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Some time ago Durbin and Willshaw proposed an interesting parallel 
algorithm (the "elastic net'? for approximately solving some geomet- 
ric optimization problems, such as the Traveling Salesman Problem. 
Recently it has been shown that their algorithm is related to neural 
networks of Hopfield and Tank, and that they both can be understood 
as the semiclassical approximation to statistical mechanics of related 
physical models. The main point of the elastic net algorithm is seen to 
be in the way one deals with the constraints when evaluating the ef- 
fective cost function (free energy in the thermodynamic analogy), and 
not in its geometric foundation emphasized originally by Durbin and 
Willshaw. As a consequence, the elastic net algorithm is a special case 
of the more general physically based computations and can be gener- 
alized to a large class of nongeometric problems. In this paper we fur- 
ther elaborate on this observation, and generalize the elastic net to the 
quadratic assignment problem. We work out in detail its special case, 
the graph matching problem, because it is an important problem with 
many applications in computational vision and neural modeling. Sim- 
ulation results on random graphs, and on structured (hand-designed) 
graphs of moderate size (20-100 nodes) are discussed. 

1 Introduction 

Recently, Durbin and Willshaw (1987) proposed an interesting and very 
efficient algorithm for approximately solving some geometric optimiza- 
tion problems, such as the Euclidean Traveling Salesman Problem (TSP). 
Their algorithm - they call it the "elastic net" method - naturally lends 
itself to implementation in parallel hardware. Although it is very differ- 
ent from neural network of Hopfield and Tank (19851, the two are in fact 
related (Simi6 1990). They both can be understood as the semicIassica1 
approximation to statistical mechanics of related physical models, and 
can be derived and systematically corrected (at least in principle) from 
the "first principles." Durbin and Willshaw considered their algorithm 
to be fundamentally geometric - it could be applied to many geometric 
optimization problems, but not to more general nongeometric problems 
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such as the TSP with an arbitrary matrix of distances, or the quadratic 
matching problems (Durbin and Willshaw 1987; Willshaw 1990). We have 
observed, however, that within the probabilistic approach to optimiza- 
tions, the main point about the elastic net algorithm is in the way one 
handles the global constraints when evaluating the effective cost function 
(the free energy in thermodynamic analogy). If all the constraints are 
enforced softly, the neural network is obtained. On the other hand, if 
about half of the constraints are enforced strongly, the elastic network is 
obtained. As a consequence, the elastic net algorithm is a special case 
of a class of more general, physics-based computations - we call them 
constrained neural nets - and can be generalized to a large class of opti- 
mization problems (Simik 1990). 

In related work, Peterson and Soderberg (1989) also considered the 
TSP problem and imposed global constraints on the Hopfield and Tank 
model by mapping it into a Potts glass. Althought they did not establish 
the connection with the elastic net method, some of the formulas obtained 
in (SimiC 1990) and reviewed here, were independently obtained by these 
authors. Further support for the idea of enforcing global constraints in 
generalizing the elastic net came from work of Yuille (1990). 

In this paper we generalize the elastic net algorithm to an important 
class of nongeometric optimization problems - the quadratic assignment 
problem and its specializations, such as the graph matching problem. 
These are representative of a general class of one-to-one (or many) match- 
ing problems characterized by quadratic, as opposed to linear (Yuille 
1990) dependence of the objective function on the binary variables. Their 
potential relevance for invariant object recognition and model matching 
problems in vision was recently discussed in the context of neural style 
optimizations (von der Malsburg and Bienenstock 1986; von der Mals- 
burg 1988; see also Mjolsness et al. 1989; Kree and Zippelius 1988). We 
discuss our experiments with the constrained net algorithm on random 
graphs, and on structured (hand-designed) graphs of moderate size (20- 
100 nodes), which are very encouraging. 

