
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Björklund, Andreas; Kaski, Petteri; Kowalik, Łukasz
Constrained Multilinear Detection and Generalized Graph Motifs

Published in:
Algorithmica

DOI:
10.1007/s00453-015-9981-1

Published: 01/02/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Björklund, A., Kaski, P., & Kowalik, . (2016). Constrained Multilinear Detection and Generalized Graph Motifs.
Algorithmica, 74(2), 947-967. https://doi.org/10.1007/s00453-015-9981-1

https://doi.org/10.1007/s00453-015-9981-1
https://doi.org/10.1007/s00453-015-9981-1

Algorithmica (2016) 74:947–967
DOI 10.1007/s00453-015-9981-1

Constrained Multilinear Detection and Generalized
Graph Motifs

Andreas Björklund · Petteri Kaski ·
Łukasz Kowalik

Received: 14 May 2013 / Accepted: 23 February 2015 / Published online: 4 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We introduce a new algebraic sieving technique to detect constrainedmulti-
linear monomials in multivariate polynomial generating functions given by an evalua-
tion oracle. The polynomials are assumed to have coefficients from a field of character-
istic two. As applications of the technique, we show an O∗(2k)-time polynomial space
algorithm for the k-sized Graph Motif problem. We also introduce a new optimiza-
tion variant of the problem, called Closest Graph Motif and solve it within the
same time bound. The Closest Graph Motif problem encompasses several previ-
ously studied optimization variants, likeMaximum Graph Motif,Min-Substitute
Graph Motif, andMin-Add Graph Motif. Finally, we provide a piece of evidence
that our result might be essentially tight: the existence of an O∗((2 − ε)k)-time algo-
rithm for the Graph Motif problem implies an O((2− ε′)n)-time algorithm for Set
Cover.

A preliminary conference abstract of this work has appeared as A. Björklund, P. Kaski, and Ł. Kowalik,
“Probably optimal graph motifs,” Proceedings of the 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013, Kiel, February 27–March 2, 2013), Leibniz International
Proceedings in Informatics 20, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2013, pp. 20–31.

A. Björklund
Department of Computer Science, Lund University, P.O. Box 118, 22100 Lund, Sweden
e-mail: andreas.bjorklund@yahoo.se

P. Kaski
Department of Information and Computer Science, Helsinki Institute for Information
Technology HIIT, Aalto University, P.O. Box 15400, 00076 Aalto, Finland
e-mail: petteri.kaski@aalto.fi

Ł. Kowalik (B)
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: kowalik@mimuw.edu.pl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-9981-1&domain=pdf

948 Algorithmica (2016) 74:947–967

Keywords Constrained multilinear detection · Graph motif · FPT algorithm

1 Introduction

Many hard combinatorial problems can be reduced to the framework of detecting
whether a multivariate polynomial P(x) = P(x1, x2, . . . , xn) has a monomial with
specific properties of interest. In such a setup, P(x) is not available in explicit symbolic
form but is implicitly defined by the problem instance at hand, and our access to P(x)

is restricted to having an efficient algorithm for computing values of P(x) at points
of our choosing. This framework was pioneered by Koutis [14], Williams [21], and
Koutis andWilliams [17] for use in the domain of parameterized subgraph containment
problems, and it currently underlies the fastest known parameterized algorithms for
many basic tasks such as path and packing problems [4].

The present paper is motivated by recent works of Guillemot and Sikora [13] and
Koutis [16], who observed that functional motif discovery problems in bioinformatics
are also amenable to efficient parameterized solution in the polynomial framework.
Following Koutis [16], applications in this domain require one to detect monomials in
P(x) that are both multilinear and further constrained by means of colors assigned to
variables x, so that the combined degree of variables of each color in themonomialmay
not exceed a givenmaximummultiplicity for that color. Our objectives in this paper are
to (1) present an improved algebraic technique for constrained multilinear detection
in polynomials over fields of characteristic 2, (2) generalize the technique to allow
for approximate matching at cost, and (3) derive improved algorithms for graph motif
problems, togetherwith evidence that our algorithmsmaybe optimal in the exponential
part of their running time. We also introduce a new common generalization—the
closest graph motif problem—that tracks the weighted edit distance between the target
motif and each candidate pattern; this in particular generalizes both the minimum
substitution and minimum addition variants of the graph motif problem introduced by
Dondi et al. [10].

Let us now describe our main results in more detail, starting with algebraic con-
tributions and then proceeding to applications in graph motifs. All the algebraic con-
tributions rely essentially on what can be called the “substitution-sieving” method in
characteristic 2 [2,4].

1.1 Multilinearity

To ease the exposition and the subsequent proofs, it will be convenient to start with
a known, non-constrained version of the substitution sieve that exposes multilinear
monomials.

Let P(x) = P(x1, x2, . . . , xn) be a multivariate polynomial over a field of charac-
teristic 2 such that every monomial xd11 xd22 · · · xdnn has total degree d1+d2+· · ·+dn =
k. A monomial is multilinear if d1, d2, . . . , dn ∈ {0, 1}.

For an integer n, let us write [n] = {1, 2, . . . , n}. Let L be a set of k labels. For
each index i ∈ [n] and label j ∈ L , introduce a new variable zi, j . Denote by z the
vector of all variables zi, j .

123

Algorithmica (2016) 74:947–967 949

Lemma 1 (Non-constrained multilinear detection [2,4])
The polynomial P(x) has at least one multilinear monomial if and only if the

polynomial
Q(z) =

∑

A⊆L

P
(
zA1 , zA2 , . . . , zAn

)
(1)

is not identically zero, where zAi = ∑
j∈A zi, j for all i ∈ [n] and A ⊆ L.

Remark We can now observe the basic structure of the sieve (1): by making 2k sub-
stitutions of the new variables z into P(x), we reduce the question of existence of a
multilinear monomial in P(x) into the question whether the polynomial Q(z) is not
identically zero. The latter can be tested probabilistically by one evaluation of Q(z)
at a random point, which reduces via (1) into evaluations of P(x) at 2k points. This
will be the basic structure in all our subsequent algorithm designs.

1.2 Constrained Multilinearity

We are now ready to state our main algebraic contribution. Let C be a set of at most n
colors such that each color q ∈ C has a maximum multiplicity m(q) ∈ {0, 1, . . . , n}.
Associate with each index i ∈ [n] a color c(i) ∈ C . Let us say that a monomial
xd11 xd22 · · · xdnn is properly colored if the number of occurrences of each color is at most
its maximum multiplicity, or equivalently, for all q ∈ C it holds that

∑
i∈c−1(q) di ≤

m(q).
Associate with each color q ∈ C a set Sq of m(q) shades of the color q, such that

Sq and Sq ′ are disjoint whenever q �= q ′. Let S = ∪q∈C Sq .
For each index i ∈ [n] and each shade d ∈ Sc(i), introduce a new variable vi,d . For

each shade d ∈ S and each label j ∈ L , introduce a new variable wd, j .

