
Constrained Optimization via Particle Evolutionary Swarm
Optimization Algorithm (PESO)

Angel E. Muñoz Zavala
Center for Research in
Mathematics (CIMAT)

Guanajuato, Gto., México

aemz@cimat.mx

Arturo Hernández
Aguirre

Center for Research in
Mathematics (CIMAT)

Guanajuato, Gto., México

artha@cimat.mx

Enrique R. Villa Diharce
Center for Research in
Mathematics (CIMAT)

Guanajuato, Gto., México

villadi@cimat.mx

ABSTRACT
We introduce the PESO (Particle Evolutionary Swarm Opti-
mization) algorithm for solving single objective constrained
optimization problems. PESO algorithm proposes two new
perturbation operators: “c-perturbation” and “m-perturba
tion”. The goal of these operators is to fight premature
convergence and poor diversity issues observed in Particle
Swarm Optimization (PSO) implementations. Constraint
handling is based on simple feasibility rules. PESO is com-
pared with respect to a highly competitive technique repre-
sentative of the state-of-the-art in the area using a well-
known benchmark for evolutionary constrained optimiza-
tion. PESO matches most results and outperforms other
PSO algorithms.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Engineering, Mathematics and statistics ; G.1.6
[Numerical Analysis]: Optimization—Stochastic program-
ming, Constrained optimization

General Terms
Algorithms

Keywords
Particle Swarm Optimization, Constrained Optimization,
Hybrid-PSO

1. INTRODUCTION
In PSO algorithms, the social behavior of individuals is re-

warded by the best member in the flock. The credibility on
the best regulates how fast the flock is going to follow him,
thus exploration is improved but convergence is reduced if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

the flock slowly follows the best. Too much credibility on
the best quickly concentrates the flock on small areas, re-
ducing exploration but accelerating convergence time. In a
constrained search space, the trade-off becomes harder to
balance since the constraint handling mechanism may in-
crease the pressure on the flock to follow the best member
which is trying to reach the feasible region, or the function
optimum if already inside that region.

Several authors have noted the speed-diversity trade-off
in PSO algorithms [9]. Also, many noted the need to main-
tain population diversity when the design problem includes
constraints [13]. Although several approaches have been
proposed to handle constraints, recent results indicate that
simple “feasibility and dominance” (FAD) rules handle them
very well. FAD rules have been enhanced with (extra) mech-
anisms to keep diversity, therefore, improving exploration
and the consequent experimental results. Nonetheless, one
important conclusion recently reached by Mezura [10], is
that the constraint handling mechanism must be tied to the
search mechanism, even more, tied to the way the operators
explore the search space. For instance, several algorithms
combining FAD rules and selection based on Pareto rank-
ing have frequently been defeated by those combining FAD
rules and selection based on Pareto dominance [5].

The proposal conveyed by this paper is the combination
of a constraint handling mechanism (FDA rules) and PSO
algorithm enhanced with perturbation operators. The goal
is to avoid the explicit controls and extra processing needed
to keep diversity [5]. This paper introduces a new approach
called PESO, which is based on the swarm algorithm orig-
inally proposed in 1995 by Kennedy and Eberhart: Parti-
cle Swarm Optimization (PSO) [7]. Our approach includes
constraint handling and selection mechanism based on fea-
sibility rules; a ring topology organization that keeps track
of the local best; and two perturbation operators aimed to
keep diversity and exploration.

The remainder of this paper is organized as follows. In
Section 2, we introduce the problem of interest. Section 3
presents recent approaches to handle constraints in PSO al-
gorithms. Section 4 introduces our approach and provides
details of the algorithm. In Section 5, a benchmark of 13
test functions is listed. Section 7 provides a comparison of
results with respect to state-of-the-art algorithms for con-
strained optimization. Finally, our conclusion and future
work are provided in Section 8.