2 Constrained Mean-Field Nets for Graph Matching and 
Other Quadratic Assignment Problems 

The important thing about a graph is its topology, that is, the way its 
nodes are linked together. The link connecting two nodes of a graph 
could represent a physical connection between, say, hand and the shoul- 
der - if the graph represents human body - or it could represent a 
conceptual relation between the two objects, parts of some higher level 
(cognitive) structure - for example, object-class relationships. One can 
do  all kinds of transformations on graphs; so long as the transforma- 
tion does not involve breaking of the graph links, the resulting graph is 
considered identical to the original. 
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Figure 1: Two hand-designed isomorphic graphs as an example of a graph 
matching problem. 

This invariance with respect to coordinate transformations is an im- 
portant characteristic of graphs, and makes them attractive for describ- 
ing invariant relationships between the objects (von der Malsburg and 
Bienenstock 1986; von der Malsburg 1988). The graph matching problem 
is to determine if the two graphs have the same topology, that is, if the 
two graphs are in fact identical. In Figure 1, it is relatively easy to see 
that the two graphs are identical; they are just the different drawings of 
the same structure. In the case of more complicated drawings and/or 
graphs, this becomes very difficult. It is not known if this problem is 
in the NP-complete class or not, but, except for some special cases, no 
polynomial algorithm is known (Garey and Johnson 1987). We discuss 
this problem in the rest of the paper, but our algorithm is applicable to 
the general quadratic assignment problem. 

2.1 Objective Function for Graph Matching. Graphs allow simple 
mathematical description. Consider the two graphs, such as the ones in 
the Figure 1. They can be described by the connectivity matrices, G A B  
and D,,,, elements of which take binary values. We call one graph (G) the 
modrl, and the other (D), the data. If the nodes A and I3 are connected, 
then G A B  = 1, otherwise G"' = 0. If the two graphs are isomorphic 
(technical term for "identical'?, then there exists a permutation matrix, 
i $ ,  such that 

A.B 
(2.1) 

The objective of our optimization problem is to find the optimal match, 
q", such that relation 2.1 is optimally satisfied. If the two graphs are 
not identical then relations 2.1 cannot be exactly obeyed. The objective 
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function (Kree and Zippelius 1988) that in both cases measures, in the 
LMS sense, the degree of the mismatch between the two graphs is given 
by 

(2.2) 

The r&' are similar to the neural variables introduced by Hopfield and 
Tank. We call them "events" in the following, to emphasize their proba- 
bilistic interpretation, which will be developed. If node A ( A  = 1.2. . . ., 
M ) ,  on the model side, is matched to node p ( p  = 1.2. .  . . . N = M ) ,  
on the data side, then the event .I/," is true, that is, 17: = 1, and all the 
other incompatible events are false, q: = 7): = 0 (B # A, q # p ) .  These 
constraints are conveniently expressed as 

Adding the penalties for violation of the constraints 2.3-2.4, our objective 
function 2.2, can be written as follows: 

1 
C = - G A B ( l  - 2Dl,,)$hf + c dl,,vtv; + c yAB$'riF 

A B n f q  A,P,(J A BJI  

(2.5) 