Lemma 2 (Constrained multilinear detection) The polynomial P(x) has at least
onemonomial that is bothmultilinear andproperly colored if andonly if the polynomial

Q(v, w) =
∑

A⊆L

P
(
uA
1 , uA

2 , . . . , uA
n

)
(2)

is not identically zero, where uA
i = ∑

j∈A ui, j and ui, j = ∑
d∈Sc(i) vi,dwd, j for all

i ∈ [n], j ∈ L, and A ⊆ L.

Remark This lemma enables us to (probabilistically) detect a constrained multilinear
monomial of degree k using 2k evaluations of P(x), assuming that we are working
over a sufficiently large field of characteristic 2. This solves an open problem posed
by Koutis at a Dagstuhl seminar in 2010 [15], and forms the core of our algorithm in
Theorem 4.

1.3 Cost-Constrained Multilinearity

The previous setting admits a generalization where we associate costs to decisions to
arrive at a proper coloring. Accordingly, we assume that no coloring c : [n] → C has

123

950 Algorithmica (2016) 74:947–967

been fixed a priori, but instead associate with each index i ∈ [n] and each color q ∈ C
a nonnegative integer κi (q), the cost of assigning the color q to i .

Once a coloring c : [n] → C has been assigned, the cost of a monomial
xd11 xd22 · · · xdnn in the assigned coloring is

∑
i∈[n] diκi (c(i)). The objective now

becomes to detect a multilinear monomial that has the minimum cost under a proper
coloring.

For each index i ∈ [n] and each shade d ∈ S, introduce a new variable vi,d . For
each shade d ∈ S and each label j ∈ L , introduce a new variable wd, j . Introduce a
new variable η.

Lemma 3 (Cost-constrained multilinear detection) The polynomial P(x) has at
least one monomial that is both multilinear and admits a proper coloring with cost σ
if and only if the polynomial

Q(v, w, η) =
∑

A⊆L

P
(
uA
1 , uA

2 , . . . , uA
n

)
(3)

has at least one monomial whose degree in the variable η is σ , where uA
i = ∑

j∈A ui, j
and

ui, j =
∑

q∈C
ηκi (q)

∑

d∈Sq
vi,dwd, j (4)

for all i ∈ [n], j ∈ L, and A ⊆ L.

Remark The previous lemma may be extended to track multiple cost parameters
η1, η2, . . . simultaneously. In fact, this will be convenient in our algorithm under-
lying Theorem 5. We also observe that in applications one typically works with a
(random) evaluation in the variables v and w, but seeks to recover an explicit polyno-
mial in η as the output of the sieve, typically by a sequence of evaluations at distinct
points, followed by interpolation to recover the polynomial in η.

1.4 Graph Motif Problems

The application protagonist for our algebraic tools will be the following problem and
its generalization.

Maximum Graph Motif [9]
Input: A connected, undirected host graph H with n vertices and e edges, a
multiset M of colors over a base color set C , a coloring c : V (H) → C for the
vertices of H , and a positive integer k.
Question: Is there a subset K ⊆ V (H) of size k such that (a) the subgraph
induced by K in H is connected, and (b) the multiset c(K) of colors is a subset
of M , taking multiplicities into account?

Background Graph motif problems were introduced by Lacroix et al. [18] and moti-
vated by applications in bioinformatics, specifically inmetabolic network analysis. The
Maximum Graph Motif problem was introduced by Dondi et al. [9]. It is known

123

Algorithmica (2016) 74:947–967 951

Table 1 Progress on FPT algorithms for the k-sized graph motif problem

Paper Running time Approach

Fellows et al. [11] O∗(87k), implicit Color-coding

Betzler et al. [1] O∗(4.32k) Color-coding

Guillemot and Sikora [13] O∗(4k) Multilinear detection

Koutis [16] O∗(2.54k) Constrained multilinear detection

This work O∗(2k) Constrained multilinear detection

to be NP-hard even when the given graph is a tree of maximum degree 3 and each
color may occur at most once [12]. However, in practice the parameter k is expected
to be small, what motivates the research on so-called FPT algorithms parameterized
by k, that is, algorithms with running times bounded from above by a function f (k)
times a function polynomial in the input size, which is commonly abbreviated by
O∗(f (k)). Indeed, Fellows et al. [11] discovered that such an algorithm exists, which
was followed by a rapid series of improvements to f (k) [1,11,13], culminating in the
O∗(2.54k)-time algorithm of Koutis [16] (see Table 1).

From a high-level prespective the two key ideas underlying ourmain theorem in this
section are (1) an observation of Guillemot and Sikora [13] that branching walks [19]
yield an efficient polynomial generating function for connected sets, and (2) Lemma 2
that builds onwork byKoutis [16].More precisely, our approach is inspired byKoutis’s
beautiful idea of assigning random subspaces of dimension equal to the prescribed
multiplicities of the colors. Koutis used group algebras F2[Zk

2] for his construction,
whereas ours appear to require an extension to F2β [Zk

2] for β = Ω(log k). Rather
than proving the result in terms of a group algebra as Koutis suggests, we provide a
construction based on inclusion–exclusion principle and labelled indeterminates. As
in [4], a paper using the technique co-authored by a subset of the present authors, we
find it more convenient to work in this alternative setting.
Our results. The coefficient μ = O(log k log log k log log log k) in the following the-
orem reflects the time complexity of basic arithmetic (addition, multiplication) in a
finite field of size O(k) and characteristic 2 [6].

Theorem 4 There exists aMonte Carlo algorithm forMaximum Graph Motif that
runs in O(2kk2eμ) time and in polynomial space, with the following guarantees: (i)
the algorithm always returns NOwhen given a NO-instance as input, (ii) the algorithm
returns YES with probability at least 1/2 when given a YES-instance as input.

Remark We observe that the algorithm in Theorem 4 runs in linear time in the number
of edges e in the host graph H . Furthermore, the exponential part 2k of the running
time is caused by the sieve (2), implying that the algorithm can be executed in parallel
on up to 2k processors with essentially linear speedup. A caveat of the algorithm is that
it solves only the YES/NO-decision problem, however, it can be extended to extract
a solution set K at additional multiplicative cost k to the running time; this extension
will be pursued elsewhere.

123

952 Algorithmica (2016) 74:947–967

1.5 Weighted Edit Distance and the Closest Motif Problem

A natural generalization of the basic graph motif framework is to allow for weighted
inexact matches between the “target” motif M and a connected induced subgraph.
Such variants have been studied in the literature, in particular by Dondi et al. [10] in
the context of either (a) addition of colors to M or (b) substitutions of colors in M .
We state both problems below as decision problems parameterized by k.

Min-Add Graph Motif [10]
Input: A connected, undirected host graph H , a multiset M of colors over a base
color set C , a coloring c : V (H) → C for the vertices of H , a positive integer k,
and a nonnegative integer d.
Question: Is there a subset K ⊆ V (H) of size k such that (a) the subgraph induced
by K in H is connected, and (b) it holds that M ⊆ c(K) and |c(K) \ M | ≤ d,
taking multiplicities into account?