209

2. PROBLEM STATEMENT
We are interested in the general nonlinear programming

problem in which we want to:

Find ~x which optimizes f(~x) (1)

subject to:

gi(~x) ≤ 0, i = 1, . . . , n (2)

hj(~x) = 0, j = 1, . . . , p (3)

where ~x is the vector of solutions ~x = [x1, x2, . . . , xr]
T , n

is the number of inequality constraints and p is the num-
ber of equality constraints (in both cases, constraints could
be linear or non-linear). For an inequality constraint that
satisfies gi(~x) = 0, then we will say that is active at ~x. All
equality constraints hj (regardless of the value of ~x used) are
considered active at all points of F (F = feasible region).

3. RELATED WORK
Lately, significant effort and progress has been reported

in the literature as researchers figure out ways to enhance
the PSO algorithm with a constraint handling mechanism.
Coath and Halgamuge [1], proposed the “feasible solutions
method” (FSA), and the “penalty function method” (PFA)
for constraint handling. FSA requires initialization of all
particles inside the feasible space; they reported this goal
is hard to achieve for some problems. FPA requires careful
fine tuning of the penalty function parameters as to discour-
age premature convergence. Zhang and Xie [14], proposed
DEPSO, a hybrid approach that makes use of a reproduc-
tion operator similar to that used in differential evolution. In
DEPSO this operator is only applied to pbest but, in PESO
a similar perturbation is added to every particle. Toscano
and Coello [13] also perturb all particles but accordingly to
a probability value that varies with the generation number
(as proposed by Fieldsend and Singh [3]). We compare our
results against their recently published experiments.

4. THE PESO ALGORITHM
The Particle Swarm Optimization (PSO) algorithm is a

population - based search algorithm based on the simula-
tion of the social behavior of birds within a flock. In PSO,
individuals, referred to as particles, are “flown” through a
hyperdimensional search space. PSO is a kind of symbiotic
cooperative algorithm, because the changes to the position
of particles within the search space are based on the social-
psychological tendency of individuals to emulate the success
of other individuals.

The feature that drives PSO is social interaction. Individ-
uals (particles) within the swarm learn from each other, and
based on this shared knowledge tend to become more simi-
lar to their “better” neighbors. A social structure in PSO is
determined through the formation of neighborhoods. These
neighborhoods are determined through labels attached to
every particle in the flock (so it is not a topological con-
cept). Thus, the social interaction is modeled by spreading
the influence of a “global best” all over the flock as well as
neighborhoods are influenced by the best neighbor and their
own past experience.

Figure 1 shows the neighborhood structures that have
been proposed and studied [6]. Our approach, PESO, adopts

Figure 1: Neighborhood structures for PSO

the ring topology. In the ring organization, each particle
communicates with its n immediate neighbors. For instance,
when n = 2, a particle communicates with its immediately
adjacent neighbors as illustrated in Figure 1(b). The neigh-
borhood is determined through an index label assigned to all
individuals. This version of the PSO algorithm is referred
to as lbest (LocalBest). It should be clear that the ring
neighborhood structure properly represents the LocalBest
organization. It has the advantage that a larger area of the
search space is traversed, favoring search space exploration
(although convergence has been reported slower) [2, 8].

PSO-LocalBest has been reported to excel over other topo-
logies when the maximum velocity is restricted. PESO’s
experimental results with and without restricted velocity
reached similar conclusions noted by Franken and Engel-
bretch [4](thence, PESO algorithm incorporates this fea-
ture). Figure 2 shows the standard PSO algorithm adopted
by our approach. The pseudo-code of LocalBest function
is shown in Figure 3.

P0 = Rand(LI, LS)
F0 = Fitness (P0)
PBest0= P0

FBest0= F0

Do
LBesti = LocalBest (PBesti, FBesti)
Si = Speed (Si, Pi, PBesti, LBesti)
Pi+1 = Pi + Si

Fi+1 = Fitness (Pi+1)
For k = 0 To n

< PBesti+1[k], FBesti+1[k] > =
Best (FBesti[k], Fi+1[k])

End For
End Do

Figure 2: Pseudo-code of PSO algorithm with local
best

Constraint handling and selection mechanism are described
by a single set of rules called “feasibility and dominance”.

