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Abstract

A new methodology for constrained parsimonious model-based clustering is introduced, where some tuning parameter allows

to control the strength of these constraints. The methodology includes the 14 parsimonious models that are often applied

in model-based clustering when assuming normal components as limit cases. This is done in a natural way by filling the

gap among models and providing a smooth transition among them. The methodology provides mathematically well-defined

problems and is also useful to prevent us from obtaining spurious solutions. Novel information criteria are proposed to help

the user in choosing parameters. The interest of the proposed methodology is illustrated through simulation studies and a

real-data application on COVID data.

Keywords Model-based clustering · Mixture modeling · Constraints

1 Introduction

Model-based clustering is a well-established and powerful

approach to cluster analysis. Fitting k multivariate Gaussian

distributed components to data is the most widely applied

methodology and maximum likelihood is the principle often

adopted for the fitting procedure.
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In this work, we use the notation φ(·;µ,Σ) for the prob-

ability density functions of the p-variate normal distribution

with mean µ and covariance matrix Σ . Given a sample

of p-dimensional observations {x1, · · · , xn}, the classifica-

tion likelihood approach searches for a partition {H1, . . . ,

Hk} of the {1, · · · , n} indices, mean vectors µ1, · · · , µk in

Rp, symmetric positive semidefinite p × p scatter matri-

ces Σ1, · · · ,Σk and positive weights π1, · · · , πk with∑k
j=1 π j = 1, which maximizes

k∑

j=1

∑

i∈H j

log
(
π jφ(xi ;µ j ,Σ j )

)
. (1)

Alternatively, the mixture likelihood approach seeks the max-

imization of

n∑

i=1

log

⎛
⎝

k∑

j=1

π jφ(xi ;µ j ,Σ j )

⎞
⎠ . (2)

An important problem when maximizing (1) and (2) is

that these two target likelihood functions are unbounded ones

(Kiefer and Wolfowitz 1956; Day 1969). Another important

issue is the typically large number of local maxima that can

be found. In the mixture likelihood case, the existence of

a sequence of local maxima converging to the true mixture

parameters is guaranteed as the sample size n increases. How-

ever, it is not obvious how to choose those local maxima in
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practical applications. In fact, many local maxima related

to these very high values of the likelihoods are known to

be clearly non-interesting and often referred to as “spurious

solutions” (see, e.g., chapter 3.10 in McLachlan and Peel

(2000)). In these cases, components basically defined from a

few, almost collinear, observations are obtained. Algorithms

applied for maximizing the target likelihood (EM algorithms

when maximizing (1) and CEM algorithm when maximiz-

ing (2)) can be affected by unboundedness, being trapped into

sub-optimal maxima or detect non-interesting local maxima.

This is even more problematic when applying well-known

information criteria (such as BIC and ICL). These criteria are

based on penalized versions of the target likelihood values

and spurious solutions or the unboundedness issue can result

in artificially large values for the likelihood. Note also that

it is necessary, when choosing k, to fit models with a higher

than needed number of components. All the previously men-

tioned problems are even more likely there to appear.

These problems with local maxima can be in principle

solved by carefully exploring and analyzing all possible local

maxima (McLachlan and Peel 2000). Although some inter-

esting procedures have been introduced in that direction (see,

e.g., Gallegos and Ritter (2018)), this approach is not straight-

forward and is certainly time consuming. Another widely

applied remedy consists in trying to initialize the algorithms

adequately in order that iterations return good local maxima.

It is well-known that EM and CEM algorithms are highly

dependent on their initialization, but it is also true that ade-

quate initialization strategies (for instance, appropriate hier-

archical model-based clustering initializations) often result

in sensible local maxima. However, theoretical guarantees

about correctness of initializations are difficult to establish

and it may happen that the final fitted model inherits signifi-

cant drawbacks from the initializing procedure. Additionally,

if two different initializations provide different final results,

it is difficult to justify not choosing the one with the larger

value of the likelihood without any further analysis. In fact,

some initialization procedures are clearly aimed at searching

directly for the largest values (see, e.g. Biernacki et al. 2003).