where d,, YA, d,, (d,, = 0), and YAB (YAA = 0) are arbitrary parameters, 
penalties for violation of the constraints 2.3-2.4. The active part of C is the 
first term, since it expresses the matching objective of the problem. When 
the two nodes on the data side, p and q, are connected (Dpq  = I), then 
C will be decreased (SC = -1/2) if the two connected nodes, A and B 
(GAB = 1) on the model side, are matched to them. If, on the other hand, 
p and q are not connected (D,, = 01, then there is a penalty (6C = +1/2) 
if the two connected nodes, A and B, are matched to them. The rest of 
the terms in 2.5 are penalties. We can reduce a large number of arbitrary 
parameters in 2.5 by choosing ?A = 7, and d, = D; the least biased 
choice since all the nodes are equal. Likewise, the problem of choosing 
the two-index penalty parameters (<I,,, and TAB) can be simplified if one 
constructs d1,, and T A B  using only the natural tensors of the problem, 
D,, and GAB. For example, we choose d,, = (1 - d,,) [a + (1 - 0) D,,], 
expressing all the d,, parameters in terms of just one (a) and the D,,. 
Again, this reduction is the least biased, since all pairs of connected nodes 
are treated equal, and all pairs of unconnected nodes are treated equal. 
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2.2 The Effective Cost Theory as an Alternative to Stochastic An- 
nealing. The probabilistic approach to optimization is based on an anal- 
ogy between optimization and statistical mechanics (Kirkpatrick et al. 
1983; Cerny 1982). Given the objective function, one introduces the prob- 
abilistic formulation by postulating a certain probability distribution over 
the space of configurations - in our case, the space of matching events. 
A convenient choice, familiar from physics, is the Boltzmann distribu- 
tion, PU[//] = (l/Z,j)f-''c['~]. The central object one wants to evaluate is 
the partition function, 

where H /  is some matrix of external "fields." Once the partition function 
is evaluated - typically using some approximations - all the relevant 
statistical information about the system can be deduced from it. For 
example, differentiating the generating functional, - (1 /$)lnZp [HI with 
respect to external fields about H = 0, one generates all correlation func- 
tions of 4 distribution. At zero temperature (/? ---f m) and no external 
fields present ( H  = O), the partition function is dominated by the term 
of smallest cost, 2, e exp(- ,K[~"]) .  This has an important implication 
for optimization: as the temperature is decreased the expectation value 
of the matching matrix ((q)), converges toward the optimal match (7") 
between the two graphs, that is, 

This suggests that instead of minimizing the cost function C directly, one 
could attempt to calculate the thermal averages such as (77) and (C[V]) ,  
at a given temperature, and follow how these averages change as one 
decreases the temperature toward zero (Kirkpatrick et al. 1983; Cerny 
1982). 

It is quite interesting that the expectation values (77) can be obtained 
by minimizing an effective cost function, known in physics as the thermo- 
dynamic free energy. It is defined as the Legendre transformation of the 
generating functional (-(1//3) In ZLf[H]): 

(2.8) 

where 717; is the expectation value, that is, the probability of the event 
q i  in the presence of some external fields (H), 
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Differentiating C'" with respect to m, one obtains 

where the last equality follows from the definition of m. We see that 
at H = 0 the Ceff[m] has local extremum at m equal to the expecta- 
tion value of 17 defined in 2.7. This suggests that instead of calculating 
( ~ ) , j  numerically, one could attempt to evaluate analytically the effective 
cost function - note that it depends on the temperature - and then, 
while successively decreasing values of temperature, minimize it using 
differential equations. These deterministic equations describe relaxation 
of probabilities and stochastic averages as a function of the temperature. 
They provide an effective deterministic description of the system, com- 
pletely equivalent, in principle, to stochastic descriptions obtained by 
Monte-Carlo simulations.' Solving them at successively decreasing tem- 
peratures - a process sometimes called "mean-field" annealing - is a way 
to model simulated annealing within a deterministic framework, and it 
is equivalent to stochastic annealing. From the point of view of combi- 
natorial optimizations, it is interesting to note that the C2ff is a function 
of continuous variables (m) and minimizing it, is a continuous optimization 
problem. 

In general, C$f = C- 1/P S, where S is the entropy of the system. The 
functional form of the entropy function will depend on what states are 
available to the system, that is, what states we sum over in evaluating 
the partition function in 2.6. It follows that, depending on whether we 
enforce all, some, or none of the constraints in summing over configura- 
tions of our optimization problem, we will get different functional forms 
of the CF. It is known (SimiC 1990) that in the semiclassical approxi- 
mation, none leads in general to neural networks of Hopfield and Tank 
(1985), and some in the case of the TSP, leads to the elastic net algorithm 
of Durbin and Willshaw (1987). 