210

These rules are: 1) given two feasible particles, pick the one
with better fitness value; 2) if both particles are infeasible,
pick the particle with the lowest sum of constraint viola-
tion, and 3), given a pair of feasible and infeasible particles,
the feasible particle wins. These rules are implemented by
function Best in PESO’s main algorithm, see Figure 5.

For k = 0 To n
LBesti[k] = Best(FBesti[k − 1], FBesti[k + 1])

End For

Figure 3: Pseudo-code of LocalBest(PBesti,FBesti)

The speed vector drives the optimization process and re-
flects the socially exchanged information. Figure 4 shows
the pseudo-code of Speed function, where c1 = 0.1, c2 = 1,
and w is the inertia weight. The inertia weight controls the
influence of previous velocities on the new velocity.

For k = 0 To n
For j = 0 To d

r1 = c1 * U(0, 1)
r2 = c2 * U(0, 1)
w = U(0.5, 1)
Si[k, j] = w * Si[k, j] +

r1 * (PBesti[k, j] - Pi[k, j]) +
r2 * (LBesti[k, j] - Pbesti[k, j])

End For
End For

Figure 4: Pseudo-code of Speed(Si, Pi, PBesti,
LBesti)

4.1 Perturbation operators
PESO algorithm makes use of two perturbation operators

to keep diversity and exploration. PESO has three stages:
in first stage the standard PSO algorithm [8] is performed,
then the perturbations are applied in the next two stages.

The main algorithm of PESO is shown in Figure 5.
The goal of the second stage is to add a perturbation in a

way similar to the so called “reproduction operator” found
in differential evolution algorithm. This perturbation, called
C-Perturbation, is applied all over the flock to yield a set
of temporal particles Temp. Each member of the Temp
set is compared with the corresponding (father) member of
PBesti+1, so the perturbed version replaces the father if it
has a better fitness value. Figure 6 shows the pseudo-code
of the C-Perturbation operator.

In the third stage every vector is perturbed again so a
particle could be deviated from its current direction as re-
sponding to external, maybe more promissory, stimuli. This
perturbation is performed with some probability on each
dimension of the particle vector, and can be explained as
the addition of random values to each particle component.
The perturbation, called M-Perturbation, is applied to every
particle in the current population to yield a set of temporal
particles Temp. Again, as for C-Perturbation, each mem-
ber of Temp is compared with its corresponding (father)
member of the current population, and the better one wins.
Figure 7 shows the pseudo-code of the M-Perturbation
operator. The perturbation is performed with probability
p = 1/d, where d is the dimension of the decision variable
vector.

These perturbations, in differential evolution style, have
the advantage of keeping the self-organization potential of

P0 = Rand(LI, LS)
F0 = Fitness (P0)
PBest0= P0

Do
LBesti = LocalBest (PBesti, FBesti)
Si = Speed (Si, Pi, PBesti, LBesti)
Pi+1 = Pi + Si

Fi+1 = Fitness (Pi+1)
For k = 0 To n

< PBesti+1[k], FBesti+1[k] > =
Best (FBesti[k], Fi+1[k])

End For
Temp = C−Perturbation (Pi+1)
FTemp = Fitness (Temp)
For k = 0 To n

< PBesti+1[k], FBesti+1[k] > =
Best (PBesti+1[k] , FTemp[k])

End For
Temp = M−Perturbation (Pi+1)
FTemp = Fitness (Temp)
For k = 0 To n

< PBesti+1[k], FBesti+1[k] > =
Best (PBesti+1[k] , FTemp[k])

End For
Pi = Pi+1

End Do

Figure 5: Main Algorithm of PESO

For k = 0 To n
For j = 0 To d

r = U(0, 1)
p1 = Random(n)
p2 = Random(n)
p3 = Random(n)
Temp[k, j] = Pi+1[p1, j] + r (Pi+1[p2, j] - Pi+1[p3, j])

End For
End For

Figure 6: Pseudo-code of C−Perturbation(Pi+1)

the flock as no separate probability distribution needs to be
computed [12]. Zhang and Xie also try to keep the self-
organization potential of the flock by applying mutations
(but only) to the particle best (in their DEPSO system)
[14]. In PESO, the self-organization is not broken as the
link between father and perturbed version is not lost. Thus,
the perturbation can be applied to the entire flock. Note
that these perturbations are suitable for real-valued function
optimization.

