define a num-
ber of operations on constraints. In Section 5, we show how to compute those
operations.

We use Q7 to denote the set {¢* | ¢ € Q} of variables ranging over N in which
each variable ¢# is used to denote the number of processes in the state g. Define
the set of formulae @ := {¢x A ¢p | on € N(Q¥ U Xn),¢p € B(Xp)} such



that each formula in @ is a constraint that characterizes a potentially infinite
set of configurations. Let ¢ be a constraint and ¢ be a configuration. We write
¢k 6 if ol{a* — c(q) | g € QYl{w — c(z) | 2 € Xn}[{b < c(b) | b € Xp}]
is a valid formula. We define the set of configurations characterized by ¢ as
[¢] :={c|ce€ CAcE ¢} We define an entailment relation C on constraints,
where ¢1 C @9 iff [¢1] C [p2]. We assume that the set of initial configurations
Init and bad configurations Bad can be characterized by constraints ¢,;; and
¢ Bad, respectively.

For a constraint ¢, the function Pre;(¢) returns a constraint characterizing
the set {c | 3¢ € [¢] A c = ¢}, i.e., the set of configurations from which we
can reach a configuration in [¢] via transitions in ——; and Post,(¢) returns a
constraint characterizing the set {c | 3¢ € [#] Ac’ - ¢}, i.e., the set of configu-
rations that can be reached from some configuration in [¢] via transitions in —.
For a constraint ¢ and a preorder < on the set of configurations, the function
Up<(¢) returns a constraint such that [Up<(¢)] = {¢’ | Fe € [¢p] Ac 2 '}, Le.,
the upward closure of [¢] w.r.t. the ordering <. A trace (from ¢, to ¢, 1) in the
abstract transition system induced by monotonic abstraction and the preorder
= is a sequence ¢1;t1;. .. Pn;ln; Ony1, where ¢; = Up(Prey, (¢iy1)) and t; € T
for all 1 <4 < n. A counterezample (w.r.t. <) is a trace ¢1;t1;. . .3 Onitn; Gnit
with [¢1] N [@mit] # 0 and ¢pi1 = PBaa-

We use Var(¢) to denote the set of variables that appear in the constraint
¢. Given two constraints ¢4 and ¢p such that ¢4 A ¢p is unsatisfiable. An
interpolant ¢ of (¢4, dp) (denoted as ITP(¢d 4, dp)) is a formula that satisfies (1)
a4 = ¢, (2) pA¢p is unsatisfiable, and (3) Var(¢) C Var(¢pa)NVar(¢p). Such
an interpolant can be automatically found, e.g., using off-the-shelf interpolant
solvers such as FOCI [30] and CLP-prover [31]. In particular, since ¢4, ¢pp € &, if
we use the “split solver” algorithm equipped with theory of difference bound [28]
to compute an interpolant, the result will always be a formula in @ (i.e., a
constraint).

4.2 The Reachability Checker

Algorithm 1: The reachability checker

input : A preorder < over configurations, constraints ¢mi and ¢pad
output: “Safe” or “No” with a counterexample ¢1;t1;...;dn;tn; PBad
Next := {(¢Bad, PBad)}, Processed := {};
while Next is not empty do
Pick and remove a pair (¢cur, Trace) from Next and add it to Processed;
if [¢cur A pmir] # 0 then return “No”, Trace;
foreach t € T do
Gree = Up (Pres (d0ur));
old = 3(¢, e) € Next U Processed.¢p C ¢ ppe;
if —old then Add (¢pre, prre; t; Trace) to Next;
return “Safe”;
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Let < be a preorder on C and (C,~») be the abstract transition system in-
duced by the parameterized system P and the preorder <. Algorithm 1 checks if
the set [@rmit] is backward reachable from [¢p.4] in the abstract transition sys-
tem (C,~). It answers “Safe” if none of the initial configurations are backward
reachable. Otherwise, it answers “No”. In the latter case, it returns a counterez-
ample ¢1;t1; ... Onitn; dBaqa- The algorithm uses a set Next to store constraints
characterizing the sets of configurations from which it will continue the back-
ward search. Each element in Next is a pair (¢, Trace), where ¢ is a constraint
characterizing a set of backward reachable configurations (in the abstract transi-
tion system) and Trace is a trace from ¢ to ¢p,q. Initially, the algorithm puts in
Next the constraint ¢p.q, which describes the bad configurations, together with
a trace contains a singleton element namely ¢pqq itself (Line 1). In each loop
iteration (excepts the last one), it picks a constraint ¢y, (together with a trace
t0 ¢ paq) from Next (Line 3). For each transition rule ¢ € T, the algorithm finds a
constraint ¢ p,. characterizing the set of configurations backward reachable from
[¢cur] via -4 (Line 6). If there exists no constraint in Next that is larger than
¢pre (W.rt. C), dpre (together with a trace to ¢peq) is added to Next (Line 7).