Min-Substitute Graph Motif [10]
Input: A connected, undirected host graph H , a multiset M of colors over a base
color set C , a coloring c : V (H) → C for the vertices of H , a positive integer k,
and a nonnegative integer d.
Question: Is there a subset K ⊆ V (H) of size k such that (a) the subgraph
induced by K in H is connected, and (b) it holds that M can be transformed to
c(K) by at most d substitutions of colors, taking multiplicities into account?

Koutis [16] gives an O∗(2.54k)-time algorithm for Min-Add Graph Motif and
an O∗(5.08k)-time algorithm forMin-Substitute Graph Motif.

Our objective here is to generalize the graph motif framework to weighted edit
distance between M and c(K) by introducing a common generalization, the Closest
Graph Motif problem. We then use Lemma 3 to obtain an O∗(2k)-time algorithm
for the problem.

We start with some preliminaries to give a precise meaning to “closest” via the
weighted edit distance. Let M be a multiset over a base set of colors C0. Let us allow
to change M by means of three basic operations:

(S) substitute one occurrence of a color q ∈ M with a color q ′ ∈ C0,
(I) insert one occurrence of a color q ∈ C0 to M , and
(D) delete one occurrence of a color q ∈ M from M .

Associate with each basic operation (S), (I), (D) an nonnegative integer cost σS, σI,
σD.

For multisets M and N over C0, the cost (or weighted edit distance) to match M
with N is the minimum cost of a sequence of basic operations that transforms M to
N , where the cost of the sequence is the sum of costs of the basic operations in the
sequence.

123

Algorithmica (2016) 74:947–967 953

Closest Graph Motif
Input: A connected, undirected host graph H with n vertices and e edges, a
multiset M of colors over a base color set C0, a coloring c : V (H) → C0 for
the vertices of H , nonnegative integer costs σS, σI, σD, a threshold cost τ , and a
positive integer k.
Question: Is there a subset K ⊆ V (H) of size k such that (a) the subgraph
induced by K in H is connected and (b) the cost to transform the multiset M into
the multiset c(K) is at most τ?

Our results Our main result in this section is as follows.

Theorem 5 There exists a Monte Carlo algorithm for Closest Graph Motif that
runs in O((2kk4 +|C0|k3)eμ) time and in polynomial space, with the following guar-
antees: (i) the algorithm always returns NOwhen given aNO-instance as input, (ii) the
algorithmreturnsYESwith probability at least1/2whengivenaYES-instanceas input.

Remark Similar remarks apply to Theorem 5 as with Theorem 4. In particular, the
implementation of (3) with two cost parameters enables essentially linear parallel
speedup on up to 2kk2 processors.

1.6 A Lower Bound

There is someevidence that the exponential part 2k in the running timeof the algorithms
in Theorem 4 and Theorem 5 may be the best possible. Our approach is to proceed by
reduction from the set cover problem.

Set Cover
Input: An integer t and a family of sets S = {S1, S2, . . . , Sm} over the universe
U = ⋃m

j=1 S j with n = |U |.
Question: Is there a subfamily of t sets Si1 , Si2 , . . . , Sit such thatU = ⋃t

j=1 Si j ?

We show that for any ε > 0 the existence of an O∗((2 − ε)k)-time algorithm for
Maximum Graph Motif implies an O((2 − ε′)n)-time algorithm for Set Cover,
for some ε′ > 0. Thus, instead of trying to improve our algorithm one should rather
directly attack Set Cover, for which all attempts to obtain a O((2 − ε)n)-time
algorithm have failed, despite extensive effort. Indeed, the nonexistence of such an
algorithm is already used as a basis for hardness results [7]. Furthermore, it is conjec-
tured [7] that an O((2 − ε)n)-time algorithm for Set Cover contradicts the Strong
Exponential Time Hypothesis (SETH), which states that if k-CNF SAT can be solved
in O∗(cnk) time, then limk→∞ck = 2. This conjecture is further supported by the fact
that the number of solutions to an instance of Set Cover cannot be computed in
O((2 − ε)n) time for any ε > 0 unless SETH fails [7]. A yet further consequence of
such a counting algorithm would be the existence of an O((2 − ε′)n)-time algorithm
to compute the permanent of an n × n integer matrix [3].

123

954 Algorithmica (2016) 74:947–967

Theorem 6 If Maximum Graph Motif can be solved in O((2−ε)k) time for some
ε > 0 then Set Cover can be solved in O((2−ε′)n) time, for some ε′ > 0. Moreover,
this holds even for instances of Maximum Graph Motif restricted to one of the
following two extreme cases:

1. each color may occur at most once, or
2. there are exactly two colors.

1.7 Organization

Our two main lemmas, Lemma 2 and Lemma 3, are proved in Sect. 2. Theorem 4 is
proved in Sect. 3. Theorem 5 is proved in Sect. 4. Theorem 6 is proved in Sect. 5.

2 Algebraic Tools

This section proves Lemma 2 and Lemma 3. We start with a proof of Lemma 1 that
will act as a building block of both proofs.

2.1 Proof of Lemma 1.

It will be convenient to work with a polynomial consisting of a single monomial
with coefficient 1, after which it will be easy to extend the analysis to an arbitrary
polynomial. So suppose that

P(x1, x2, . . . , xn) = xd11 xd22 · · · xdnn
withd1+d2+· · ·+dn = k.Wemust show that the expression

∑
A⊆L P

(
zA1 , zA2 , . . . , zAn

)

is not identically zero in characteristic 2 if and only if d1, d2, . . . , dn ∈ {0, 1}.
Let us start by simplifying the expression into a more convenient form. Recalling

that zAi = ∑
j∈A zi, j for i ∈ [n] and expanding the product–sum into a sum–product,

we have

∑

A⊆L

P
(
zA1 , zA2 , . . . , zAn

) =
∑

A⊆L

n∏

i=1

(∑

j∈A

zi, j

)di

=
∑

A⊆L

n∏

i=1

∑

fi :[di]→A

di∏

	=1

zi, fi ()

=
∑

A⊆L

∑

f1:[d1]→A

∑

f2:[d2]→A

· · ·
∑

fn :[dn]→A

n∏

i=1

di∏

	=1

zi, fi () . (5)

The outer sum in (5) is over all subsets A ⊆ L and the inner sums range over all
n-tuples f = (f1, f2, . . . , fn) of functions fi : [di] → A with i ∈ [n].

Let us fix an arbitrary n-tuple f = (f1, f2, . . . , fn) of functions fi : [di] → L
with i ∈ [n]. Let us define the image of f by

123

Algorithmica (2016) 74:947–967 955

I (f) = f1([d1]) ∪ f2([d2]) ∪ · · · ∪ fn([dn]) .

Now let us consider the outer sum over subsets A ⊆ L in (5). Observe that for a fixed
A ⊆ L , our fixed n-tuple f = (f1, f2, . . . , fn) occurs exactly once in the inner sums
of (5) if and only if I (f) ⊆ A. That is to say, the fixed f occurs exactly once for
each A with I (f) ⊆ A ⊆ L . The number of such A is 2|L|−|I (f)|, which is even—and
hence cancels in characteristic 2— if and only if I (f) �= L .