2.3 The Effective Cost Function for Quadratic Assignment. To gen- 
eralize the elastic net algorithm of Durbin and Willshaw (1987), along the 
lines proposed in Simi6 (1990), we should construct the entropy function 
enforcing a significant number of constraints 2.3-2.4 when summing over 
the configurations in 2.6. If we assume that the graph from the data side 
may have in general more nodes than the model graph, it makes sense to 
choose constraints 2.4 (nondiagonal part) and the diagonal part of 2.3 to 
be enforced, while enforcing softly, with the help of the penalty terms, the 
remaining constraints. These are the same constraints as in our formula- 
tion of the TSP problem, and many of the formulas we need to generalize 

'In practice, one has to use approximations in deriving the effective cost function and 
to this extent the effective deterministic equations will only approximate the stochastic 
description obtained by Monte-Carlo simulations. 
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the elastic net to graph matching, have been already derived there, and 
then specialized to the Euclidean TSP. In the following, we just outline 
the basic elements of this derivation, which holds for general quadratic 
assignment problem with an arbitrary matrix .I,”,”; then, we specialize 
our results to the graph matching problem, with .’I;”,” according to equa- 
tion 2.5, and discuss the temperature dependence of the penalty terms 
- an important ingredient of the elastic net algorithm. 

For reasons that will become clear shortly, we will consider the fol- 
lowing, regularized partition function: 

Z,(t’[H] - X F  ’j[UVI+X , l , v l ‘ ~ l ; - ~  C,l(2,11:-1)L] (2.11) 

The third term in the exponent is trivial configuration-independent con- 
stant, and its effect is just to multiply Z,[H], defined in 2.6, by c 
This clearly does not affect the r/-correlation functions - they are deriva- 
tives of In Z and are invariant under the rescaling of the partition func- 
tion. This means that we can evaluate the effective cost function, and 
other results using the Z’;’[H], and at the end set X = 0 to obtain Zd[H] 
(= Z:’[H]), and other final expressions independent of A. 

Dropping the third and the last term from the objective function 
in 2.5 - these are identically zero when the subset of constraints are 
obeyed - and introducing the ”potentials” 4; dual to neural variables 
( I $ ) ,  we can rewrite the partition function 2.11 as  

t r / }  

zj;”)[H] ~ ~ / ~ [ $ - ~ ’ ( ~ ~ ) , , c l  ,,d’,~([xl-J1 ‘ j i ~ , ~ ~ ~ t ~ ~ ~ ~ f / i ’ ( ~ ~ + ~ ~ + ~ ) )  

{ V l  
(2.12) 

where (14 is the scale invariant integration measure defined in Simib 
(19901, and the regularization parameter X is chosen such that the in- 
verted matrix in the exponent has all the eigenvalues positivea2 In the 
special case of the graph matching problem, we find from the equa- 
tion 2.5, 

+ (1 - b p q )  (2.13) 

Since the dependence on event variables is linear in the exponent of 2.12, 
we can sum over all rl-configurations that obey 2.4 and the diagonal part 
of 2.3. Then, expanding the integral in 2.12 around its saddle point (this 

’This choice is convenient and leads to the cleaner looking mathematical expressions, 
but is not essential because even in the X = 0 case there is no real divergence in 2.11 
~ the exponential divergence of the integrand is matched with the same divergence in 
the denominator of the measure. This is in agreement with the previously discussed 
fact that for any A, Z,\*’[H] = Z,,[H] exp[X(/J/B)MN]. 
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expansion is induced by letting 4 = &' + ( l / f l ) b $ ) ,  and neglecting 
the terms quadratic and higher in fluctuations, we obtain the following 
approximate expression for the partition function3: 

(2.14) 

Differentiating the In Zj;"[H] with respect to H ,  and setting X = 0, one 
finds the following semiclassical relationship between m and 6 = f' + H :  

