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Abstract—This paper presents a constrained model predictive
control scheme for regulation of the annular pressure in a well
during managed pressure drilling from a floating rig subject
to heave motion. The results show that closed-loop simulation
without disturbance has a fast regulation response and without
any overshoot. The robustness of controller to deal with heave
disturbances is investigated. The constrained MPC shows good
disturbance rejection capabilities. The simulation results show
that this controller has better performance than a PID controller
and is also capable of handling constraints of the system with
the heave disturbance.

Index Terms—Managed pressure drilling, heave Compensation
and model predictive control.

I. INTRODUCTION

In drilling operations, a fluid called mud is pumped down

through the drill string and flows through the drill bit at the

bottom of the well (see Figure 1). Then the mud flows up

the well annulus carrying cuttings out of the well. To avoid

fracturing, collapse of the well, or influx of formation fluids

surrounding the well, it is crucial to control the pressure in the

open part of the annulus within a certain operating window.

In conventional drilling, this is done by mixing a mud of

appropriate density and adjusting mud pump flow-rates. In

managed pressure drilling (MPD), the annulus is sealed and

the mud exits through a controlled choke, allowing for faster

and more precise control of the annular pressure. In automatic

MPD systems, the choke is controlled by an automatic control

system which manages the annular mud pressure to be within

specified upper and lower limits. Different aspects of modeling

for MPD have been studied in the literature [1]–[5]. Estimation

and control design in MPD has been investigated by several

researchers [5]–[10], focusing mainly on pressure control

during drilling from a fixed platform.

When designing MPD control systems, one should take

into account various operational procedures and disturbances

that affect the pressure inside the well. There is a specific

disturbance occurring during drilling from floaters that

significantly affects MPD operations. In this case, the rig

moves vertically with the waves, referred to as heave motion.

As drilling proceeds, the drill string needs to be extended

with new sections. Thus, every couple of hours or so, drilling
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Figure 1. Schematic of an MPD system (Courtesy of Glenn-Ole Kaasa,
Statoil Research Centre.)

is stopped to add a new segment of about 27 meters to the

drill string. During drilling, a heave compensation mechanism

is active that isolates the drill string from the heave motion

of the rig. However, during connections, the pump is stopped

and the string is disconnected from the heave compensation

mechanism and rigidly connected to the rig. The drill string

then moves vertically with the heave motion of the floating

rig, and acts like a piston on the mud in the well. The heave

motion may be more than 3 meters in amplitude and typically

has a period of 10-20 seconds, which causes a severe pressure

fluctuations at the bottom of the well. Pressure fluctuations

have been observed to be an order of magnitude higher than

the standard limits for pressure regulation accuracy in MPD,

which is about ±2.5 bar. Downward movement of the drill

string into the well increases pressure(surging), and upward



movement decreases pressure (swabbing). Excessive surge

and swab pressures can lead to mud loss resulting from

high pressure fracturing the formation or a kick-sequence

(uncontrolled influx from the reservoir) that can potentially

grow into a blowout as a consequence of low pressure.

Rasmussen et al. [11], compared and evaluated different

MPD methods for compensation of surge and swab pressure.

Pavlov et al. [12], presented two nonlinear control algorithms

for handling heave disturbances in MPD operations.

Mahdianfar et al. [13], [14], designed an infinite-dimensional

observer that estimates the heave disturbance. This estimation

is used in a controller to reject the effect of the disturbance

on the down-hole pressure.

Model predictive control (MPC) is one of the popular con-

trollers for complex constrained multivariable control problem

in industry and has been the subject of many studies since

the 1970s (e.g. see [15]–[18]). At each sampling time, a

MPC control action is acquired by the on-line solution of a

finite horizon open-loop optimal control problem. Although

more than one control action is obtained, only the first one

is implemented to the plant. At the next sampling time, the

computation is repeated with new measurements obtained from

the system. The purpose of this paper is to design a constrained

MPC scheme for controlling the pressure during MPD oil

well drilling. One of the criteria for evaluating the controller

performance is its ability to handle heave disturbances.This

scheme is compared with a standard PID-control scheme.