It is also common to enforce constraints on the Σ j scatter

matrices when maximizing (1) or (2). Among them, the use of

“parsimonious” models (Celeux and Govaert 1995; Banfield

and Raftery 1993) is one of the most popular and widely

applied approaches in practice. These parsimonious models

follow from a decomposition of the Σ j scatter matrices as

Σ j = λ jΩ jΓ jΩ
′
j , (3)

with λ j = |Σ j |1/p (volume parameters),

Γ j = diag(γ j1, . . . , γ jl , . . . , γ j p) with

det(Γ j ) =
p∏

l=1

γ jl = 1

(shape matrices), and Ω j (rotation matrices) with Ω jΩ
′
j =

Ip. Different constraints on the λ j , Ω j and Γ j elements are

considered across components to get 14 parsimonious mod-

els (which are coded with a combination of three letters).

These models reduce notably the number of free parameters

to be estimated, so improving efficiency and model inter-

pretability. Moreover, many of them turn the constrained

maximization of the likelihoods into well-defined problems

and help to avoid spurious solutions. Unfortunately, the

problems remain for models with unconstrained λ j volume

parameters, which are coded with the first letter as a V (V**

models). Aside from relying on good initializations, it is

common to consider the early stopping of iterations when

approaching scatter matrices with very small eigenvalues or

when detecting components accounting for a reduced number

of observations. A not fully iterated solution (or no solution

at all) is then returned in these cases. The idea is known to be

problematic when dealing with (well-separated) components

made up of a few observations.

Starting from a seminal paper by Hathaway (1985), an

alternative approach is to constrain the Σ j scatter matrices

by specifying some tuning constants that control the strength

of the constraints. A fairly comprehensive review of this

approach can be found in García-Escudero et al. (2018).

For instance, a recent proposal following this idea is the

“deter-and-shape” one in García-Escudero et al. (2020). The

maximal ratio among the λ j terms is there constrained to be

smaller than a fixed constant and, additionally, the maximal

ratio γ jl/γ jl ′ in each Γ j shape matrix is also constrained to

be smaller than another fixed constant. In this work, we will

refer to these second type of constraint as “shape-within” as

they control the relative sizes of the shape elements “within”

each shape matrix individually. When this second constant is

set equal to 1, since all γ jl are then equal 1, we are imposing

spherical components.

In this work, we introduce new “shape-between” con-

straints where the maximal ratio γ jl/γ j ′l is controlled for

every fixed l for l = 1, . . . , p. Figure 1 shows a summary

of the two types of constraints considered on the shape ele-

ments. Notice that we have γ jl = γ j ′l for every j and j ′

in the most constrained case, but the fitted components are

not necessarily spherical. Therefore, these new constraints

are better suited to control differences among shape matri-

ces without assuming sphericity. The new constraints can be

easily combined with others typically imposed on the Ω j

rotation matrices.

The main contributions of this work are the following:

(a) The proposed constraints yield well-defined problems

and it is not necessary to include the specification of any

particular initialization strategy. An underlying popula-

tion (theoretical) problem can thus be defined. Section 4

shows existence results for both the sample and the pop-
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Fig. 1 Summary of the types of constraints considered on the shape

elements

ulation problems and we prove the consistency for the

sample solutions to the population one.

(b) The new constraints allow us to achieve, as limit cases,

the 14 parsimonious models which are commonly applied

in model-based clustering. These popular parsimonious

models cannot be obtained as limit cases when only con-

sidering “deter-and-shape(within)” constraints or other

constraints such as the ones based on eigenvalues ratios

(García-Escudero et al. 2015). However, contrary to what

happens with V** models, the associated likelihood

maximization problems are always well defined. It is

perhaps too extreme to choose only among strongly con-

strained models (maximal ratios exactly equal to 1) and

the fully unconstrained ones (maximal ratios taking arbi-

trarily large values). Sometimes it is clear that data do

not suggest considering the most constrained models,

but leaving them fully unrestricted may cause estima-

tion instabilities and the detection of spurious solutions.

A smooth transition between these extreme cases can

be obtained with the proposed methodology. An inter-

esting connection between the two types of constraints

(between-within) in the shape matrices elements is given

in Sect. 2, together with some practical consequences.

(c) Although 14 different algorithms are often employed to

estimate the classical parsimonious models, a unifying

algorithm is proposed in Sect. 3 which includes all the

14 classical parsimonious models as limit cases.