4.3 The Counterexample Analyzer

Algorithm 2: The counterexample analyzer.

input : A counterexample @1;t1;...; Pn;tn; Ont1
output: “Real Error” or “Spurious Error” with a constraint ¢g
¢ = 1 A\ Prmat;

for i =1 ton do
if [Poste, () A ¢it1] = 0 then
¢' = Pret, (¢i+1);
return “Spurious Error”, ITP(¢,¢');
¢ = Posty, (¢) A it1;
return “Real Error”;

N O U W N

Given a counterexample ¢1;t1;...; On;tn; dnt1, Algorithm 2 checks whether
it is spurious or not. If spurious, it returns a constraint ¢g that describes a
“Safety Zone” that will be used to strengthen the preorder.

As we explained in Section 3, we simulate the counterexample forwardly (Line
1-6). The algorithm begins with the constraint ¢1 A ¢p;:. If the counterexample
is spurious, we will find a constraint ¢ in the i-th loop iteration for some i :
1 < i < n such that none of the configurations in [¢] has transition ti o
[¢i+1] (Line 3). For this case, it computes the constraint ¢’ characterizing the
set of configurations with transitions — to [¢i+1] (Line 4) and then computes
a constraint characterizing a “Safety Zone”.

As we explained in Section 3, a “Safety Zone” is a set S of configurations
that satisfies (1) [¢] € S and (2) S N [¢'] = 0. Therefore, the constraint ¢g
characterizing the “Safety Zone” should satisfy (1) ¢ = ¢g and (2) ds A @' is



not satisfiable. The interpolant of (¢, ¢') is a natural choice of ¢g that satisfies
the aforesaid two conditions. Hence, in this case the algorithm returns ITP(¢, ¢')
(Line 5).

If the above case does not happen, the algorithm computes a constraint char-
acterizing the next set of forward reachable configurations in the counterexample
(Line 6) and proceeds to the next loop iteration. It returns “Real Error” (Line 7)
if the above case does not happen during the forward simulation.

4.4 The CEGAR Algorithm of Monotonic Abstraction

Algorithm 3: A CEGAR algorithm for monotonic abstraction

input : An initial preorder <( over configurations, constraints ¢ and ¢pad
output: “Safe” or “Real Error” with a counterexample ¢1;t1;...;dn;tn; PBad
1 1=0;
2 while true do
3 result = ReachabilityChecker(=;, ¢ rmit, P Bad);
if result=“No”, Trace then
type = CounterexampleAnalyzer(Trace);
if type= “Spurious Error”, ¢s then i=1i+ 1, <;:= Str(=X;-1, ds);
else return “Real Error”, Trace

® N o s

else return “Safe”

In Algorithm 3, we describe the CEGAR approach for monotonic abstrac-
tion with the initial preorder <. As described in Section 3, the algorithm works
iteratively. In the i-th iteration, in Line 3, we invoke the reachability checker (Al-
gorithm 1) using a preorder =;_;. When a counterexample is found, the coun-
terexample analyzer (Algorithm 2) is invoked to figure out if the counterexample
is real (Line 8) or spurious. In the latter case, the counterezample analyzer gen-
erates a constraint characterizing a “Safety Zone” and from which Algorithm 3
computes a strengthened preorder <; (Line 6 and 7). The function Str(=;_1, ¢g)
in Line 8 strengthens the preorder <;_; by the set of configurations [¢s].

5 Constraint Operations

In this section we explain how to compute all the constraint operations used in
the algorithms in Section 4. Recall that ¢ denotes the set of formulae {¢n A o5 |
on € N(Q7 U Xn),¢5 € B(Xp)}, where each formula in @ is a constraint
representing a set of configurations. We define ¥ := {¢n A ¢p | dx € N(Q# U
Q* UXy UXN), ¢ € B(XpUXY})}, where each formula in & defines a relation
between sets of configurations. Observe that formulae in ¢ and in ¥ are closed
under the Boolean connectives and substitution.

Lemma 1. [20] Both & and ¥ are closed under projection (existential quantifi-
cation) and the projection functions are computable.



Lemma 2. [20] The satisfiability problem of formulae in & and ¥ is decidable.

Below we explain how to preform the constraint operations used in the algo-
rithms in Section 4. For notational simplicity, we define V := Q# UXyUXp and
Vo= Q#* U Xy UXp. Let ¢ be a formula in & (respectively, ¥) and X a set of
variables in V (respectively, VU V'), we use 3X. ¢ to denote some formula ¢’ in
@ (respectively, ¥) obtained by the quantifier elimination algorithm (Lemma 1).

Pre and Post. The transition relation —— for t = [q -7 stmt} € T can
be described by the formula 0! := stmt A q#/ =q* — 1A r# = # 4 1, which
is in ¥. For a constraint ¢, Pre;(¢) = IV'. (' A ¢p[{x «— 2’ | z € V}]) € & and
Post,(¢) = (3V. (0" A¢))[{z' « z | x € V}] € §. Both functions are computable.

Entailment. Given two constraints ¢; and ¢o, we have ¢1 T ¢ iff ¢1 A 2o
is unsatisfiable, which can be automatically checked. In practice, constraints can
be easily translated into disjunctions of difference bound matrices (DBM) and
hence a sufficient condition for entailment can be checked by standard DBM
operations [20].

Intersection with Initial States. Let ¢, be a constraint characterizing
the initial configurations and ¢p be a constraint characterizing a set of configu-
rations. We have [@ri:] N [¢B] # 0 iff ¢ A ¢ is satisfiable.