Let us say that f is surjective if I (f) = L . Since all but surjective f cancel, from
(5) and the previous analysis we thus have

∑

A⊆L

P
(
zA1 , zA2 , . . . , zAn

) =
∑

f=(f1, f2,..., fn)
f surjective

n∏

i=1

di∏

	=1

zi, fi () . (6)

Next we show that (6) is identically zero unless d1, d2, . . . , dn ∈ {0, 1}.
So suppose there exists at least one bad index b ∈ [n] with db ≥ 2. Let

us fix b to be the minimum such index. Consider an arbitrary surjective n-tuple
f = (f1, f2, . . . , fn). Since |L| = k = d1 + d2 + · · · + dn and f is surjective,
we must have that for every i ∈ [n] the function fi is bijective, in particular thus
fb(1) �= fb(2).
Define the mate f ′ of f by setting f ′

i = fi for all i ∈ [n] \ {b} and

f ′
b() =

⎧
⎪⎨

⎪⎩

fb(2) if 	 = 1;
fb(1) if 	 = 2;
fb() otherwise.

Observe that f ′ �= f and that f ′′ = f . Thus, the set of all surjective f partitions into
disjoint pairs { f, f ′} with

n∏

i=1

di∏

	=1

zi, fi () =
n∏

i=1

di∏

	=1

zi, f ′
i ()

.

Thus, all monomials in (6) have an even coefficient and hence cancel in characteristic 2
unless d1, d2, . . . , dn ∈ {0, 1}.

So suppose that d1, d2, . . . , dn ∈ {0, 1}. Since d1 +d2 +· · ·+dn = k, we have that
the set K = {i ∈ [n] : di = 1} has size k. Furthermore, associated with each surjective
f there is a unique bijection g : K → L defined for all i ∈ K by g(i) = fi (1). We
thus have ∑

A⊆L

P
(
zA1 , zA2 , . . . , zAn

) =
∑

g:K→L
g bijective

∏

i∈K
zi,g(i) . (7)

In particular, from each monomial
∏

i∈K zi,g(i) we can recover both the set K and
the bijection g : K → L , implying that no cancellation happens in characteristic 2.
Furthermore, from K we can recover P(x1, x2, . . . , xn) = ∏

i∈K xi .

123

956 Algorithmica (2016) 74:947–967

The lemma now follows by linearity. Indeed, an arbitrary multivariate polynomial
P(x1, x2, . . . , xn) is a sum of monomials of the form α xd11 xd22 · · · xdnn , where α is a
coefficient from the considered field of characteristic two. �

2.2 Proof of Lemma 2.

We obtain cancellation in characteristic 2 using identical arguments to the proof of
Lemma 1, up to and including adapting (7) to the setting of Lemma 2. That is,

∑

A⊆L

P
(
uA
1 , uA

2 , . . . , uA
n

) =
∑

g:K→L
g bijective

∏

i∈K
ui,g(i) . (8)

We proceed to show that the right-hand side of (8) is not identically zero if and only
if the multilinear monomial

∏
i∈K xi is properly colored.

Let us say that a function h : K → S that associates a shade h(i) ∈ S to each
i ∈ K is valid if it holds that h(i) ∈ Sc(i) for all i ∈ K . Observe in particular that an
injective valid h : K → S exists if and only if

∏
i∈K xi is properly colored.

We are now ready to start simplifying the right-hand side of (8). Recalling that
ui, j = ∑

d∈Sc(i) vi,dwd, j , expanding the product–sum into a sum–product, and chang-
ing the order of summation, we have

∑

g:K→L
g bijective

∏

i∈K
ui,g(i) =

∑

g:K→L
g bijective

∏

i∈K

(∑

d∈Sc(i)
vi,dwd,g(i)

)

=
∑

g:K→L
g bijective

∑

h:K→S
h valid

∏

i∈K
vi,h(i)wh(i),g(i)

=
∑

h:K→S
h valid

∑

g:K→L
g bijective

∏

i∈K
vi,h(i)wh(i),g(i) . (9)

The outer sum in (9) ranges over all valid functions h : K → S.
Now, let us fix an arbitrary valid h : K → S. We will show that the inner sum in

(9) evaluates to zero in characteristic 2 unless h is injective.
So suppose that h is not injective. In particular, there exists at least one pair b1, b2 ∈

K with h(b1) = h(b2) and b1 �= b2. Let us fix (b1, b2) to be the lexicographically
minimum such pair. Consider an arbitrary bijective g : K → L . Define the mate g′ of
g by setting

g′(i) =

⎧
⎪⎨

⎪⎩

g(b2) if i = b1;
g(b1) if i = b2;
g(i) otherwise.

Since g is bijective, we have g′ �= g and g′′ = g. Thus, the set of all bijections
g : K → L partitions into disjoint pairs {g, g′} with

123

Algorithmica (2016) 74:947–967 957

∏

i∈K
vi,h(i)wh(i),g(i) =

∏

i∈K
vi,h(i)wh(i),g′(i) .

Thus, for each valid h : K → S that is not injective, the monomials in the inner sum
in (9) have an even coefficient and hence vanish in characteristic 2.

So suppose that h is injective (Recall that such an h exists if and only if K defines
a properly colored multilinear monomial.) Let us study the inner sum in (9). Fix an
arbitrary bijective g : K → L and study the inner monomial

∏
i∈K vi,h(i)wh(i),g(i).

From the variables vi,d in the monomial we can reconstruct the set K and the mapping
h. Because h is injective, we can reconstruct the mapping g from the variables wd, j

in the monomial by setting g(h−1(d)) = j for each relevant pair (d, j). Since the
three-tuple (K , h, g) can be reconstructed from the inner monomial, no cancellation
happens in characteristic 2.

The lemma follows again by linearity. �

2.3 Proof of Lemma 3

Let π : S → C be the mapping that projects each shade d ∈ Sq to its underlying color
π(d) = q. Imitating the proof of Lemma 1 and expanding (4) over i ∈ K as in (9),
we obtain cancellation in characteristic 2, except possibly for the monomials

∑

h:K→S

∑

g:K→L
g bijective

η
∑

i∈K κi (π(h(i)))
∏

i∈K
vi,h(i)wh(i),g(i) . (10)

Imitating the proof of Lemma 2, we obtain further cancellation in characteristic 2
unless the mapping h is injective.

So suppose that h is injective. Observe that we can reconstruct the three-tuple
(K , h, g) from the correspondingmonomial in (10) exactly as in the proof of Lemma2,
and thus no further cancellation happens in characteristic 2. The degree of η is clearly
the cost of the monomial

∏
i∈K xi in its coloring c = πh. In particular, we have that∏

i∈K xi is properly colored in c since h is injective.
The lemma follows again by linearity. �

2.4 Remarks

It is immediate from the proofs that the polynomial P(x)may have additional variables
P(x, y)without changing the conclusion as regards multilinearity and proper coloring
of the monomials when restricted to the variables x. Furthermore, any monomial that
has total degree less than k in the variables x will cancel.