(2.15) 

This relationship was written up previously in Peterson and Soderberg 
(1989) and also in Simik (1990). On the other hand, from the saddle 
point equation 6E/6r+h = 0 obeyed by the semiclassical field @', and equa- 
tion 2.15, one obtains, 

4'' = Jm(6) (2.16) 

which justifies the name "potentials" for &variables. This expression 
is the mean-field version of the generaIly valid relationship, (4)  = 
J 1 l q 5 q 5 ~ ~ f i ~ [ @ ]  = Jm, which can be proved from 2.12, and it shows the 
meaning of the semiclassical field 4". 

We now have all elements to derive the semiclassical approximation 
of the effective cost function. Using E[$"'], and the defining relation 2.8, 
we find (at X = 0): 

where we have used equation 2.16 and the previously defined 4 = $"'+H. 
Since d, is an implicit function of 711, one should consider Ceff to be a func- 
tion of rri; note that H can be obtained from Ceff[m] using equation 2.10. 

3This is the well-known semiclassical or ("naive") mean-field approximation. It is 
the first term in a systematic expansion of the partition function based on order-by- 
order inclusion of the effects of thermal fluctuations, and it is formally an expansion 
in powers of 1,". Unfortunately, for spin-glass and similar optimization problems this 
approximation does not become exact in the thermodynamic (large N )  limit. (Thouless 
eta! .  1977). The exact result is obtained (in the spin-glass case) by including the next term 
(quadratic in fluctuations). It is not clear, in general, how important these corrections 
are from the neural computation point of view, where the degree of improvement in 
the quality of approximate solutions should be measured relative to the computational 
complexity of the "corrected" algorithms. 
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The Ceff has the expected C - T S  form. The first term is just the original 
cost function 2.5, while the term in the brackets is the entropy function 
of the constrained net? One should note the second term in the brack- 
ets. Its sum-log-sum form is characteristic of the elastic net (Durbin and 
Willshaw 1987). In the elastic net case (originally applied to the TSP), 
a similar term was shown to be the consequence of enforcing strongly 
the constraints that each city be visited by one and only one node of 
the discretized elastic string (Simik 1990).5 Here, it is a consequence of 
enforcing strongly the constraint that each data node should be matched 
to one and only one model node. 

One could follow the analogy with Hopfield's equations (Hopfield 
1984), and minimize the CT by postulating the relaxation equations for 
b, - potentials, $ = -4 + Jm(4),  with /rt:(4) given by relation 2.15. 
Instead, we will write down the relaxation equations directly for mi(/). 

It can be shown that this time evolution converges toward the minima 
of the effective cost function 2.17, that is, m(t)%=,,,(v). To prove this, 
consider how the Ceff change with time under the time evolution specified 
by 2.18. Using the update equation 2.18, and the r i i ( 4 )  relationship 2.15, 
we find, 

(2.19) 

where zT,, yp, and c,:'" are manifestly positive expressions.6 Since the 
constrained net entropy function, given by the expression in the brackets 

4Had we enforced all the constraints softly (by penalty terms in 2.5), and summed 
over all possible configurations of the binary event variables, we would obtain the 
familiar neural network energy function (Hopfield 1984), and the bracket term could 
be reduced to the more familiar, information-theoretical entropy form (Simif 1990). 

51n the TSP case, one could reabsorb neural variables (ms) and express this term 
in the original (Durbin and Willshaw 1987) form. This is not possible in the case of 
the general quadratic assignment problem, where J does not have necessarily some 
(low-dimensional) geometric interpretation. It is the form of the effective cost function, 
which "knows" about global constraints, that is in our view the essential ingredient 
of the elastic net algorithm, and not the ability to further eliminate neural variables 
(rns), which rests on the presence of some underlaying, low-dimensional geometric 
interpretation. 