Strengthening. Here we explain how to strengthen an ordering < w.r.t
a constraint ¢g € @, providing that =< is expressed as a formula ¢p< € ¥. The
strengthened order can be expressed as the formula ¢<, = p<A(psVps[{zr —
z' | x € V}]). Intuitively, for two configurations ¢; and cq, the formula says that
c1 =Xg ¢ iff ¢ <X ¢o and either ¢y is in the “Safety Zone” or ¢y is not in the
“Safety Zone” .

Remark 1. The initial preorder =< of our algorithm can be expressed as the
formula A, couixy. weQ#uxy - TS ' A Npexs, bexy, - (bAV)V (=bA b)),
which is in ¥. The constraint extracted from each spurious counterexample is in
& if the algorithm in [28] is used to compute the interpolant. Since the initial
preorder is a formula in ¥ and the constraint used for strengthening is in @, the
formula for the strengthened order is always in ¥ and computable.

Upward Closure. We assume that the ordering < is expressed as a formula
¢< € ¥ and the constraint ¢ € @. The upward closure of ¢ w.r.t. < can be
captured as Up4(¢) := (3V. (¢ A ¢<))[{z’' « 2 | x € V}], which is in &.

6 Termination

In this section, we show that each loop iteration of our CEGAR algorithm ter-
minates. We can show by Dickson’s lemma [19] that the initial preorder < is a
WQO. An ordering over configurations is a WQO iff for any infinite sequence
o, C1,C2, ... of configurations, there are ¢ and j such that i < j and ¢; = ¢;.
Moreover, we can show that the strengthening of a preorder also preserves WQO.

Lemma 3. Let S be a set of configurations. If < is a WQO over configurations
then <g is also a WQO over configurations.



If a transition system is monotonic w.r.t. a WQO over configurations, back-
ward reachability analysis, which is essentially a fix-point calculation, termi-
nates within a finite number of iterations [2]. The abstract transition system
is monotonic. In Section 5, we show that all the constraint operations used in
the algorithms are computable. Therefore, in each iteration of the CEGAR algo-
rithm, the termination of the reachability checker (Algorithm 1) is guaranteed.
Since the length of a counterexample is finite, the termination of the counterez-
ample analyzer (Algorithm 2) is also guaranteed. Hence, we have the following
lemma.

Lemma 4. Each loop iteration of the CEGAR algorithm (Algorithm 3) is guar-
anteed to terminate.

7 Extension

The model described in Section 2 can be extended to allow some additional
features. For example, (1) dynamic creation of processes [- — ¢ :stmt], (2)
dynamic deletion of processes [q — stmt], and (3) synchronous movement
[ql, Q2y -y Qpn = T1,T2 e Tyt stmt]. Moreover, the language of the statement
can be extended to any formula in Presburger arithmetic. For all of the new fea-
tures, we can use the same constraint operations as in Section 5; the extended
transition rule still can be described using a formula in ¥, Presburger arithmetic
is closed under Boolean connectives, substitution, and projection and all the
mentioned operations are computable.

8 Case Studies and Experimental Results

We have implemented a prototype and tested it on several case studies of clas-
sical synchronization schemes and reference counting schemes, which includes
readers/writers protocol, sleeping barbers problem, the missionaries/cannibals
problem [11], the swimming pool protocol [11,25], and virtual memory manage-
ment. These case studies make use of shared counters (in some cases protected
by semaphores) to keep track of the number of current references to a given re-
source. Monotonic abstraction returns spurious counterexamples for all the case
studies. In our experiments, we use two interpolating procedures to refine the
abstraction. One is a homemade interpolant solver based on difference bound ma-
trices [28]; the other one is the CLP-prover [31], an interpolant solvers based on
constraint logic programming. The results, obtained on an Intel Xeon 2.66GHz
processor with 8GB memory, are listed in Table 1. It shows that our CEGAR
method efficiently verifies many examples in a completely automatic manner.
We compare our approach with three related tools: the ALV tool [14], the
Interproc Analyzer [26], and FASTer [11] based on several examples (and their
variants) from our case studies. The results are summarized in Table 2. Note
that these tools either perform an exact forward analysis where the invariant
is exactly represented (FASTer), or try to capture all possible invariants of a
certain form (ALV and Interproc Analyzer). In these two approaches, the ver-
ification of the property is deduced from the sometimes expensively generated
invariants. The main difference between our approach and the other ones is that



model interpolant |pass| time |#ref|#cons|#t|#]1|#s
readers/writers %]il\é[ \\é ggg :z 1 38 652
refined readers/writers DBM v |39sec| 2 3037 slsls
priority to readers (A.1) CLP X - - -
refined readers/writers DBM Vv |35sec| 1 2996 12715
priority to writers (A.2) CLP v | 68sec| 4 |39191
sleeping DBM v [39sec| 1 1518 101151 1
barbers (A.3) CLP v |41sec| 1 1518
pmap reference DBM v [01lsec| 1 249 95| 4| 7
counting (A.4) CLP v |0lsec| 1 249
missionary /cannibals DBM X - - - 717l
(A.5) CLP v |0lsec| 3 86
swimming DBM v |02sec| 2 59 61ol10
pool v2 (A.6) CLP v |02sec| 2 55