For k = 0 To n
For j = 0 To d

r = U(0, 1)
If r ≤ 1/d Then

Temp[k, j] = Rand(LI, LS)
Else

Temp[k, j] = Pi+1[k, j]
End For

End For

Figure 7: Pseudo-code of M−Perturbation(Pi+1)

5. EXPERIMENTS
Next, we show the contribution of the perturbation oper-

ators by means of the well known extended benchmark of
Runarsson and Yao [11].

Four experiments were done:

211

• PSO: The standard PSO algoritmh using the parame-
ters values described in Section 4.

• PSO-C: The PSO algorithm with the C-perturbation
operator.

• PSO-M: The PSO algorithm with the M-perturbation
operator.

• PESO: Our proposed PSO enhanced with C-perturbation
and the M-perturbation operators.

A total of 50 particles were used by each generation, yield-
ing 350, 000 objective function evaluations. The results of
30 runs for all benchmark functions are show in Tables 1,
2, 3, 4 and 5. The equality constraints were transformed to
inequality constraints |hj | ≤ ε, where ε = 1E − 3.

Table 5: The Standard Deviation results of 30 runs
for benchmark problems

TF PSO PSO-C PSO-M PESO

g01 0.6152 0 0.6102 0
g02 0.0924 0.0790 0.0556 0.0535
g03 0.1536 0.0448 0.1382 4.842E-06
g04 0 0 0 0
g05 24.7214 51.1914 76.6719 5.1575
g06 0 0 0 0
g07 8.1949 0.0185 2.6584 0.0696
g08 0 0 0 0
g09 0.0002 1.658E-07 0.0004 2.617E-07
g10 189.4323 51.4196 110.1945 59.3290
g11 2.563E-09 0 4.001E-07 0
g12 0.0022 0 0 0
g13 0.3625 0.2176 0.3298 0.2212

The contribution of the perturbation operators is note-
worthy, they improve the performance of the standard PSO
in 6 out of 13 benchmark functions. The main contribution
comes from the C-perturbation, while the M-perturbation
helps to maintain the exploration. A brief discussion about
this topic is presented in the next section.

6. CONTRIBUTION OF THE PERTURBA-
TION OPERATORS

As noted before, the proposed perturbation operators are
designed to be cooperative with feasibility and dominance
rules. The reader may stop here and wonder how much
and how each stage of the PESO algorithm contributes to-
wards the optimum? In Figure 8, the contribution of each
stage of PESO on the best particle between two consec-
utive generations is shown at each generation. The plot
stops around generation 800, when the current best func-
tion value is 0.770731. The series at the bottom represents
the contribution of PSO (the first stage); the series at the
middle shows the contribution of C-perturbation, and M-
perturbation is shown in the upper series. The contribution
is shown as a percentage. Notice that in most generations
the improvement is not distributed among stages, but it
comes from only one of them. The identity of the best parti-
cle is not important; contributions made by each stage over
each particle in the flock were recorded, and the particle
with best fitness value was recovered from the population.
Reading from Figure 8, it is clear that M-perturbation was
important at the first part of the exploration to get to the

feasible region. In almost all generations, the best individual
comes from either PSO stage, or C-perturbation stage. An
analysis of how all the flock is affected at each stage is under
way. Initial experimental results show that C-perturbation
is important since PESO is prone to stagnation when it is
not used; at the same time it is not the common engine
propelling the best individual. Usually, the PSO stage re-
fines the solutions, while C and M-perturbations help during
exploration.

7. COMPARISON OF RESULT

7.1 PESO vs SR and Toscano’s PSO
Stochastic Ranking, SR, [11], still is the state of the art

algorithm for constrained optimization. The algorithms is
a simple evolution strategy enhanced with a stochastic con-
straint handling mechanism. Toscano and Coello’s PSO in-
corporates a constraint handling mechanism into the stan-
dard PSO algorithm.