Cc (,-[jW);, and (.AB = t - l  -1 -/j($;+$:) 6 z p  = =yC (,-"4:;, yp = 
p - p ,Yp r 
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of equation 2.17, is bounded - it is minimum for configurations obeying 
the constraints 2.3-2.4, and it is close to its maximal value cx N In N when 
the b, are all the same - equation 2.19 shows that the time evolution 
defined by 2.18 is converging toward the minima of Ceff. 

It is useful to summarize what has been achieved in this section. We 
have formulated the quadratic assignment problem probabilistically, us- 
ing the partition function formalism. The allowed configurations obey 
the constraints 2.3-2.4, and we have enforced half of these constraints by 
summing only over the configurations that obey them. This was possible 
with help of the 8 fields, which are related to the matching probabilities 
(711; = (7);)) by equations 2.15 and 2.16, and lead to an effective cost 
function 2.14 depending on 4s and some external fields (H). Then by the 
Legendre transformation, we have eliminated the explicit H-dependence, 
and have constructed the effective cost function 2.17. Its minima corre- 
spond to the most probable matching events, and 2.18 is a simple relax- 
ation formula without any 4s  that minimizes it. In the following, we will 
refer to relaxation equations 2.18, as the constrained net equations. They 
are applicable to the most general quadratic assignment problem, which 
is characterized by an arbitrary symmetric matrix of couplings, JAB, and 
the matching constraints given by equations 2.3-2.4. 

2.4 Graph Matching Algorithm and Simulation Results. The final 
step in generalizing the elastic net algorithm is in choosing the tempera- 
ture dependence of the penalty parameters, associated with the softly en- 
forced constraints. Specializing here to the graph matching problem, with 
J given by equation 2.13, and after some experimentation, we decided 
for the following T-dependence of the penalty parameters: cu(T) zz 2fl 
and y ( T )  = 0.lP. This purely phenomenological choice, guarantees that 
at high T there will be a small penalty for violation of the constraints 
(2.4, diagonal part) and (2.3, nondiagonal part), but as the optimization 
temperature decreases toward zero, these penalties gradually increase, 
eventually becoming infinite, and all the constraints become exactly sat- 
isfied - an important characteristic of the elastic net method. 

The constrained net algorithm works as follows. One starts at some 
sufficiently high temperature - in our experiments T M 0.2-0.3 was 
a good starting point - from a random configuration m(O), uniformly 
distributed within a small neighborhood around 1 I N ,  and then iterates 
equations 2.18 until the equilibrium sets in; we take about 10-20 steps. 
Then, one decreases the temperature, typically 1-2%, and continues with 
iterations for another 10-20 steps. This process is repeated until the 
network converges to its final low-temperature equilibrium state in which 
all the constraints 2.3-2.4 are satisfied. 

The algorithm was applied to both structured (hand-designed graphs 
such as the one in Fig. l), and random graphs with up to 100 nodes. In 
all the graphs we have been studying, the constrained net was capable of 
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solving the problem exactly in a significant fraction of the total number 
of trials. In general, the optimal solution is discovered very quickly, 
say in the first 50-100 steps, or the algorithm runs many iterations (few 
thousands) before converging to a local minimum, often far from the 
optimal solution. Figure 1 presents two isomorphic graphs, typical of 
the hand-designed graphs we have studied. Probability of successful 
match was 0.39, and the convergence was achieved, in such cases, in 
less then 60 iteration steps. We observed that part of the strategy our 
algorithm is using is based on searching for the notable nodes, that is, 
nodes with the highest or the lowest connectivity, and matching them 
first; if this is done successfully, the network would rapidly converge to 
the final, optimal match state. 