Table 1. Summary of experiments of case studies. Interpolant denotes the kind of in-
terpolant prover we use, where DBM denotes the difference bound matrix based solver,
and CLP denotes the CLP-prover. Pass indicates whether the refinement procedure
can terminate with a specific interpolant prover. Time is the execution time of the pro-
gram, measured by the bash time command. #ref is the number of refinements needed
to verify the property. #cons is the total number of constraints generated by the reach-
ability checker. For each model, we use #t, #l, #s to denote the number of transitions,
the number of local variables, and the number of shared variables, respectively. All case
studies are described in details in appendix.

we concentrate on minimal constraints to track the violation of the property at
hand. Using upward closed sets as a symbolic representation efficiently exploits
the monotonicity of the abstract system where the analysis is exact yet efficient.

9 Related and Future Work

We have presented a method for refining monotonic abstraction in the context
of verification of safety properties for parameterized systems. We have imple-
mented a prototype based on the method and used it to automatically verify
parameterized versions of synchronization and reference counting schemes. Our
method adopts an iterative counter-example guided abstraction refinement (CE-
GAR) scheme. Abstraction refinement algorithms for forward /backward analysis
of well-structured models have been proposed in [27,16]. Our CEGAR scheme is
designed instead for undecidable classes of models. Other tools dealing with the
verification of similar parameterized systems can be divided into two categories:
exact and approximate. In Section 8, we compare our method to a representative
from each category. The results confirm the following. Exact techniques, such as
FASTer [11], restrict their computations to under-approximations of the set of
reachable states. They rely on computing the exact effect of particular categories
of loops, like non-nested loops for instance, and may not terminate in general.
On the contrary, our method is guaranteed to terminate at each iteration.On the
other hand, approximate techniques like ALV and the Interproc Analyzer [14,



Model Tool |Pass| Result Model Tool |Pass| Result
swimming cma Vv 0.2 sec pmap cma Vv 0.1 sec
pool FASTer | X oom reference | FASTer | +/ 85 sec
protocol v2 |Interproc| +/ 2.7 sec counting |Interproc| X |false positive
(A.6) ALV X timeout (A.4) ALV X timeout
Model Tool |Pass| Result Model Tool |Pass| Result
missionary | cma Vv 0.1 sec readers cma Vv 3.9 sec
& FASTer | X oom writers | FASTer | 1/ |3 min 44 sec
cannibals |Interproc| +/ 2 sec pri. readers|Interproc| X |false positive
(A.5) ALV X |cannot verify (A1) ALV X timeout
Model Tool |Pass| Result Model Tool |Pass| Result
missionary | cma v 0.2 sec readers cma Vv 0.5 sec
& FASTer | X oom writers | FASTer | X oom
cannibals v2|Interproc| X |false positive||pri. readers|Interproc| X |false positive
(A.5) ALV X timeout v2 (A1) ALV X timeout

Table 2. Summary of tool comparisons. For cma, we selected the best results among
the ones obtained from DBM and CLP. For FASTer, we tested our examples with
library MONA and the backward search strategy. For the other tools, we just used
the default settings. In our experiment, ALV outputted “unable to verify” for the
missionaries/cannibals model and failed to verify the other test cases after one day of
execution. FASTer failed to verify four of the six test cases within a memory limit of
8GB. Interproc Analyzer gave false positives for examples other than the swimming
pool protocol and the missionaries/cannibals model. That is, it proved reachability for
models where the bad states were not reachable.

26], rely on widening operators in order to ensure termination. Typically, such
operators correspond to extrapolations that come with a loss of precision. It
is unclear how to refine the obtained over-approximations when false positives
appear in parameterized systems like those we study.

Also, the refinement method proposed in the present paper allows us to au-
tomatically verify new case studies (e.g. reference counting schemes) that cannot
be handled by regular model checking [29,17, 8,12, 32,13], monotonic abstrac-
tions [5,3,6] (they give false positives), environment abstraction [15], and in-
visible invariants [9]. It is important to remark that a distinguished feature of
our method with respect to methods like invisible invariants and environment
abstraction is that we operate on abstract models that are still infinite-state thus
trying to reduce the loss of precision in the approximation required to verify a
property.

We currently work on extensions of our CEGAR scheme to systems in which
processes are linearly ordered. Concerning this point, in [4] we have applied a
manually supplied strengthening of the subword ordering to automatically verify
a formulation of Szymanski’s algorithm (defined for ordered processes) with non-
atomic updates.
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int readcount = O0;
semaphore wsem = 1, x = 1;

void reader (){

while (1){
wait (x);
readcount++; void writer (){
if (readcount==1) wait(wsem); while(1){
signal (x); wait (wsem)
doReading (); doWriting ();
wait (x); signal (wsem)
readcount ——; }
if (readcount==0)signal (wsem )}
signal (x);

}

Fig. 5. Reader/writers with priority to readers.

A Description of case-studies

A.1 Readers and Writers: Priority to Readers

The RW problem is a classic problem for which design of synchronization and
concurrency mechanisms can be tested. The problem is defined as follows. There
is a resource that is shared among a number of processes. Any number of readers
may simultaneously read to the data area. Only one writer at a time may write
to the data area. If a writer is writing to the data area, no reader may read it.
If there is at least one reader reading the data area, no writer may write to it.
Readers only read and writers only write. A process that reads and writes to a
data area must be considered a writer.