(d) Some general guidelines about how to choose the tuning

parameters are provided. In fact, the smooth transition

among models turns out to be useful to introduce novel

information criteria, inspired by those in Cerioli et al.

(2018). These criteria penalize high likelihood values

resulting from unnecessary model complexity associated

with the constraints. Model complexity here does not nec-

essarily correspond to the total number of parameters, but

it simply means that more flexibility in the constraints

allows us to fit more varied models. This proposal can

be seen as a first step in order to obtain a reduced list

of “sensible” cluster solutions, as done in Cerioli et al.

(2018).

Some simulations and a real data example are provided in

Sects. 6 and 7 to illustrate the interest of the proposed method-

ology. We do not claim that the well-established and widely

applied proposals considered for comparison are useless;

they have amply demonstrated their usefulness. However,

we illustrate that the proposed methodology can also be very

useful and that there is room for further investigations of

this new proposal. Concluding remarks and open research

directions are given in Sect. 8.

2 Proposedmethodology

We impose three different types of constraints on the Σ j

matrices which depend on three constants cdet, cshw and cshb
all of them being greater than or equal to 1.

The first type of constraint serves to control the maximal

ratio among determinants and, consequently, the maximum

allowed difference between component volumes:

“deter”:
max j=1,...,k |Σ j |
min j=1,...,k |Σ j |

=
max j=1,...,k λ

p
j

min j=1,...,k λ
p
j

≤ cdet.

(4)

The second type of constraint controls departures from

sphericity “within” each component:

shape-“within”:
maxl=1,...,p γ jl

minl=1,...,p γ jl

≤ cshw for j = 1, . . . , k. (5)

This provides a set of k constraints that in the most con-

strained case, cshw = 1, imposes Γ1 = · · · = Γp = Ip,

where Ip is the identity matrix of size p, i.e., sphericity of

components.

Constraints (4) and (5) were the basis for the “deter-and-

shape” constraints in García-Escudero et al. (2020). These

two constraints resulted in mathematically well-defined con-

strained maximizations of the likelihoods in (1) and (2).

However, although highly operative in many cases, they do

not include, as limit cases, all the already mentioned 14 par-

simonious models. For instance, we may be interested in the

same (or not very different) Γ j or Σ j matrices for all the

mixture components and these cannot be obtained as limit

cases from the “deter-and-shape” constraints.

In this work, we introduce a third type of constraint that

serves to control the maximum allowed difference between

shape elements “between” components:
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shape-“between”:
max j=1,...,k γ jl

min j=1,...,k γ jl

≤ cshb for l = 1, . . . , p. (6)

This new type of constraint allows us to impose “simi-

lar” shape matrices for the components and, consequently,

enforce Γ1 = · · · = Γk in the most constrained cshb = 1

case .

Additionally, another type of constraint on the rotation

Ω j matrices can be combined with the previous ones. Three

different constraintsrot on the rotation matrices can be con-

sidered and coded with the letters E, I and V. If rot=E, then

we are assuming the same rotation matrices Ω1 = · · · = Ωk

for all the components. If rot=I, then we are assuming

Ω1 = · · · = Ωk = Ip, i.e. axes parallel to the coordinate

axes (conditional independence within cluster components).

Finally, rot=V leaves the rotation matrices Ω j fully uncon-

strained.

In the third case of fully unconstrained rotation matrices

rot=V, we choose the diagonal elements of Γ j (by choosing

the appropriate rotation Ω j matrices) such that these shape

elements appear in non-increasing order:

γ j1 ≥ · · · ≥ γ jl ≥ · · · ≥ γ j p. (7)

This ordering makes sense since adequate rotations (in the

rot=V case) can be performed such that ordered elements

within each shape matrix are achieved.

The following lemma shows an interesting connection

between the two different types of constraints on the shape

matrices.

Lemma 1 If the “shape-within” constraints (5) are satisfied

for a constant cshw ≥ 1, then

γ jl

γ j ′l
≤ c

(p−1)/p

shw
, (8)

for any j, j ′ ∈ {1, . . . , k} and l = 1, . . . , p.