In Table 6 the results of PESO and SR are shown. Note
that PESO is better than SR in problem g06, g07, and g10,
but SR is better in g02 and g13. Also, PESO average stays
closer to the optimum and is better than SR in problems
g06 and g10. SR average is better than PESO in problem
g10. Nonetheless, the results are very competitive and com-
parable for all other problems. In brief, PESO improves
the results of SR in problems g06, g07, and g10, whilst was
unable to improve the result of SR on problems g02 and g13.

In Table 7 we show the results of PESO and Toscano and
Coello’s PSO (TCPSO). It can be seen that PESO is clearly
better than TCPSO in problem g10, but TCPSO is better in
problems g02 and g13. Although the best results for the rest
of the problems are comparable, PESO outperforms TCPSO
in the average results for problems g04, g05,g07,g10, and
g13. TCPSO is not better than PESO for the other prob-
lems’ average. Note that TCPSO worst values are really far
from the average, a poor performance not shown by PESO.

7.2 PESO vs DEPSO
A few problems of the original 11-problems benchmark of

Michalewicz were solved by DEPSO system [14]. Zhang’s
DEPSO incorporates a reproduction operator used in differ-
ential evolution into PSO algorithm.

Only the results shown in Table 8 are available. PESO
outperforms DEPSO in problems g02, g07, g09, and g10,
whilst other problems are comparative.

8. CONCLUSIONS AND FUTURE WORK
We have introduced PESO, a simple PSO algorithm en-

hanced with two perturbation operators for constrained op-
timization. These operators do not destroy the flock concept
that inspired PSO algorithms, neither its self-organization
capacity. PESO is simple and easy to implement, besides it
does not need the adjustment of several control and muta-
tion parameters. The results proved highly competitive on
the benchmark. Future work includes the solution of other
constrained problems reviewed by the specialized literature,
as well as an extension for multiobjective optimization.

Acknowledgements
The authors of the paper acknowledge support for this work
from Council of Science and Technology from the State of

212

Table 1: The Best results for 30 runs of the benchmark problems
TF Optimal PSO PSO-C PSO-M PESO

g01 Min -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 Max 0.803619 0.669158 0.753791 0.746811 0.792608
g03 Max 1.000000 0.993930 1.005010 0.984102 1.005010
g04 Min -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672
g05 Min 5126.4981 5126.484154 5126.484154 5126.484154 5126.484154
g06 Min -6961.81388 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 Min 24.306209 24.370153 24.307272 24.412799 24.306921
g08 Max 0.095825 0.095825 0.095825 0.095825 0.095825
g09 Min 680.630057 680.630057 680.630057 680.630057 680.630057
g10 Min 7049.3307 7049.380940 7049.562341 7049.500131 7049.459452
g11 Min 0.750000 0.749000 0.749000 0.749000 0.749000
g12 Max 1.000000 1.000000 1.000000 1.000000 1.000000
g13 Min 0.053950 0.085655 0.149703 0.078469 0.081498

Table 2: The Mean results of 30 runs for benchmark problems
TF Optimal PSO PSO-C PSO-M PESO

g01 Min -15.000000 -14.710417 -15.000000 -14.799964 -15.000000
g02 Max 0.803619 0.419960 0.603599 0.606307 0.721749
g03 Max 1.000000 0.764813 0.980979 0.704545 1.005006
g04 Min -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672
g05 Min 5126.4981 5135.973344 5148.910347 5157.899867 5129.178298
g06 Min -6961.81388 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 Min 24.306209 32.407274 24.328212 27.618821 24.371253
g08 Max 0.095825 0.095825 0.095825 0.095825 0.095825
g09 Min 680.630057 680.630100 680.630057 680.630150 680.630057
g10 Min 7049.3307 7205.499975 7073.953425 7180.910960 7099.101385
g11 Min 0.750000 0.749000 0.749000 0.749000 0.749000
g12 Max 1.000000 0.998875 1.000000 1.000000 1.000000
g13 Min 0.053950 0.569358 0.720624 0.682109 0.626881