One possible strategy to control the access to the shared resource is to give
priority to readers as in the pseudo-code of Fig. 5. In this solution, readers
wait that no writers are inside the critical section and then get the lock on
semaphore wsem. This blocks writers until there are incoming readers. The
last reader unlock wsem and let waiting writers to enter critical section. We
model this concurrent program using the parameterized system in Fig. 6. Every
processes is modelled with a set of transitions with constraints on a set of shared
variables. We use lockR and lockW to model resp. mutex  and wsem of Fig. 5.
Furthermore, we use count to model variable readcount. When lockR = 1 then
mutex is unlocked, locked otherwise. Location test; is used to simulate the first if-
then-else on count in the reader’s code of Fig. 5 (in the enter section). Location
testy is used to simulate the if-then-else in the exit section. In this example
we consider the mutual exclusion property for readers and writers. Monotonic



Shared : lockR,lockW € 0,1, count : int

Reader :

think — testy : lockR = 1,lockR’ = 0, count’ = count + 1
testy — read : count = 1,lockW = 1,lockW’ = 0,lockR' =1
testy — read : count > 2,lockR =1

read — testy : count’ = count — 1,lockR = 1,lockR' =0
testy — think : count = 0,lockW’ = lockR' =1

testy — think : count > 1,lockR' =

‘Writer :

think — write : lockW = 1,lockW’' =0

write — think : lockW' =1

Initial state : lockW = 1,count =0 e think,think,...
Bad states : ¢ = (read, write)

Fig. 6. Parameterized model for readers writers with priority to readers.

abstraction cannot verify this property and returns a spurious counterexample.
As shown in Table 1, our CEGAR method automatically checks the property
for any number of readers and writers after one step of refinement for a total
execution time of 3.9 seconds. In Table 2, we in addition verify a safety property
that at most one writer can be in the critical section when no readers are there.
Experimental results (denoted by readers writers pri. readers v2) show that our
approach can verify this property in 0.5 second but none of the ALV tool [14],
Interproc [26] and FASTer [11] can successfully verify it.

A.2 Readers and Writers: Priority to Writers

Another possible strategy for solving the reader/writer problem is to give priority
to writers as in the pseudo-code of Fig. 7. The idea here is to delay readers that
requires access when there are waiting writers (i.e. if a reader is in critical section,
writers are waiting, incoming readers cannot jump into the critical section but
have to wait for the writers). This is achieved by introducing an additional
semaphore rsem needed here to create an additional barrier for readers and an
additional counter writecount to keep track of the number of waiting writers.

We model this concurrent program using the parameterized system in Fig. 8.
We use lockZ, lockR and lockW to model resp. mutex z, rsem, and wsem (we
directly lock x using atomic local transitions) Furthermore, we use countR and
countW to model variables readcount and writecount, resp.

Location test; is used to simulate the first if-then-else on count in the reader’s
code of Fig. 5 (in the enter section). In this example we consider the mutual
exclusion property for readers and writers. Monotonic abstraction cannot verify
this property and returns a spurious counterexample. As shown in Table 1, with
DBM interpolant solver, our CEGAR method automatically checks the property
for any number of readers and writers after 1 step of refinement for a total
execution time less than 4 seconds.



int readcount, writecount = 0;

semaphore rsem, wsem, Xx,y,z 1, //
void reader (){
while (1){ void writer (){
wait(z); while (1) {
wait (rsem ); wait (y);
wait (x); writecount++;
readcount—++; if (writecount==1) wait (rsem);
if (readcount==1) wait(wsem); signal (y);
signal (x); wait (wsem ) ;
signal (rsem); doWriting ();
signal (z); signal (wsem);
doReading (); wait (y);
wait (x); writecount ——;
readcount ——; if (writecount==0) signal(rsem);
if (readcount==0) signal(wsem); signal(y);
signal (x); }
} }

Fig. 7. Reader/writers with priority to writers.

A.3 Sleeping Barber

The sleeping barber problem is a classic inter-process communication and syn-
chronization problem between multiple operating system processes. The prob-
lem is analogous to that of keeping a barber working when there are customers,
resting when there are none and doing so in an orderly manner. The barber
and his customers represent aforementioned processes. As shown in Fig. 11, the
most common solution involves using three semaphores: one for any waiting
customers, one for the barber (to see if he is idle), and the third ensures mu-
tual exclusion. When a customer arrives, he attempts to acquire the mutex, and
waits until he has succeeded. The customer then checks to see if there is an
empty chair for him (either one in the waiting room or the barber chair), and
if none of these are empty, leaves. Otherwise the customer takes a seat thus
reducing the number available (a critical section). The customer then signals
the barber to awaken through his semaphore, and the mutex is released to allow
other customers (or the barber) the ability to acquire it. If the barber is not
free, the customer then waits. The barber sits in a perpetual waiting loop, being
awakened by any waiting customers. Once he is awoken, he signals the waiting
customers through their semaphore, allowing them to get their hair cut one at
a time. We model this concurrent program using the parameterized system in
Fig. 12. We use shared variables cust and barber to model the corresponding