In the following sections, a model based on mass and

momentum balances that provides the governing equations for

pressure and flow in the annulus is given. A stochastic mod-

eling of waves in the North Sea is used and heave disturbance

induced by elevation motion of sea surface is modeled. The

design of a constrained MPC scheme is presented and applied

on Managed Pressure Drilling to show that this controller has

robust performance with a comparison with PID controller.

II. MATHEMATICAL MODELING

A. Annulus flow dynamics

The governing equations for flow in an annulus is derived

from mass and momentum balances [2]
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where p(x, t) and q(x, t) are the pressure and volumetric flow

rate at location x and time t, respectively. The bulk modulus

of the mud is denoted by β. A(x) is the cross section area, ρ
is the (constant) mass density, F is the friction force per unit

length, g is the gravitational constant and α(x) is the angle

between gravity and the positive flow direction at location x
in the well (Figure 2). To derive a set of ordinary differential

equations describing the dynamics of the pressures and flows

at different positions in the well, equations (1) and (2) are

discretized by using a finite volumes method. To solve this

problem, the annulus is divided into a number of control

volumes, as shown in Figure 2, and integrating (1) and (2)

over each control volume.
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Figure 2. Control volumes of annulus hydraulic model [2]

Landent et al. found that [2] a five control volumes model

could capture the main dynamics of the system in case of

heave disturbance for a well from Ullrigg1 test facility with a

particular length of about 2000m and with water based mud.

We will use parameters corresponding to that well as a base

case throughout the paper. The set of nine ordinary differential

equations describing five control volumes in the annulus are

as follows [1] and [19]

ṗ1 =
β1

A1l1
(−q1 − vdAd) (3)

ṗ2 =
β2

A2l2
(q1 − q2) (4)

ṗ3 =
β3

A3l3
(q2 − q3) (5)

ṗ4 =
β4

A4l4
(q3 − q4) (6)

ṗ5 =
β5

A5l5
(q4 − qc + qbpp) (7)

q̇i =
Ai

liρi
(pi − pi+1)−

Fi(qi)Ai

liρi
−Aig

∆hi

li
(8)

qc = Kc

√
pc − p0G(u) (9)

where, i = 1, ..., 4, and the numbers 1, ..., 5 refer to control

volume number, with 1 being the lower most control volume

representing the down hole pressure (p1 = pbit), and 5
being the upper most volume representing the choke pressure

1Ullrigg is a full scale drilling test facility located at International Research
Institute of Stavanger (IRIS).



(p5 = pc). vd is the heave vertical velocity due to ocean waves.

The length of each control volume is denoted by l, and the

height difference is ∆h. Notice since the well may be non-

vertical, li and ∆hi may in general differ from each other. The

means for pressure control are the back pressure pump flow

qbpp and the choke flow qc. The flow from the back pressure

pump qbpp is linearly related to the pump frequency and cannot

be changed fast enough to compensate for the heave-induced

pressure fluctuations. Therefore, it is the choke flow that is

used primarily for control, which is modeled by nonlinear

orifice equation. Kc is the choke constant corresponding to the

area of the choke and the density of the drilling fluid. p0 is the

(atmospheric) pressure downstream the choke and G(u) is a

strictly increasing and invertible function relating the control

signal to the actual choke opening, taking its values on the

interval [0, 1].

Based on experimental results from full scale tests at Ullrigg,

the friction force in the annulus is considered to be a linear

function of the flow rate [2]. Friction force on the ith control

volume is

Fi(qi) =
kfricqi
Ai

(10)

where kfric is constant (or, more likely, slowly varying)

friction coefficient.

B. Waves Response Modeling

Environmental forces due to waves, wind and ocean currents

are considered disturbances to the motion control system

of floating vessels. These forces, which can be described

in stochastic terms, are conceptually separated into low-

frequency (LF) and wave-frequency (WF) components, [20].

Ocean waves are random in terms of both time and space.

Therefore, a stochastic modeling description seems to be

the most appropriate approach to describe them. The model

presented in this part is for purposes of controller design and

verification. For control system design it is common to assume

the principle of superposition when considering wind and wave

disturbances. For most marine control applications this is a

good approximation [20].

During normal drilling operations the WF part of the drill-

string motion is compensated for by the heave control system,

[21]–[23]. However, during connections the drill-string is

disconnected from the heave compensation mechanism and

rigidly connected to the rig. Thus, it moves vertically with the

heave motion of the floating rig, and causes severe down-hole

pressure fluctuations.