Table 3: The Median results of 30 runs for benchmark problems
TF Optimal PSO PSO-C PSO-M PESO

g01 Min -15.000000 -15.000000 -15.000000 -14.999999 -15.000000
g02 Max 0.803619 0.407260 0.576324 0.605312 0.731693
g03 Max 1.000000 0.782523 1.004989 0.715459 1.005008
g04 Min -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672
g05 Min 5126.4981 5126.484153 5128.244729 5126.566275 5126.538302
g06 Min -6961.81388 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 Min 24.306209 28.836717 24.323802 27.010157 24.371253
g08 Max 0.095825 0.095825 0.095825 0.095825 0.095825
g09 Min 680.630057 680.630057 680.630057 680.630057 680.630057
g10 Min 7049.3307 7137.908533 7054.760909 7150.103784 7069.926219
g11 Min 0.750000 0.749000 0.749000 0.749000 0.749000
g12 Max 1.000000 1.000000 1.000000 1.000000 1.000000
g13 Min 0.053950 0.492288 0.742127 0.796763 0.631946

Table 4: The Worst results of 30 runs for benchmark problems
TF Optimal PSO PSO-C PSO-M PESO

g01 Min -15.000000 -13.000000 -15.000000 -12.999994 -15.000000
g02 Max 0.803619 0.299426 0.496639 0.506702 0.614135
g03 Max 1.000000 0.464009 0.874539 0.434060 1.004989
g04 Min -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672
g05 Min 5126.4981 5249.824796 5351.313705 5497.454471 5148.859414
g06 Min -6961.81388 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 Min 24.306209 56.054769 24.377214 35.924678 24.593504
g08 Max 0.095825 0.095825 0.095825 0.095825 0.095825
g09 Min 680.630057 680.631353 680.630058 680.632379 680.630058
g10 Min 7049.3307 7894.812453 7251.773336 7459.747421 7251.396244
g11 Min 0.750000 0.749000 0.749000 0.7490021 0.749000
g12 Max 1.000000 0.994375 1.000000 1.000000 1.000000
g13 Min 0.053950 1.793361 1.102358 1.241422 0.997586

Guanajuato, CONCyTEG, Project No. 04-02-K117-037-II.
The first author also acknowledges the support from CON-

CyTEG through Project No. 04-02K119-065-01, and from
National Council of Science and Technology, CONACyT, to

213

Figure 8: Contribution of each stage of PESO algorithm for function g02

Table 6: Results of PESO and SR for benchmark problems
Best Result Mean Result Worst Result

TF Optimal PESO SR PESO SR PESO SR

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 0.803619 0.792608 0.803515 0.721749 0.781975 0.614135 0.726288
g03 1.000000 1.005010 1.000000 1.005006 1.000000 1.004989 1.000000
g04 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539
g05 5126.4981 5126.484154 5126.497 5129.178298 5128.881 5148.859415 5142.472
g06 -6961.81388 -6961.813876 -6961.814 -6961.813876 -6875.940 -6961.813876 -6350.262
g07 24.306209 24.306921 24.307 24.371253 24.374 24.593504 24.642
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630057 680.630057 680.630 680.630057 680.656 680.630058 680.763
g10 7049.3307 7049.459452 7054.316 7099.101386 7559.192 7251.396245 8835.655
g11 0.750000 0.749000 0.750000 0.749000 0.750000 0.749000 0.750000
g12 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
g13 0.053950 0.081498 0.053957 0.626881 0.057006 0.997587 0.216915

Table 7: Results of PESO and Toscano’s PSO for benchmark problems
Best Result Mean Result Worst Result