Weobserve thatLemma3 subsumesLemma2. Indeed, given a coloring c : [n] → C
wecan set the costs for Lemma3 so that κi (q) = 0 if c(i) = q and κi (q) = 1otherwise.
Then, P(x) has at least one monomial that is both multilinear and properly colored
if and only if Q(v, w, η) has at least one monomial whose degree in the variable η is
σ = 0.

123

958 Algorithmica (2016) 74:947–967

3 An Algorithm for the Maximum Graph Motif Problem

This section illustrates the use of Lemma 2 in a concrete algorithm design for Max-
imum Graph Motif. In particular, we proceed to give a proof of Theorem 4.

Consider an instance (H, M,C, c, k) of Maximum Graph Motif. Let us write
m(q) for the number of occurrences of color q ∈ C in the multiset M . Also recall that
we assume that the host graph H is connectedwith n vertices and e edges; in particular,
e ≥ n − 1. By preprocessing we may assume that m(q) ≤ k for each q ∈ C .

Our first objective is to arrive at a generating polynomial Pk(x, y) that we can use
with Lemma 2. There are two key aspects to this quest: (i) the multilinear monomials
need to reflect the connected vertex sets of size k in H , and (ii) we must have a fast
algorithm for evaluating the polynomial at specific points.

3.1 Branching Walks

The concept of branching walks was first introduced by Nederlof [19] to sieve for
Steiner trees, followed by Guillemot and Sikora [13] who observed that branching
walks can also be employed to span connected vertex sets of size k in the host graph
H . Our approach here is to capitalize on this observation and span connected sets via
branching walks.

Let us write V = V (H) = {1, 2, . . . , n} for the vertex set and E = E(H) for the
edge set of the host graph H . Amapping ϕ : V (T) → V (H) is a homomorphism from
a graph T to the host H if for all {a, b} ∈ E(T) it holds that {ϕ(a), ϕ(b)} ∈ E(H).
We adopt the convention of calling the elements of V (T) nodes and the elements of
V (H) vertices.

A branching walk in H is a pairW = (T, ϕ)where T is an ordered rooted tree with
node set V (T) = {1, 2, . . . , |V (T)|} such that every node a ∈ V (T) coincides with
its rank in the preorder traversal of T , and ϕ : V (T) → V (H) is a homomorphism
from T to H .

Let W = (T, ϕ) be a branching walk in H . The walk starts from the vertex ϕ(1)
in H . The walk spans the vertices ϕ(V (T)) in H . The size of the walk is |V (T)|. The
walk is simple if ϕ is injective. Finally, the walk is properly ordered if any two sibling
nodes a < b in T satisfy ϕ(a) < ϕ(b) in H .

3.2 A Generating Polynomial for Branching Walks

We now define a generating polynomial for properly ordered branching walks of size
k in H . Introduce a variable xu for each vertex u ∈ V (H) and two variables y(u,v) and
y(v,u) for each edge {u, v} ∈ E(H).

Let W = (T, ϕ) be a properly ordered branching walk that starts from s ∈ V (H)

and has size k. Associate with W the monomial fingerprint

F(W, x, y) =
∏

{a,b}∈E(T)
a<b

y(ϕ(a),ϕ(b))xϕ(b) ,

where the product is taken over all edges {a, b} ∈ E(T).

123

Algorithmica (2016) 74:947–967 959

Define the generating polynomial Pk,s(x, y) as the sum of the monomial finger-
prints of the properly ordered branching walks that start from s and have size k. Let
Pk(x, y) = ∑

s∈V (H) xs Pk,s(x, y). Observe that all monomial in Pk(x, y) have total
degree 2k − 1.

Lemma 7 A monomial in Pk(x, y) is multilinear in the variables x if and only if it
originates from a monomial fingerprint of a simple branching walk. Moreover, such a
simple branching walk can be reconstructed from its monomial fingerprint.

Proof For the first claim it suffices to consider an arbitrary monomial of Pk(x, y) and
observe that the degree of the variable xu indicates how many times u ∈ V (H) occurs
in the image of ϕ. In particular, ϕ is injective if and only if the monomial is multilinear
in the variables x.

For the second claim, let W = (T, ϕ) be a simple and properly ordered branching
walk that starts from s. We must reconstruct W from its monomial fingerprint that
has been multiplied by xs . Since ϕ is injective, we can immediately reconstruct (up to
labels of the vertices) the rooted tree structure of T because the degrees of the variables
y(u,v) in the monomial (if any) reveal both the edges and the orientation of each edge
in T . Since W is properly ordered, we can reconstruct (up to labels of the vertices)
the ordering of T . Finally, we can reconstruct the vertex labels of T by carrying out a
preorder traversal of T .

An immediate corollary of Lemma 7 is that (H, M,C, c, k) is a YES-instance of
Maximum Graph Motif if and only if Pk(x, y) has a monomial that is both properly
colored and multilinear in the sense of Lemma 2. Indeed, a multilinear monomial
corresponds to a simple branching walk, which by definition spans a connected set
of vertices. Conversely, every connected set of vertices admits at least one simple
branching walk. Thus, to complete the proof of Theorem 4 it remains to derive a
fast way to evaluate the polynomial Pk(x, y) and then apply Lemma 2 to obtain an
algorihtm design.

3.3 Evaluating the Generating Polynomial

This section develops a dynamic programming recurrence to evaluate the polynomial
Pk(x, y) at a given assignment of values to the variables x, y.

For a vertex u ∈ V (H), denote the ordered sequence of neighbors of u in H by
u1 < u2 < · · · < udegH (u).

For each u ∈ V (H), 1 ≤ i ≤ degH (u) + 1, and 0 ≤ 	 ≤ k, denote by W(, u, i)
the set of properly ordered branching walks W = (T, ϕ) such that (i) the size of W is
	, (ii) W starts from u, and (iii) for any child node a of 1 in T it holds that ϕ(a) = u j

implies j ≥ i . Define the associated generating polynomial over the variables x, y by

P	,u,i (x, y) =
∑

(T,ϕ)∈W(u,1,)

∏

{a,b}∈E(T)
a<b

y(ϕ(a),ϕ(b))xϕ(b) .

It is immediate from the definition that P	,u(x, y) = P	,u,1(x, y).

123

960 Algorithmica (2016) 74:947–967

The functions P	,u,i (x, y) admit the following recurrence. The base case occurs for
	 = 1 or i = degH (u) + 1, in which case we have

P	,u,i (x, y) =
{
1 if 	 = 1,

0 otherwise.
(11)

For 2 ≤ 	 ≤ k and 1 ≤ i ≤ degH (u), we have

P	,u,i (x, y) = P	,u,i+1(x, y)

+y(u,ui)xui
∑

	1+	2=	
	1,	2≥1

P	1,u,i+1(x, y) · P	2,ui ,1(x, y) . (12)

To see that the recurrence is correct, observe that the two lines above in (12) correspond
to a partitioning of the properly ordered branchingwalks inW(, u, i) into two disjoint
classes where either (i) there is no child node a of 1 in T such that h(a) = ui or (ii)
there is a unique such child (At most one such child may exist because the branching
walk is properly ordered.)