Shared : lockZ, lockR,lockW € 0,1, countR, countW : int
Reader :
think — waitRy : lockZ = 1,lockZ’' =0
waitRy — waitRs : lockR = 1,lockR' =0
waitRs — read : countR = 0, lockW =1,

countR' = 1,lockW' = 0,lockZ’ = lockR' =1
waitRe — read : countR >= 1,lockZ’ = 1,lockR' =1
read — think : countR = 1, countR' = 0,lockW’' =1
read — think : countR >= 2, countR' = countR — 1
Writer :
think — waitW : countW = 0,lockR = 1,lockR’' = 0
think — waitW : countW >=1
waitW — write : lockW = 1,lockW' = 0, countW’ = countW + 1
write — releaseW : lockW’' =1
releaseW — think : countW = 1, countW’ = 0,lockR' =1
releaseW — think : countW >= 2, countW' = countW — 1
Initial state : countW = countR = 0,lockZ = lockW = lockR = 1 e think,think, ...
Bad states : read,write

Fig. 8. Readers writers with priority to writers.

generic semaphore. Furthermore, we use variable mutexr to model the mutex
with the same name. Furthermore, to emphasize the similarities with the other
example, we use a shared counter avail to model the current number of avail-
able chairs (i.e. avail = N — waiting). We also introduce a counter chair that
represent the corresponding resources (they are not used for synchronization but
just to keep track of the physical presence of chairs). N is here a parameter (i.e.
a shared variable that is never updated). Location skip indicates the failure of
the test avail = 0 in the body of the code of a customer. If location skip the
customer releases the mutex and goes back to the initial state.

In this example we would like to verify that the counter avail is coherent with
the current number of available resources (chair), i.e., that it never happens that
a customer is in location skip while chair > 1. Monotonic abstraction cannot
verify this property and returns a spurious counterexample. As shown in Table
1, our CEGAR method automatically checks the property for any number of
customers and for any value assigned to V. The test requires 1 step of refinement
for a total execution time of about 4 seconds.

A.4 Pmap Reference Counting

Other interesting case-studies come from the applications that use reference
counting to maintain consistent information of data shared among different pro-
cesses/processors [22]. The scheme is based on the following idea. For each shared
resource, the resource manager keeps track of the current number of references



const int CHAIRS = 5;
semaphore customers ,barbers=0,

mutex mutex = 1;
int waiting = 0;
void customer (){
void barber (){ while (1) {
while (1) { wait (mutex);
wait (customers); if (waiting < CHAIRS) {
wait (mutex ); waiting++;
waiting = waiting — 1; signal (customers);
signal (barbers); signal (mutex);
signal (mutex); wait (barbers);
cut_hair (); get_haircut ();
} }
} else signal (mutex);

1}

Fig. 9. Sleeping barber.

by using a counter. Critical operations are executed only when the reference
counter is zero. Instances of this scheme can be found in several file systems
(e.g. reference counter associated to Unix inodes), virtual memory manager (e.g.
to keep track of uses of physical pages), and multiprocessor systems In this sec-
tion we present as a case study the analysis of the virtual memory manager
described in [22]. The manager uses a table of counter to associate the number
of references to each physical page. Process environments maintain a local page
table in which virtual pages are associated to physical pages. Environments are
created and deallocated dynamically. They can be linked together to form a vir-
tual address space. They can request to map a physical page to a given virtual
page, to unmap a virtual page, to map a physical page to another environment.
Critical operations on physical pages are performed only if the corresponding
counter is zero.

To model this application, we consider as our starting point the pmap.c
program manually enriched with assertions (with skolem constants) described in
[22]. The assertions can be used here to extract a parameterized model of the
virtual memory manager in which the number of environments and the value of
counters is not fixed a priori. More specifically, we fix a given physical page P
(referenced object). We consider then two types of environments: envg if P is not
mapped in its virtual address, env; if P is mapped in its virtual address. We then
keep a reference counter rc for keeping track of the number of environments that
have a reference to P (for each environment we count the presence of P in its page
table). As in the pmap.c program in [22] we consider a main program that non-
deterministically invoke the functionalities of the manager, i.e., (de)allocation



Parameter: N > 1
Shared : mutex € {0,1}, bard, cust, avail, chair : int

Barber :
b0 — bl : cust >= 1, cust’ = cust — 1, mutex = 1, mutex’ =0
bl — b2 : avail < N, avail’ = avail + 1, chair’ = chair + 1
b2 — b3 : barb’ = barb+ 1, mutex’ =1
b3 — b0
Customer :
c0 — cl : mutex = 1, mutex’ =0
cl — skip: avail =0
skip — c0 : mutex’ =1
cl — 2 : avail > 1, chair > 1,
chair’ = chair — 1, avail’ = avail — 1, cust’ = cust + 1, muter’ =1
2 — ¢3 : barb > 1,barb’ = barb — 1
c3 — c0
Initial state : cust = barb = 0, avail = chair = N, muter = 1 @ b0, c0, ..., c0
Bad states : chair > 1 o skip

Fig. 10. Sleeping Barber.

of a new environment, allocation of a virtual address, (un)mapping of a virtual
address, and a special state used to check consistency of the reference counting
scheme.