1) Linear Approximation for WF Position: When simulat-

ing and testing feedback control systems, it is useful to have

a simple and effective way of representing the wave forces.

Here the motion Response Amplitude Operators (RAO) are

represented as a state-space model where the wave spectrum

is approximated by a linear filter. In this setting RAO vessel

model is represented in Figure 3,where Hrao(s) is the wave

amplitude-to-force transfer function and Hv(s) is the force-to-

motion transfer function. In addition to this, the response of

the motion RAOs and the linear vessel dynamics in cascade

is modeled as constant tunable gains, [20]:

K = diag{K1,K2,K3,K4,K5,K6} (11)

This means that the RAO vessel model is approximated as

(Figure 3)

Hrao(s)Hv(s) ≈ K (12)

The fixed-gain approximation (equation 12) produces good

results in a closed-loop system where the purpose is to test

robustness and performance of a feedback control system in

the presence of waves.

Ak τwave1
Hv(s)Hrao(s)Hs(s)

w ηw

Figure 3. Linear approximation for computation of wave-induced positions.

If the fixed gain approximation (equation 12) is applied, the

generalized WF position vector ηw in Figure 3 becomes

ηw = KHs(s)w(s) (13)

where Hs(s) is a diagonal matrix containing linear approxi-

mations of the wave spectrum S(ω). The WF position for the

degree of freedom related to heave motion becomes

ηhw = Khξh (14)

ξh(s) = hh(s)wh(s) (15)

where hh(s) is a linear approximation of the wave spectral

density function S(ω) and wh(s) is a zero-mean Gaussian

white noise process with unity power across the spectrum:

Ph
ww(ω) = 1.0 (16)

Hence, the power spectral density (PSD) function for ξh(s)
can be computed as

Ph
ξξ(ω) = |hh(jω)|2Ph

ww(ω) = |hh(jω)|2 (17)

Here we approximate S(ω) with Ph
ξξ(ω), for instance by

means of nonlinear regression, such that Ph
ξξ(ω) reflects the

power distribution of S(ω) in the relevant frequency range.
2) JONSWAP Spectrum: The JONSWAP spectrum is rep-

resentative for wind-generated waves under the assumption of

finite water depth and limited fetch, [20], [24]. The spectral

density function is written

S(ω) = 155
H2

s

T 4
1

ω−5 exp
(−944

T 4
1

ω−4

)

γY (18)

where Hs is the significant wave height, T1 is the average

wave period, γ = 3.3 and

Y = exp

[

−
(0.191ωT1 − 1√

2σ

)2
]

(19)

where

σ =

{

0.07 for ω ≤ 5.24/T1

0.09 for ω > 5.24/T1

(20)



The modal period, T0, is related to the average wave period

through T1 = 0.834T0, [20].

Figure 4, produced using MSS Toolbox2, shows the JON-

SWAP spectrum power distribution curve. The parameter

values for Hs and T0 are taken from [25]. From Figure 4

we can see that the JONSWAP spectrum is a narrow band

spectrum, and its energy is mainly focused on 0.5−1.5 rad/s,

and the peak frequency is ω0 = 0.7222 rad/s.
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Figure 4. JONSWAP spectrum and its approximation.

3) Second-Order Wave Transfer Function Approximation:

As discussed earlier a linear wave response approximation for

Hs(s) is usually preferred by ship control systems engineers,

because of its simplicity and applicability:

hh(s) =
2λω0σs

s2 + 2λω0s+ ω2
0

(21)

where λ = 0.1017, σ = 1.9528, Hs = 4.70, T0 = 8.70,

ω0 = 0.7222 are typical parametrs. The transfer function

approximation is shown in Figure 4.