Thus, we can evaluate the polynomial Pk(x, y) via (11), (12), and

Pk(x, y) =
∑

u∈V (H)

xu Pk,u,1(x, y) . (13)

3.4 The Algorithm

We are now ready to describe the algorithm for Theorem 4. Assume an instance
(H, M,C, c, k) of the Maximum Graph Motif has been given as input.

Let b = �log2 6k� and consider the finite field F2b of order 2
b. Introduce variables

vi,d andwd, j as in the setup of Lemma 2. Assign a value from F2b uniformly and inde-
pendently at random to each of these variables. Similarly, as in the setup of Sect. 3.2,
introduce two variables y(r,s) and y(s,r) to each edge {r, s} ∈ E(H) and assign a value
to each variable uniformly and independently at random from F2b . We thus have three
vectors of values in F2b , namely v, w, and y.

Using the recurrence given by (11), (12), and (13) for each A ⊆ L in turn, compute
the value

Q(v, w, y) =
∑

A⊆L

Pk
(
uA(v, w), y

)
, (14)

where the values uA(v, w) = (uA
1 (v, w), uA

2 (v, w), . . . , uA
n (v, w)) are determined

from the set A and the values v and w as in Lemma 2. If Q(v, w, y) is nonzero in F2b ,
output YES; otherwise output NO. This completes the description of the algorithm.

3.5 Running Time

To analyse the running time of the algorithm, observe that we can assume thatm(q) ≤
k. Thus, computing the values uA(v, w) for a fixed A ⊆ L takes O(k2n) arithmetic

123

Algorithmica (2016) 74:947–967 961

operations in F2b , and each such operation can be implemented to run in time μ =
O(b log b log log b) [6]. Furthermore, each evaluation of (11), (12), and (13) for a
fixed A takes O(k2e) arithmetic operations in F2b . Hence, recalling that e ≥ n − 1,
the total running time of the algorithm is O(2kk2eμ).

3.6 Correctness

To establish the desired properties of the algorithm, observe that from Sect. 3.2 and
Lemma 2 it follows that (14) —viewed as a polynomial in the variables v, w, and y—
is not identically zero if and only if (H, M,C, c, k) is a YES-instance of Maximum
Graph Motif. Thus, if (H, M,C, c, k) is a NO-instance, then (14) evaluates to
zero and the algorithm gives a NO output. Furthermore, if (H, M,C, c, k) is a YES-
instance, then (14) is an evaluation of a nonzeromultivariate polynomial of total degree
3k − 1 at a point (v, w, y) selected uniformly at random. Recalling that 2b ≥ 6k, the
following lemma thus implies that the value Q(v, w, y) is nonzero (and hence the
algorithm outputs YES) with probability at least 1/2.

Lemma 8 ([8,20,22]) A nonzero polynomial P(z1, z2, . . . , z) of total degree d with
coefficients in the finite field Fq has at most dq	−1 roots in F	

q .

This completes the proof of Theorem 4. �

3.7 Minor Variants and Extensions

The basic framework presented above immediately allows for some minor variants
and extensions, such as seeking an exact match instead of the maximum match by
setting |M | = k. Similarly, one may extend from a fixed coloring c : V (H) → C into
a list coloring version where each vertex i ∈ V (H) gets associated a list C(i) ⊆ C of
valid colors instead of a single color c(i), and the motif M may match against any one
of the colors in the list. This variant can be implemented by simply changing the inner
sum in Lemma 2 to ui, j = ∑

d∈∪q∈C(i)Sq
vi,dwd, j . That is, we sum over the shades of

all the colors q in C(i).

4 An Algorithm for the Closest Graph Motif Problem

This section gives a proof of Theorem 5 using Lemma 3 and the generating function
developed in Sect. 3.2.

Consider an instance (H, M,C0, c, σS, σI, σD, τ, k) of Closest Graph Motif
with V (H) = {1, 2, . . . , n}. Let us again writem(q) for the number of occurrences of
color q ∈ C0 in the multiset M . We may assume that m(q) ≤ k. Furthermore, since
H is connected, the number of vertices n and the number of edges e satisfy e ≥ n−1.

The key step in arriving at Theorem 5 is to transport weighted edit distance into the
setting of Lemma 3.

123

962 Algorithmica (2016) 74:947–967

4.1 Optimum Edit Sequences

It will be convenient to have available the following lemma that characterizes the
structure of a sequence of operations that realizes the minimum cost to transform a
multiset M to the multiset N , where both multisets are over C0.

Let k = |N |. Consider an arbitrary sequence of basic operations that transforms M
to N . As the sequence is executed, each original element of M gets assigned into one
of three classes. First, there are kU elements in M that remain untouched (and hence
in N) when the execution terminates. Second, there are kS elements in M that undergo
at least one substitution—which we may view as “recoloring” of the element—and
remain in N when the execution terminates. Third, the remaining |M | − kU − kS
elements of M get deleted during execution. Thus, at least k−kU −kS insertions must
occur in the sequence. Let us call the values kU and kS the parameters of the sequence.

Lemma 9 Let there exist at least one sequence with parameters kU and kS that trans-
forms M into N. Then, the cost of this sequence is at least

σSkS + σD
(|M | − kU − kS

) + σI
(
k − kU − kS

)
, (15)

with equality for at least one sequence that transforms M into N.

Proof The inequality is immediate from the preceding analysis; the sequence that
meets equality (i) does nothing for the kU untouched original elements, (ii) substitutes
the correct final color with one substitution for each of the kS originals, (iii) deletes
each of the |M | − kU − kS remaining originals, and (iv) finally inserts k − kU − kS
new elements to match with N .

Lemma9 reveals a useful symmetry between insertions and deletions in an optimum
sequence; that is, if we let kID = k − kU − kS, then (15) is equal to

σSkS + (
σI + σD

)
kID + σD

(|M | − k
)
. (16)

Thus it suffices to optimize over k-multisets of colors while tracking the parameters
kS and kID to arrive at the optimum. This strategy will be employed in our algorithm.

4.2 The Algorithm

Assume an instance (H, M,C0, c, σS, σI, σD, τ, k) of Closest Graph Motif has
been given as input.

Let us first set up the application of Lemma 3. Introduce a new color “∗” and let
C = C0 ∪ {∗} with m(∗) = k. As already highlighted in the remarks to Lemma 3,
instead of one indeterminate η, we will work with two indeterminates ηS and ηID in
Lemma 3 to simultaneously track the S-cost and the ID-cost. For i ∈ [n] and q ∈ C ,
define the cost functions

123

Algorithmica (2016) 74:947–967 963

κS
i (q) =

⎧
⎪⎨

⎪⎩

0 if q = c(i);
1 if q �= c(i) and q ∈ C0;
0 if q = ∗

(17)

and

κ ID
i (q) =

⎧
⎪⎨

⎪⎩

0 if q = c(i);
0 if q �= c(i) and q ∈ C0;
1 if q = ∗.