The main loop is modelled with the help of a monitor process that has

states loop, env_alloc, . ... Processes can synchronize using rules of the form
Dis--oyPn — Diy..., Pl : @, meaning that process in state p; moves to p
for i :1,...,n provided ¢ is satisfied. Creation and deletion is modelled by pro-

ducing or consuming a state. For instance, creation of environments is modelled
with a synchronization rule in which the monitor moves back to loop and a new
process with state envg is created. Deallocation of an environment of type envg
simply removes it from the current configuration. For environments of type env;
we also have to decrement rc. The other operations is modelled from the perspec-
tive of a generic environment of type envg/envy, of page P and of its reference
counter rc. For instance, the allocation of a physical page pp to a virtual page
vp gives rise to several cases: vp can be already mapped to P, unmapped or
mapped to another page. pp can be either P or another physical page. If pp = P
an environment moves to state env;. In the first rule we assume that P does not
occur in its vin so we have to increment rc. In the second rule we assume that P
is already present. In the third rule we assume that pp # P but P is already in
the vim. Thus, we have to decrement rc and move to envg. The other operations
are modelled in the same spirit.

In this example we would like to verify that the counter rc is coherent with the
current number of environments that have references to P, i.e., it is not possible
to fire last transition and reach a configuration with at least one occurrence



typedef struct env {
int env_mypp;
int env_pgdir [NVPAGES];

} env_t;
int pages [NPPAGES];

int page_alloc(env_t *xenv, int vp) {
int pp = page_getfree ();
if (pp < 0) return -—1;
if (env—>env_pgdir[vp] >= 0) pages[env—>env_pgdir [vp]]— —;
env—>env_pgdir [vp] = pp;
pages [pp]++;
return 0;

}

int page_unmap(env_t *env, int vp) {
if (env—>env_pgdir[vp] >= 0) {
pages [env—>env_pgdir [vp]] — —;
env—>env_pgdir [vp] = —1;

Fig. 11. Fragment of pmap.c example.

of process bad. As in the other example, monotonic abstraction cannot verify
this property. Indeed, it returns a counterexample due to the loss of synchrony
between rc and the number of env; processes in the abstract transition relation
with unconstrained relation. However, as shown in Table 1, our CEGAR method
automatically checks the property for any number of customers and for any value
assigned to V. The test requires 1 step of refinement for a total execution time
of 0.1 second.

A.5 Missionaries and Cannibals

The missionaries and cannibals problem is to decide whether it is possible for
three missionaries and three cannibals to cross a river using a boat, under the
constraints that 1) the boat can carry at most three people, and 2) for both
banks and in the boat, there cannot be more cannibals than missionaries. An
example is described in Fig. 13. For the missionaries and cannibals, we use
shared variables ml, mr,cl,cr to record their numbers on the banks, and use
mb, cb to record their numbers in the boat. maxb is a constant upper-bounding
the number of people in the boat. We use a state variable to represent the
current position of the boat, which is either the left bank or the right bank.



Let L = {env_alloc, env_free, page_alloc, page-map, page_unmap, check} in
Shared : rc: int

Main :

loop — loc : true for each loc € L

Env _alloc:
env_alloc — loop, envy : true

Env free:

env_free,envg — loop : true

env_free,envy — loop : rc¢ >=1,r¢’ =rc—1
Page_alloc :

page_alloc, envg — loop, envy : r¢’ =rc+1
page_alloc, envy — loop, env: : true

page_alloc, envy — loop, envg : rc >=1,r¢’ =rc—1
page_alloc, envg — loop, envy : true

Page_map :

page_map, envop, envy — loop, envo, envg : true
page_map, envg, envy — loop, envi,envy : rc’ =rc+ 1
page_-map, envog, envy — loop, envi,envg : rc >=1
page_map, envy, envy — loop, envg, envg : rc >= 1,7¢’ =rc—1
page_-map, envg, envy — loop, envo, envy : true
page_-map, envi, envy — loop, envi, envy : true
Page_unmap :

page_unmap, envyg — loop, envg : true

page_unmap, envy — loop,envy : rc >=1,rc=rc—1
page_unmap, envy — loop, env : true

Check consistency :

check, envy — loop, envy,bad : rc =0

Initial state : loop, envo,...,envo,...
Bad states : bad > 1

Fig. 12. A Parameterized Model for the Pmap Example in [22].

Given that the constraints are met, the boat can choose one of the following
two atomic actions in each step: loading one person, or crossing the river and
then unloading all passengers. In the example, the initial values of ml and cl are
parameterized by M = 1 and C > 1, respectively. 2 Now the problem reduces
to verify that if the configuration {mr = M,cr = C} is reachable from the
initial configuration {ml = M,cl = C}. Monotonic abstraction cannot verify
this property and returns a spurious counterexample. On the other hand, our

2 Note that the parameterization here does not mean a generalization. Indeed, assume
the original problem (M = m,C = c) is given in terms of two constants: m for the
number of missionaries, and ¢ for the number of cannibals. This problem does not
always has a solution, unlike the instances (M > m,C > ¢) and (M > m,C = ¢)
which always have solutions. On the other hand, instances (M = m,C > ¢) have a
solution if and only if (M = m,C = c) has a solution.