III. CONTROLLER DESIGN

The model described by equations (3)-(9) is in form of a

nonlinear strict feedback system, with an unmatched stochastic

disturbance. By considering aj =
βj

Aj lj
, bj =

Aj

ljρj
, cj =

Kfric

ρj lj
,

the model in state-space form would be

{

Ẋ = AX +Bua +B1 + Ed
y = CX

(22)

2MSS. Marine Systems Simulator (2010), version 3.3. Viewed 26.03.2011,
http://www.marinecontrol.org.

where

X =
[

p1 q1 p2 q2 p3 q3 p4 q4 p5
]T

A =





























0 −a1 0 0 0 0 0 0 0
b1 −c1 −b1 0 0 0 0 0 0
0 a2 0 −a2 0 0 0 0 0
0 0 b2 −c2 −b2 0 0 0 0
0 0 0 a3 0 −a3 0 0 0
0 0 0 0 b3 −c3 −b3 0 0
0 0 0 0 0 a4 0 −a4 0
0 0 0 0 0 0 b4 −c4 −b4
0 0 0 0 0 0 0 a5 0





























B =
[

0 0 0 0 0 0 0 0 a
]T

B1 = −263.7814
[

0 1 0 1 0 1 0 1 0
]T

E =
[

−22.0857 0 0 0 0 0 0 0 0
]T

C =
[

1 0 0 0 0 0 0 0 0
]

(23)

and

ua = qbpp − qc (24)

The heave disturbance vd in equation (3) will be compensated

by using constrained MPC designed in the next part. Note that

the hydrostatic pressures in equation (8) are included in the

states pi in (3)-(7). p1 = pbit is the output of the process.

A. Constrained MPC design

Consider the discrete-time linear time-invariant input-affine

system
{

x(k + 1) = Ax(k) +Bu(k) +B1 + Ed(k)
y(k) = Cx(k),

(25)

while fulfilling the constraints

ymin ≤ y(k) ≤ ymax, umin ≤ u(k) ≤ umax (26)

at all time instants k ≥ 0.

In (25)-(26), n , p and m are the number of states, outputs and

inputs respectively, and x(k) ∈ ℜn , y(k) ∈ ℜp , d(k) ∈ ℜn

and u(k) ∈ ℜm are the state, output, disturbance and input

vectors respectively.

The constrained MPC solves a constrained optimal regulation

problem at each time k. The following optimization problem

min
U

∆
={uk,···,uk+N}

{J(u, y, r) =
N
∑

i=1

[(u(k + i|k)TRu(k + i|k)+

(y(k + i|k)− r(k + i|k))TQ(y(k + i|k)− r(k + i|k))]}

s.t ymin ≤ yi+k|k ≤ ymax i = 1, · · · , N,

umin ≤ ut+k|k ≤ ymax i = 1, · · · , N,

xk|k = x(k) (27)

xi+k+1|k = Axi+k|k +Bui+k|k +B1 + Edi+k|k,

yi+k|k = Cxi+k|k

is solved on-line at each sample time, where N, J and r

are the finite horizon, cost function and reference trajectory



respectively, the subscript ”(k + i|k)” denotes the value

predicted for time k + i, we assume that Q and R are the

positive definite matrices.

As the states x(k) is not directly measurable, prediction are

computed from estimation of states. The state observer is

designed to provide estimation of states x(k), since the pair

(C,A) is detectable. The controller computes the optimal

solution U by solving the quadratic programing (QP). If

the future value of disturbances and/or measurement of

disturbances are not known then disturbances are assumed to

be zero in MPC predictions.

Controller parameters such as weight of inputs, inputs rate

and outputs and control horizon must be tuned to achieve the

good performance and stability in this problem. The prediction

horizon should be tuned properly to ensure the closed-loop

stability of the control system.

IV. SIMULATION RESULTS

The parameters for simulations, identified from the IRIS-

Drill simulator, are given in Table I.

Table I
PARAMETER VALUES

Parameter Value Parameter Value

a 2.254× 108 [Pa/m3] g 9.806 [m/s2]
b 4.276× 10−8 [m4/Kg] A 0.0269 [m2]
Kf 5.725× 105 [sPa/m3] e 0.2638 [m3/s2]
c 14.4982 [1/sm2] Ad 0.0291 [m2]
KG 0.0650 Kc 2.32
qbpp 369.2464 [m3/s] p0 101325 [pa]

The time-step used for discretizing the dynamic optimiza-

tion model was 0.1 s. The input weight (R), input rate weight

(Rδu), output weight (Q) and prediction horizon (N ) are cho-

sen 150, 0, 17 and 100 respectively. In this problem, prediction

horizon is set large compared with the settling time to ensure

the closed-loop stability of the control system. The weights

specify trade-offs in the controller design. Choosing larger

output weight or smaller input weight results in overshoot

in closed-loop response and sometimes broken constraints. In

other words, if you choose larger input weight or smaller

output weight then the closed loop response is slower or

sometimes unstable.