(18)

The intuition underlying (17) and (18) is as follows. Coloring a vertex i with color
q /∈ {c(i), ∗} corresponds to substitution of a copy of q in M by a copy of c(i).
Coloring i with color “∗” corresponds to inserting a copy of c(i) to M .

The algorithm now proceeds as follows. Let b = �log2 6k� and consider the finite
field F2b of order 2b. Introduce variables vi,d and wd, j as in the setup of Lemma 3.
Assign a value from F2b uniformly and independently at random to each of these
variables. Similarly, as in the setup of Sect. 3.2, introduce two variables y(r,s) and
y(s,r) to each edge {r, s} ∈ E(H) and assign a value to each variable uniformly and
independently at random fromF2b .We thus have three vectors of values inF2b , namely
v, w, and y.

The main part of the algorithm consists of two outer loops that cycle through k + 1
distinct values in F2b to each of the variables ηS and ηID. For each pair of values
(ηS, ηID) in F2b , we use the recurrence given by (11), (12), and (13) for each A ⊆ L
in turn, and compute the value

Q(v, w, y, ηS, ηID) =
∑

A⊆L

Pk
(
uA(v, w, ηS, ηID), y

)
, (19)

where the values

uA(v, w, ηS, ηID) = (uA
1 (v, w, ηS, ηID), uA

2 (v, w, ηS, ηID), . . . , uA
n (v, w, ηS, ηID))

are determined from the set A and the values v and w as in Lemma 3, but with (4)
replaced by

ui, j =
∑

q∈C
η

κSi (q)

S η
κ IDi (q)

ID

∑

d∈Sq
vi,dwd, j (20)

for all i ∈ [n], j ∈ L , and A ⊆ L . When the main part terminates, we have available
(k + 1)2 evaluations of (19) at points (ηS, ηID).

By Lagrange interpolation, we recover (19) as a bivariate polynomial of total degree
at most k in the indeterminates ηS and ηID. If this bivariate polynomial has at least one
monomial ηkSS η

kID
ID such that the degrees kS and kID satisfy

σSkS + (
σI + σD

)
kID + σD

(|M | − k
) ≤ τ , (21)

then the algorithm outputs YES; otherwise the algorithm outputs NO. This completes
the description of the algorithm.

123

964 Algorithmica (2016) 74:947–967

4.3 Running Time

The analysis is essentially similar to Sect. 3.5, with two differences. First, the outer
loop in the main part introduces a multiplicative factor k2 compared with Sect. 3.5.
Second, the implementation of (20) requires us to sum over all the shades originating
fromM and the k shades of the color “∗”. This can be done efficiently by precomputing
the inner sums

∑
d∈Sq vi,dwd, j for each color q ∈ C , index i ∈ [n], and label j ∈ L ,

which takes O
(
(|M | + k)knμ

)
time outside the main loops. In the outer loop of the

main part it thus suffices to compute only the outer sum in (20) for each choice of
(ηS, ηID), which leads to O

(|C0|knμ
)
time for each iteration of the outer loop. In the

inner loop over A ⊆ L , it takes O(knμ) time to prepare the vector uA(v, w, ηS, ηID).
Compared with Sect. 3.5, this gives a further contributing factor of |C0|k outside the
inner loop (The running time cost of the final interpolation step and the checking of
the at most k2 monomials of the bivariate polynomial Q(v, w, y, ηS, ηID)with respect
to (21) is assumed to be subsumed by the running time bound.)

4.4 Correctness

We start by observing that (17) and (18) imply that (19) has total degree at most k
in the variables ηS and ηID, thus implying that Lagrange interpolation will correctly
recover the polynomial in ηS and ηID from the (k + 1)2 evaluations computed in the
main loop.

Let us say that (19)—viewed as a polynomial in all the variables v,w, y, ηS, ηID—is
witnessing if there exists at least one monomial whose degrees kS and kID satisfy (21).

Lemma 10 The polynomial (19) is witnessing if and only if the given input is a YES-
instance of Closest Graph Motif.

Proof In the “only if” direction, consider a monomial of (19) whose degrees kS and
kID satisfy (21). From Lemma 3 we have that the polynomial Pk(x, y) has at least one
monomial that is both multilinear in x and admits a proper coloring with S-cost kS and
ID-cost kID. From Sect. 3.2 it follows that this monomial of Pk(x, y) corresponds to a
simple branching walk in H and thus identifies a connected set K ⊆ V (H) of vertices
in H . Furthermore, the existence of a proper coloring of the monomial implies by (17),
(18), and Lemma 9 that there exists a sequence of basic operations that transforms the
multiset M to the multiset c(K) with total cost (16). In particular, since kS and kID
satisfy (21),we have that (H, M,C0, c, σS, σI, σD, τ, k) is aYES-instance of Closest
Graph Motif.

In the “if” direction, let (H, M,C0, c, σS, σI, σD, τ, k) be aYES-instance of Clos-
est Graph Motif. Let K ⊆ V (H) be a solution set and consider an associated
sequence Δ of basic operations that transforms M to c(K) with cost at most τ . We
maywithout loss of generality assume that the cost of the sequenceΔ satisfies equality
in Lemma 9. In particular, from (16) we thus observe that the parameters kS and kID
of the sequence Δ thus satisfy (21). Consider a simple branching walk of size k in H
that spans the vertices in K . From Sect. 3.2 we observe that there is a corresponding

123

Algorithmica (2016) 74:947–967 965

multilinear monomial in Pk(x, y). Next observe that we can properly color this mono-
mial in the sense of Lemma 3 by (i) assigning the color ∗ to each of the kID values
i ∈ K that correspond to elements inserted in Δ, (ii) assigning the substituted color to
each of the kS values i ∈ K that correspond to elements of M receiving substitutions
in Δ, and (iii) assigning the color c(i) to each of the remaining k − kS − kID values
i ∈ K that correspond to elements of M that are not touched by Δ. Furthermore, by
(17) and (18), this proper coloring has S-cost kS and ID-cost kID. From Lemma 3 we
thus have that (19) —viewed as a polynomial in the variables v, w, y, ηS, ηID—has at
least one monomial whose degrees kS and kID satisfy (21).

Let us now study the operation of the algorithm in more detail. We have that the
given input is a NO-instance if and only if (19) is not witnessing. Thus, given a
NO-instance as input, the algorithm always gives a NO output.

So suppose that the given input is a YES-instance. Since (19) is witnessing, there
exist degrees kS and kID that are present in a monomial of (19) such that (21) holds.
In particular, coefficient of the monomial η

kS
S η

kID
ID computed by the algorithm is an

evaluation of a nonzero multivariate polynomial of total degree 3k − 1 at a point
(v, w, y) selected uniformly at random. Recalling that 2b ≥ 6k, Lemma 8 thus implies
that the coefficient is nonzero (and hence the algorithm outputs YES) with probability
at least 1/2. This completes the proof of Theorem 5. �

5 A Lower Bound Reduction from Set Cover

We base our proof of Theorem 6 on the following theorem, which can be extracted
from the proof of Theorem 4.4 in a recent paper by Cygan et al. [7].