Parameter: M =1,C > 1

Shared : left, right, cl, cr, cb, ml, mr, mb, maxb : int

Load a cannibal on the left bank :

left —s left:cl > 0,cb+1 < mb,cb+mb < maxb,cb’ =cb+ 1,cl’ =cl -1

Load a missionary on the left bank :

left — left:ml > 0,cb <mb+1,cb+ mb < maxb,mb' =mb+1,ml’' =ml -1

Cross the river and unload on the right bank :

left — right : cr + cb <= mr + mb, cl <= ml,cr’ = cr + cb,mr’ = mr +mb,cb’ = 0,mb’ =0
Load a cannibal on the right bank :

right — right : cr > 0,¢b+ 1 < mb, cb + mb < maxb,cb’ = cb+ 1,er’ =cr — 1

Load a missionary on the right bank :

right — right : mr > 0,cb < mb+ 1,¢b +mb < mazxb,mb' = mb+ 1,mr’ =mr — 1

Cross the river and unload on the left bank :

right — left : cl +cb <= ml +mb,cr <= mr,cl’ = cl + cb,ml’ = ml + mb,cb’ = 0,mb’ =0
End of travel :

right — finished : cl = 0,cb = 0,ml = 0,mb = 0,cl’ = cl

Initial state: ml = M,cl = C,mb=0,cb =0,mr =0,cr =0, mazb =3

Accepting state: mr =M, cr =C

Fig. 13. A Model for the Missionaries/Cannibals Problem for M = 1,C > 1.
In the model, we use left/right to denote the number of people on the left/right bank,
respectively; ml/mr/mb to denote the number of missionaries on the left bank/right
bank/boat, respectively; cl/cr/cb to denote the number of cannibals on the left
bank/right bank/boat, respectively. Finally, maxb is a constant that denotes the max-
imum number of people the boat can carry at the same time.

CEGAR method automatically checks the property in reasonable time. Table 1
shows that when M = 1 and C > 1, this model can be verified after 3 steps
of refinement in 0.1 seconds. In Table 2, we use the same model but instead we
verify that the number of cannibals on the right bank cannot be greater than
2 when M > 1 and C' = 1. Experimental results (denoted by missionaries &
cannibals v2) show that our approach can verify this property in 0.2 second but
none of the ALV tool [14], Interproc [26] and FASTer [11] can successfully verify
it.

A.6 The Swimming Pool Protocol

The swimming pool protocol is a Petri net with 6 transitions and 10 variables
studied in [25]. It is proved by hand in [18] and verified automatically in [11]
that, for two non-negative parameters (Q1, @2 and initial values ©1 = x93 = 3 =
x4 = x5 = 0, zg = @1, x7 = @2, the protocol has a deadlock regardless of the
values of @1 and (2. We take a benchmark from [11] that models this protocol,
which can be represented using the parameterized system in Fig. 14. We verify
a weaker property that there exist some Q7 > 1,Q2 > 1 such that a certain
deadlock x93 = x4 = x5 = g = 7 = 0 occurs. Monotonic abstraction cannot



Parameter : Q1 > 1,Q2 > 1

Shared : z1,22, 23, x4, x5, 26,27,k : int

init — init 1 x6 > 0,2y =1+ Lzg =26 — L,k =k -1

init — init :x1 > 0,27 > 0,2f =21 — L, ob =7 — L,z =22+ 1,k =k — 1
init — init 1 xo > 0,25 =a0 — l,ah =a3+ 1o =ax6 + 1,k =k —1

init —s init 1 x3 > 0,26 > 0,25 = a3 — Lo =26 — L2y = x4 + LK =k — 1
init — init x4 > 0,2 =24 — Lxk =25+ 1L, ab =ar+ 1,k =k -1
init — init t x5 > 0,25 =5 — L,ag =a6 + 1L,E =k —1

Initial state: 1 = 0,22 = 0,23 = 0,24 = 0,25 = 0,26 = Q1,27 = Q2
Bad state: 2o =24 =25 =26 =27 =0

Fig. 14. Modeling a variant of the swimming pool protocol for @1 > 1,Q2 > 1. We
refer the interested readers to [18] for the meanings of the variables.

verify this property and returns a spurious counterexample. On the other hand,
our method automatically checks the property in a reasonable time. As shown
in Table 1 and Table 2 (denoted by swimming pool protocol v2), the CEGAR
method automatically checks the property for Q1 > 1 and Q2 > 1 after 2 steps
of refinement for a total execution time of 0.2 seconds.

B Proof of Lemmas

Proof (Lemma 3). For any infinite sequence X = (x1,x9,---), let Sx be a sub-
sequence of X obtained by eliminating elements not in S. If Sx is infinite, there
exists ¢ < j and x;,z; € Sx such that x; = x;, hence z; <g x;. If Sx is finite,
then X/Sx is infinite. This means that there exists ¢ < j and z;,z; € X/Sx
such that z; < x;, hence x; <5 ;. In both cases, there exist 7 < j and z;,z; € X
such that x; =< x;. Therefore =g is a WQO on C.