TF Optimal PESO PSO PESO PSO PESO PSO

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 0.803619 0.792608 0.803432 0.721749 0.790406 0.614135 0.750393
g03 1.000000 1.005010 1.004720 1.005006 1.003814 1.004989 1.002490
g04 -30665.539 -30665.538672 -30665.500 -30665.538672 -30665.500 -30665.538672 -30665.500
g05 5126.4981 5126.484154 5126.640 5129.178298 5461.081333 5148.859415 6104.750
g06 -6961.813880 -6961.813876 -6961.810 -6961.813876 -6961.810 -6961.813876 -6961.810
g07 24.306209 24.306921 24.351100 24.371253 25.355771 24.593504 27.316800
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630057 680.630057 680.638 680.630057 680.852393 680.630058 681.553
g10 7049.3307 7049.459452 7057.5900 7099.101386 7560.047857 7251.396245 8104.310
g11 0.750000 0.749000 0.749999 0.749000 0.750107 0.749000 0.752885
g12 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
g13 0.053950 0.081498 0.068665 0.626881 1.716426 0.997587 13.669500

pursue graduate studies at the Center for Research in Math-
ematics.

9. REFERENCES
[1] G. Coath and S. K. Halgamuge. A comparison of

constraint-handling methods for the application of
particle swarm optimization to constrained nonlinear
optimization problems. In Proceedings of the 2003
Congress on Evolutionary Computation, pages
2419–2425. IEEE, December 2003.

[2] R. Eberhart, R. Dobbins, and P. Simpson.
Computational Intelligence PC Tools. Academic Press
Professional, 1996.

[3] J. Fieldsend and S. Singh. A multi-objective algorithm
based upon particle swarm optimization, and efficient
data structure and turbulence. In Proceedings of 2002

U.K. Workshop on Computational Intelligence, pages
37–44. The European Network on Intelligent
Technologies for Smart Adaptive Systems, September
2002.

[4] N. Franken and A. P. Engelbrecht. Comparing pso
structures to learn the game of checkers from zero
knowledge. In Proceedings of the 2003 Congress on
Evolutionary Computation, pages 234–241. IEEE,
December 2003.

[5] A. Hernandez-Aguirre, S. Botello, and C. Coello.
Passss: An implementation of a novel diversity
strategy to handle constraints. In Proceedings of the
2004 Congress on Evolutionary Computation
CEC-2004, volume 1, pages 403–410. IEEE Press,
June 2004.

[6] J. Kennedy. Small worlds and mega-minds: Effects of

214

Table 8: The Best Results of PESO and DEPSO for
Michalewicz’ benchmark

TF Optimal PESO DEPSO

g01 -15.000000 -15.000000 -15.000000
g02 0.803619 0.792608 0.7868
g03 1.000000 1.005010 1.0050
g04 -30665.539 -30665.538672 -30665.5
g05 5126.4981 5126.484154 5126.484
g06 -6961.81388 -6961.813876 -6961.81
g07 24.306209 24.306921 24.586
g08 0.095825 0.095825 0.095825
g09 680.630057 680.630057 680.641
g10 7049.3307 7049.459452 7267.4
g11 0.750000 0.749000 0.74900

neighborhood topology on particle swarm
performance. In IEEE Congress on Evolutionary
Computation, pages 1931–1938. IEEE, July 1999.

[7] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference On Neural Networks, pages 1942–1948.
IEEE, November 1995.

[8] J. Kennedy and R. Eberhart. The Particle Swarm:
Social Adaptation in Information-Processing Systems.
McGraw-Hill, London, 1999.

[9] R. Mendes, J. Kennedy, and J. Neves. The fully
informed particle swarm: Simpler, maybe better.
IEEE Transactions on Evolutionary Computation,
8(3):204–210, June 2004.

[10] E. Mezura. Alternatives to Handle Constraints in
Evolutionary Optimization. PhD thesis,
CINVESTAV-IPN, Mexico, DF, 2004.

[11] T. Runarsson and X. Yao. Stochastic ranking for
constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation,
4(3):284–294, September 2000.

[12] R. Storn. Sytem design by constraint adaptation and
differential evolution. IEEE Transactions on
Evolutionary Computation, 3(1):22–34, April 1999.

[13] G. Toscano and C. Coello. A constraint-handling
mechanism for particle swarm optimization. In
Proceedings of the 2004 Congress on Evolutionary
Computation, pages 1396–1403. IEEE, June 2004.