To compare the impact of MPC on the drilling system with

other controllers, a PID controller was applied to the system

as well. A PID controller is chosen due to its popularity in

the industry. Proportional, integral and derivative gain are

chosen 0.75, 0.002 and -1 respectively. The Bode plot of the

loop transfer function with the PID is shown in Figure 5.

Bandwidth with PID is less than 1.3 rad/sec, and the phase

drops very quickly. So, it is not realistic to get a bandwidth of

about 5 rad/sec which would be desirable for this disturbance.

Three different simulations are performed. The first

simulation is shown in Figures 6 and 7, where the nominal
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Figure 5. Bode plot of the loop transfer function with the PID.

model is used for generating the measurements. A soft

constraint of 2.5bar (compared to the reference pressure) and

a constraint of choke opening taking its values on the interval

[0, 1] are included in the constrained MPC optimization.

Figure 6 compares the responses of the PID controller

and constrained MPC to regulate set point trajectory. In

the proposed MPC controller, the bottom-hole pressure

approaches to set point fast without any overshoot. In

comparison to MPC controller, PID controller has some

overshoot and somewhat slower response. The choke control

signal in constrained MPC is illustrated in Figure 7.
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Figure 6. Bottom-hole pressure without disturbance.

The second simulation is shown in Figures 8, 9 and 10,

where the nominal model with heave disturbance is used

for generating the measurements. The same constraints as in

previous simulation are enforced to the controller. Figure 8

compares the responses of constant input (qbpp = qc) and

constrained MPC to track the set point reference with existing

heave disturbance. A constant input couldn’t reduce the effect

of heave disturbance and track the set point reference. Figure

9 compares the responses of PID controller and constrained

MPC to track the set point reference with a heave disturbance.

It is found that the MPC controller is capable of maintaining

the constraints whereas the PID controller is not. The choke
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control signal is illustrated in Figure 10. As indicated in this

figure, the constrained MPC shows good disturbance rejec-

tion capabilities. Figure 11 shows heave disturbance pressure

variations.
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The last simulation is shown in Figure 12 where the nominal

model with heave disturbance is used for generating the mea-

surements. The same constraints as in previous simulation are

enforced to controller. In this simulation, the heave disturbance

is assumed to be predictable. The heave disturbance is given

by vd = cos(2πt/12)[m], where 2π/12 corresponds closely

to the most dominant wave frequency in the North Atlantic,

with reference to the JONSWAP spectrum [2], [19]. The input

weight for MPC with future knowledge of heave disturbance

is chosen R = 85. Figure 12 compares the responses of MPC

controller without future knowledge of heave disturbance and
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Figure 10. MPC control signal to the choke with heave disturbance.
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MPC with future knowledge of heave disturbance to track the

set point reference. It is found that the MPC controller with

future knowledge of heave disturbance reduces the effect of

heave disturbance more than MPC controller without future

knowledge of heave disturbance. This may motivate further

research on short-term heave motion prediction based on

forward-looking sensors such as ocean wave radar.

0 20 40 60 80 100 120 140 160 180 200
254

256

258

260

262

264

266

268

 Time (s)

 P
re

s
s
u

re
 (

 b
a

r 
)

 Bottom−hole pressure

 

 

MPC without future knowledge of disturbance R=150

MPC with future knowledge of disturbance R=85

Figure 12. Bottom-hole pressure with predictable heave disturbance.

V. CONCLUSIONS

In this paper a dynamical model describing the flow and

pressure in the annulus is used. The model was based on a

hydraulic transmission line, and is discretized through a finite

volumes method. A stochastic model describing sea waves in

the North Sea was given.
A constrained MPC for controlling bottom hole pressure

during oil well drilling was designed. It was found that



the constrained MPC scheme is able to successfully control

the downhole pressure. It was also found that a constrained

MPC shows improved attenuation of the heave disturbance.

Comparing the PID controller results with MPC shows that

the MPC controller has a better performance than the PID

controller.
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