In another set of experiments we generated an ensemble of graphs 
with given number of nodes ( N )  and some expected connectivity ( p ) .  
For example, in the experiments with N = SO and = 0.1 we generate 
512 different (pairs of isomorphic) graphs, by randomly generating links 
between the nodes with probability 0.1 (the expected number of links 
per node is in this case 5, but the actual number is randomly distributed 
about this value). For each pair of graphs, we run the algorithm once 
and record if the algorithm has found the optima1 solution or not. At 
the end, we count how many times the exact solution has been found, 
and divide this number by the total number of runs. This gives us a 
probabilistic estimate, f'( N .  p),  of how successful in the average, is our 
algorithm on randomly generated ( N ,  [ I )  graphs. Figure 2 summarizes 
our results for N = 20, 30,40,50, and 75; for each N, p takes number of 
values between 0.05 and 0.60. Notice the sigmoid-shaped curve indicat- 
ing essentially 100% success on any size graph with connectivity within 
interval 0.4-0.6, and decreasing rate of success (but always significantly 
higher than zero) as the connectivity becomes smaller (or larger). An 
almost 100% matching success rate is somewhat surprising. It can be 
partially understood by noticing that the dispersion of the connectivity 
is proportional to Np(1 - p)  and takes the largest value around p = 0.5. 
This means that the distribution of the connectivities is rather broad in 
this case, with few nodes on the extreme ends of its tail having widely 
different connectivities. An interesting matching heuristic would be to 
try to match these nodes first. As we have already mentioned, this ap- 
pears to be the strategy adapted by our network; typically after just 20 
to 30 iterations, the notable nodes are identified and matched; all the re- 
maining nodes would then be rapidly matched and the algorithm would 
converge. 

This strategy appears very useful in matching similar graphs. We find 
that if we start with the two isomorphic graphs with expected connec- 
tivity around 0.5, and distort one of them by deleting randomly up to 
10% of its links, there is no significant degradation in matching perfor- 
mance - the success rate is close to 1. As distortion become larger, at 
some point the locally stable states appear (corresponding to the wrong 
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Figure 2: Probability that the constrained net finds the correct match between 
the two isomorphic graphs with N = 30, 40, 50, and 75 nodes, versus the 
expectation value of the (random) connectivity per node. (Expected connectivity 
normalized to one.) 

match), and the probability of success decreases rapidly. Basically, we 
believe that as long as the connectivity of the notable nodes is not consid- 
erably decreased (in the case of the high connectivity nodes) or increased 
(in the case of the low connectivity nodes) relative to the other nodes, 
our algorithm successfully converges towards the correct match. This 
appears to be the case in many of the examples we studied. 

3 Concluding Remarks 

The essential ingredients for generalizing the elastic net algorithm to 
a broad range of constrained optimization problems are (SimiC. 1990): 
(1) the probabilistic formulation (formulation based on statistical mechan- 
ics), and (2) the explicit enforcement of a significant part of the global 
constraints when evaluating the effective cost function. In this work we 
have applied these ideas to the quadratic assignment problem. Its im- 
portant special case, the graph matching problem, is studied in some 
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detail. Our algorithm appears to be very efficient for matching isomor- 
phic graphs as well as for matching similar graphs (in this case one graph 
is a simplified version of the other in that some fraction of its links are 
deleted). It spontaneously develops an interesting matching strategy, 
based on looking for the most notable nodes and matching them first. 
This strategy seems to be the type of approach that would be useful to 
humans, and that they might take, in sdving similar model matching 
problems. 

Many problems in pattern recognition and computer vision, such as 
classification and clustering and model and graph matching, can be for- 
mulated as assignment problems quadratic in binary variables. The con- 
strained m i m l  rirtworks should be applied to these problems since they are 
"natural" and compu ta tionally efficient generalization of both, the elastic 
net algorithm of Durbin and Willshaw, and the Hopfield and Tank neural 
networks. One could simply add the constrained net entropy to the orig- 
inal cost function, and choose the penalties for softly enforced constraints 
to be increasing functions of the inverse temperature. Then the "neural 
style" relaxation equations 2.18, or any other iterative method, can be 
used at a sequence of successively decreasing temperatures to find the 
locally optimal configurations. 
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