[14] J. Zhang and F. Xie. Depso: Hybrid particle swarm
with differential evolution operator. In Proceedings of
IEEE International Conference on Systems, Man and
Cybernetics, pages 3816–3821. IEEE, October 2003.

APPENDIX
Next, we enumerate the test problems used for our exper-
iments. This is the well known Michalewicz’ benchmark
extended by Runarsson and Yao [11].

1. g01 Minimize: f(~x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i −

∑13
i=5 xi

subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤
100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global optimum is
at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15.
Constraints g1, g2, g3, g4, g5 and g6 are active.

2. g02 Maximize: f(~x) =

∣∣∣∣∣
∑n

i=1 cos4(xi)−2
∏n

i=1 cos2(xi)√∑n
i=1 ix2

i

∣∣∣∣∣
subject to:

g1(~x) = 0.75−
n∏

i=1

xi ≤ 0

g2(~x) =
n∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The
global maximum is unknown; the best reported solution is
f(x∗) = 0.803619. Constraint g1 is close to being active
(g1 = −10−8).

3. g03 Maximize: f(~x) =
(√

n
)n ∏n

i=1 xi

subject to:

h(~x) =
n∑

i=1

x2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global
maximum is at x∗i = 1/

√
n (i = 1, . . . , n) where f(x∗) = 1.

4. g04 Minimize: f(~x) = 5.3578547x2
3 + 0.8356891x1x5

+ 37.293239x1 − 40792.141
subject to:

g1(~x) = 85.334407 + 0.0056858x2x5

+ 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5

− 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5

− 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5

− 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤
45 (i = 3, 4, 5). The optimum solution is x∗ = (78, 33,
29.995256025682, 45, 36.775812905788) where f(x∗) =
−30665.539. Constraints g1 y g6 are active.

215

5. g05 Minimize: f(~x) = 3x1 + 0.000001x3
1 + 2x2

+ (0.000002/3)x3
2

subject to:

g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25)

+ 1000 sin(−x4 − 0.25) + 894.8− x1 = 0

h4(~x) = 1000 sin(−x3 − 0.25)

+ 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h5(~x) = 1000 sin(−x4 − 0.25)

+ 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤
0.55, and −0.55 ≤ x4 ≤ 0.55. The best known solution
is x∗ = (679.9453, 1026.067, 0.1188764, −0.3962336) where
f(x∗) = 5126.4981.

6. g06 Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solu-
tion is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388.
Both constraints are active.

7. g07 Minimize:

f(~x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 ≤ 120

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 ≤ 30

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is
x∗ = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where f(x∗) = 24.3062091. Constraints g1, g2,
g3, g4, g5 and g6 are active.

8. g08 Maximize: f(~x) =
sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to:

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum
solution is located at x∗ = (1.2279713, 4.2453733) where
f(x∗) = 0.095825. The solutions is located within the feasi-
ble region.

9. g09 Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global op-
timum is x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,
−0.6244870, 1.038131, 1.594227) where f(x∗) =
680.6300573. Two constraints are active (g1 and g4).

10. g10 Minimize: f(~x) = x1 + x2 + x3

subject to:

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 833.33252x4 + 100x1

− 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3),
10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global optimum
is: x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307. g1,
g2 and g3 are active.

11. g11 Minimize: f(~x) = x2
1 + (x2 − 1)2

subject to:

h(~x) = x2 − x2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution
is x∗ = (±1/

√
2, 1/2) where f(x∗) = 0.75.

12. g12 Maximize: f(~x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:

g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where: 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r=1,2,. . . ,9. The
feasible region of the search space consists of 93 disjointed
spheres. A point (x1, x2, x3) is feasible if and only if there
exist p, q, r such the above inequality holds. The global op-
timum is located at x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13 Minimize: f(~x) = ex1x2x3x4x5

subject to:

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x3
1 + x3

2 + 1 = 0

where: −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2
(i = 3, 4, 5). The optimum solution is x∗ = (−1.717143,
1.595709, 1.827247,−0.7636413,−0.763645) where f(x∗) =
0.0539498.

216

