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Abstract

A linear shift-invariant preprocessing technique is described which re-

quires no specific knowledge of the image parameters and which is sufficiently

general to allow the effective radius of the composite imaging system to be

minimized while constraining other system parameters to remain within speci-

fied limits.
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Introduction. The finite size of the point-spread function of a practical

imaging system causes the output to be a two-dimensional spatial smearing or

blurring of the original image. Methods of preprocessing the image to reduce

this blurring have been widely studied but no fully satisfactory processor has

as yet been developed. The preprocessing method proposed here, although new

in formulation, can be thought of as a generalization and extension of previous

work by Smith [Ij.] and Stuller [5]. This method accomodates the problem of non-

circular ly symmetric imaging system point-spread functions, provides for con-

trolled extent of the preprocessing filter to minimize distortion due to tran-

sients resulting from truncation errors and edge effects, can be used with

various kinds of system noise, and can be readily extended to provide constraint

of other system parameters. The analysis presented here relates to a line-

scanner system although it is applicable in principle to many other system

configurat ions.

Analysis of Preprocessing Technique. Referring to Fig. 1 and noting that a bar

over a variable denotes a two-dimensional spatial vector, a basis for choosing

the preprocessing filter point-spread function, h (v), in order to increase the

resolution of the composite imaging system is to minimize the radius of gyration,

R , of the composite imaging system point-spread function, g(v); given by

r" - 2|v| g(v) dv

R/

J°
dv

where the composite system point-spread function is expressed
,.»

g(v) = 1 hr(z) hb(v-z) dz . (2)
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The magnitude of R may be minimized by setting the denominator equal to a con-
_ o

stant and minimizing the numerator with respect to h ('). The function |v| in

(l) is a penalty weighting function which causes h (v) to decrease as v increases.



Additional flexibility in controlling the shape of g(v) is obtained by using

a more general penalty weighting function w(v) which increases-at an arbitrarily

controlled rate outside a specified range of v. With this penalty function the

numerator and denominator of (l) can be written as the functionals

' w(v) g2(v) dv .(3)
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Ii- A2^ <*v - K! •- GO
-oo

Two additional constraints are considered essential for most imaging sys-

tems. The first limits the size, and to some extent the shape, of the prepro-

cessing filter point-spread function, h (v), so that truncation errors are mini-

mized. This constraint is

I2 - J s(v) hr
2(v) dv = K2 (5)
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where s(v) is a penalty weighting function similar in form to w(v). The second

additional constraint limits the total noise power in the preprocessed image

as follows

J JRnn(i'^ \^ hr^> <^ dv = K (6)
-t - *-to -oo

where it is assumed that the noise source is a stationary ergodic random process

with autocorrelation function R (z-v).nnv '

The required point-spread function is found by minimizing, with respect to

h (•)» the augmented functional formed by adding to (3) the constraints 00, (5)

and(6) each of which has been multiplied by an appropriate Lagrange multiplier [1,2]

The required minimization is obtained by converting to the spatial frequency

domain, setting the gradient of the augmented functional equal to zero and solving

the resulting equation subject to the constraints of (U)-(6). The gradient of

the augmented functional is as follows



-|H, (f ,f )j + 2\,L (f ,f ) H (f ,f ) = 0
I1 DV x y'1 ^̂ n̂  x y ' J r ^ x y '

where H,(')» W(- ), S('), H (• ) and J(* ) are the two-dimensional Fourier trans-

forms of hb(-), w('), s('). hr(-) and Rnn(') respectively and X^ \2 and \ are

Lagrange multipliers associated with constraint equations (U)-(6) respectively.