Theorem 11 ([7]) If Set Cover can be solved in O((2−ε)n+t) time for some ε > 0
then it can also be solved in O((2 − ε′)n) time, for some ε′ > 0.

5.1 Proof of Theorem 6

Let (S, t) be an instance of Set Cover. We are going to show a polynomial-time
reduction toMaximum Graph Motif so that in the resulting instance (H,C,m, c, k)
we have

∑
q∈C m(q) = k = n + t + 1. Combined with Theorem 11, this reduction

will immediately establish our claim.
The graph H is defined as follows. The vertex set consists of the universeU , t copies

of the familyS, and a special vertex r , that is, V (H) = U∪{s ji : i = 1, 2, . . . ,m, j =
1, 2, . . . , t} ∪ {r}. The edge set is E(H) = {{a, s ji } : a ∈ Si } ∪ {{r, s ji } : i =
1, 2, . . . ,m, j = 1, 2, . . . , t}. Let k = n + t + 1.

To establish part (1), let C = {1, 2, . . . , n + t + 1} with m(q) = 1 for each
q ∈ C . Furthermore, assign the colors to vertices so that c(s ji) = j for every i =
1, 2, . . . ,m, j = 1, 2, . . . , t and c(r) = t + 1. Finally, assign the n colors t + 2, t +
3, . . . , n + t + 1 bijectively to the vertices in U .

We show that (S, t) is a YES-instance if and only if (H,C,m, c, k) is a YES-
instance. To establish the “only if” direction, suppose that Si1 , Si2 , . . . , Sit is a solution

123

966 Algorithmica (2016) 74:947–967

of (S, t). Then let K = {r} ∪ U ∪ {s ji j : j = 1, 2, . . . , t}. It is clear that c(K) = C

and that H [{r} ∪ {s ji j : j = 1, 2, . . . , t}] is connected. Since for every a ∈ U there

is j = 1, 2, . . . , t such that a ∈ Si j , so {a, s ji j } ∈ E(G[K]). It follows that G[K] is
connected, and hence K is a solution of (H,C,m, c, K). To establish the “if” direction,
suppose that K is a solution of (H,C,m, c, k). Then for every j = 1, 2, . . . , t there
is exactly one i j ∈ {1, 2, . . . ,m} such that s ji j ∈ K , since c(K) = C . Moreover, since
G[K] is connected we observe that for every a ∈ U there is a j = 1, 2, . . . , t such
that {a, s ji j } ∈ E(G[K]). But then a ∈ Si j and it follows that Si1 , Si2 , . . . , Sit is a
solution of (S, t).

To establish part (2), let C = {1, 2} with m(1) = n+ 1 and m(2) = t . Set c(r) = 1
and c(a) = 1 for every a ∈ U . All the remaining vertices are colored with 2. The
proof of equivalence is similar to part (1) and is left to the reader. �

Acknowledgments A preliminary conference abstract of this work has appeared as [5]. This research
was supported in part by the Swedish Research Council, Grant VR 2012-4730 (A. B.), the Academy of
Finland, Grants 252083 and 256287 (P. K.), and by the National Science Centre of Poland, Grants N206
567140 and UMO-2013/09/B/ST6/03136 (Ł. K.). The third author thanks Sylwia Antoniuk, Marek Cygan,
Michal Debski, and Matthias Mnich for helpful discussions on related topics.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness
results for some graphmotif problems. In: Proceedings of CPM’08. LNCS, vol. 5029, pp. 31–43 (2008)

2. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of the FOCS’10, pp.
173–182 (2010)

3. Björklund, A.: Counting perfect matchings as fast as Ryser. In: Proceedings of the SODA’12, pp.
914–921 (2012)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and pack-
ings. CoRR. abs/1007.1161 (2010)

5. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Portier, N., Wilke, T. (eds.)
STACS. LIPIcs, vol. 20, pp. 20–31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern
(2013)

6. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory, Grundlehren der math-
ematischen Wissenschaften, vol. 315. Springer, New York (1997)

7. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S.,
Wahlström,M.:On problems as hard asCNF-SAT. In: IEEEConference onComputational Complexity,
pp. 74–84 (2012)

8. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett.
7, 193–195 (1978)

9. Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: Proceedings
of the CPM’09. LNCS, vol. 5577, pp. 221–235 (2009)

10. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs in graphs. In: Proceed-
ings of the CPM’11. LNCS, vol. 6661, pp. 388–401 (2011)

11. Fellows,M.R., Fertin,G.,Hermelin,D.,Vialette, S.: Sharp tractability borderlines for finding connected
motifs in vertex-colored graphs. In: Proceedings of the ICALP’07. LNCS, vol. 4596, pp. 340–351
(2007)

123

http://arxiv.org/abs/1007.1161

Algorithmica (2016) 74:947–967 967

12. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected
motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

13. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. In: Proceedings of the
MFCS’10. LNCS, vol. 6281, pp. 405–416 (2010)

14. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Proceedings of the ICALP’08.
LNCS, vol. 5125, pp. 575–586 (2008)

15. Koutis, I.: The power of group algebras for constrained multilinear monomial detection. In: Dagstuhl
meeting 10441 (2010)

16. Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett.
112(22), 889–892 (2012)

17. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In:
ICALP (1). LNCS, vol. 5555, pp. 653–664 (2009)

18. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks.
IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)

19. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: improving on Steiner tree and
related problems. In: Proceedings of the ICALP’09. LNCS, vol. 5555, pp. 713–725 (2009)

20. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4),
701–717 (1980)

21. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)
22. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proceedings of the International Sym-

posium on Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226 (1979)

123

	Constrained Multilinear Detection and Generalized Graph Motifs
	Abstract
	1 Introduction
	1.1 Multilinearity
	1.2 Constrained Multilinearity
	1.3 Cost-Constrained Multilinearity
	1.4 Graph Motif Problems
	1.5 Weighted Edit Distance and the Closest Motif Problem
	1.6 A Lower Bound
	1.7 Organization

	2 Algebraic Tools
	2.1 Proof of Lemma 1.
	2.2 Proof of Lemma 2.
	2.3 Proof of Lemma 3
	2.4 Remarks

	3 An Algorithm for the Maximum Graph Motif Problem
	3.1 Branching Walks
	3.2 A Generating Polynomial for Branching Walks
	3.3 Evaluating the Generating Polynomial
	3.4 The Algorithm
	3.5 Running Time
	3.6 Correctness
	3.7 Minor Variants and Extensions

	4 An Algorithm for the Closest Graph Motif Problem
	4.1 Optimum Edit Sequences
	4.2 The Algorithm
	4.3 Running Time
	4.4 Correctness

	5 A Lower Bound Reduction from Set Cover
	5.1 Proof of Theorem 6

	Acknowledgments
	References