The frequency domain representation of the constraint equations is

— |H (f f }| IH (f f )l df df = K
"1 JWJW bv x' y ' < rv x' y" x y~ 1
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In order to proceed further an appropriate form for the penalty functions

w(v) and s(v) must be chosen. Several criteria must be satisfied by these

functions: they must increase rapidly away from the origin; they must be Fourier

transformable; and w(v) must be convex to assure the existence of a global

minimum of (3). A convenient representation centered at the origin is

2k 2k
w(v) = w (x)w (y) HC-5-) wx+ c KU-2-) wy+ c V . f...v v I v uv I I ̂v ' u\r i 111 ix y L xw wxj (. yw wyj \,±±)

The constants 0 < c ,c < 1 are introduced to assure that the overall weighting
wx wy

function will be everywhere greater than zero thus avoiding singular behavior

of the solution. The constants k and k are positive integers. A similarwx wy

expression may be written for s(v) = s (x)s (y). The shape of w(v) along one
x y

dimension is shown in Fig. 2. For the following analysis it is assumed that

k , k , k , and k are all unity. This assumption does not limit the general
wx wy sx sy

applicability of (y)-(lO) but is made to illustrate the method of solution of

these equations.



With the above assumption (7) can be put into the following form [3]
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4[2X 1 lH b(f x , f y) | 2
+2X 3J n n(f x , f y)]H r(f x , f y) = 0. (12)

Equation (l2) is a two-dimensional fourth-order partial differential equation

which, when solved simultaneously with (8), (9), and (lO), specifies the spatial

frequency spectrum of the required preprocessing filter.

Image Collecting Systems with Separable Point-Spread Functions. For many

physically realizable image collecting systems, certain assumptions may be made

which greatly simplify the form of (12). A large class of physically realizable

image collecting system point-spread functions may be modelled as separable

point-spread functions, from which it follows that

H. ( £ , £ ) * H. (f ) H. (£) (13)
b ^ x ' y ' b x v x / b y y / X J /

H (f ,£ ) - H (f ) H (f ) (110r x y rx x ryx y7 '

(f ,f ) = J (f ) T (f ) . (15)x x y' -3-nnxx x -Lnnyx y' * •"nn x y --nnx x -nny y

With these assumptions, it can be shown that the solution for the two-

dimensional point-spread function of h (• ) defined by (12) and constraint equa-

tions (8)-(lO) reduces to two sets of equations [3]: one set specifying the

x-axis component of h (•)> the other the y-axis component. Since these equa-

tion sets are identical except for appropriate changes in x- and y-axis component

variables, only the equation set for the x-axis components will be given.



This equation set is composed of the second-order ordinary differential equation

2H* (f ) H' (f )x 2
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and the constraint equations

KxMXxM2 dfx
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where

H (f ) = H (f ) + J H . (f ) . (20)rxv x rrx x' J rix x7 v '

Thus the spatial frequency transform of the x-axis component of h (•) is

obtained by the simultaneous solution of (l6) and the constraints of (17)-(19).

This system of equations can be solved by standard numerical procedures and

the functions h (•) and h (•) determined. The preprocessing operation thus

becomes two one-dimensional convolutions carried out sequentially rather than

a single two-dimensional convolution as would generally be the case.

Conclusions. The proposed method for specifying an image preprocessing point-

spread function is sufficiently general to allow a variety of penalty weighting

functions to be used for control of the effective radius of the point-spread

function while constraining other system parameters to remain within specified

limits.



Although (12) in conjunction with (8)-(lO) specify the general form of the

spatial frequency transform of the optimum preprocessing filter, it was shown

that in the case of a separable point-spread function the solution can be con-

siderably simplified. This same simplification also results for the case of

a radially symmetric point-spread function, however, the resulting processor

must perform a two-dimensional convolution in this case rather than two sequential

one-dimensional convolutions.

The simplified solution based upon separable point-spread functions can

be extended to a large class of practical systems by approximation techniques.

For example, by properly selecting the parameters of a two-dimensional Gaussian

function, an elliptical or circular point-spread function can be approximated

and preprocessing carried out as sequential one-dimensional convolutions; thus

substantially reducing the processing time.
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Figure 1. Block Diagram of Imaging and Preprocessing Systems.
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Figure 2. One-Dimensional Penalty Weighting Function.



022573 Constrained Optimization of Image Restoration Filters.
TTE. Riemer and C.U^McGillenuA linear shift-
invariant preprocessing technique is described which
requires no specific knowledge of the image parameters
and which is sufficiently general to allow the effec-
tive radius of the composite imaging system to be
minimized while constraining other system parameters
to remain within specified limits.