The proof of this technical lemma is given in Appendix

A. When taking into account the definition of the “shape-

between” constraints in (6) as a maximal ratio, the previous

lemma implies that the choice of cshw in (5) modifies the

effect of cshb in (6) and that there is no point in considering

cshb not obeying

cshb ≤ c
(p−1)/p

shw
. (9)

For instance, this implies that cshb ≤ √
cshw when we are

in dimension p = 2 and that we are obviously assuming

cshb = 1 whenever we set cshw = 1.

An important consequence is that, although we potentially

have 23 ×3 = 24 different extreme models (appearing when

Table 1 Extreme models for the different limiting values of constants

cdet, cshw and cshb and the three possible rotations in rot

cdet cshw cshb rot Model

1 1 1 EII

∞ 1 I EEI

E EEE

V EEV

∞ I EVI

E EVE

V EVV

∞ 1 1 VII

∞ 1 I VEI

E VEE

V VEV

∞ I VVI

E VVE

V VVV

cdet, cshw and cshb are chosen equal to 1 or ∞ and the three

possible constraints rot on the rotations), not all these 24

models are feasible (because cshw = 1 necessarily implies

cshb = 1) and only the 14 well-known parsimonious mod-

els make sense. Table 1 shows how these 14 limit models

are derived from different combinations of constraints (this

table only includes 14 rows). Table 1 helps to understand the

smooth transition among all these 14 models when constants

cdet, cshw and cshb are moved in a controlled fashion. This

smooth transition is useful for introducing the novel infor-

mation criteria in Sect. 5.

The “deter-and-shape” constraints also appear as a limit

cases when cshb tends to ∞ and rot=V is chosen. Notice

that Lemma 1 implies that when cshw is chosen close to 1 in

the “deter-and-shape” approach, then we are also (implicitly)

assuming that cshb is close to 1 too. On the contrary, a large

cshw is still compatible with a cshb as close to 1 as desired.

In fact, choosing moderate values for cdet and cshb (but not

exactly equal to 1) and fixing a very large cshw value, together

with rot=V, turns out to be convenient and advisable, pro-

viding a very competitive procedure in many cases.

3 Algorithm

In this section, we introduce a feasible ECM algorithm (Meng

and Rubin 1993) that can be applied to the proposed method-

ology. This algorithm covers all the 14 classical parsimonious

models as limit cases in a unified fashion and therefore we do

not need to consider 14 different algorithms. The “optimal

truncation” operator introduced in Fritz et al. (2013), denoted

as opt.trunc, plays a very important role, as it has in previous
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constrained model-based clustering approaches. For the sake

of completeness, this operator is reviewed in Appendix B.

The proposed algorithm follows analogous steps as EM

and CEM algorithms, but iterative procedures may be needed

at some points. In the t-th step, the constrained scatter matri-

ces are going to be updated as

Σ
(t)
j = d j R j D j R′

j ,

for some d j > 0, diagonal matrices D j with |D j | = 1 and R j

being orthogonal matrices. All these d j , R j and D j elements

are determined through iterative procedures where, roughly

speaking, these elements are sequentially improved in turn

by optimally updating one of them (in the sense of increasing

the target likelihood and fulfilling the constraints) condition-

ally on the other elements. Further iterations are sometimes

required for D j and R j within that iterative procedure.

Iterations can be stopped when reaching a maximal num-

ber of iterations and we use the notation “iter.max.***”

when referring to maximal number of allowed iterations.

Additionally, it is useful to monitor “relative changes” in

updated parameters and stop iterations whenever relative

changes are found smaller than some pre-specified small tol-

erances. We use the simplified notation ∆b for measuring the

relative change in the h-th iteration of parameter b denoted

by b(h) with respect to b(h−1) in the previous (h − 1)-th

step (we simplify the notation by deleting the dependence on

index h). All these small tolerances are going to be notated as

“tol.***.” More details on these aspects are provided in

Remark 1. Additionally, nstart controls the total number

of random initializations.

We denote the parameters at the t-th step of the pro-

posed algorithm by θ (t) = (π
(t)
1 , · · · , π

(t)
k , µ

(t)
1 , · · · , µ

(t)
k ,

Σ
(t)
1 , · · · ,Σ

(t)
k ) and W j (x; θ (t)) = π

(t)
j φ(x;µ

(t)
j ,Σ

(t)
j ).

1. Initialization: The procedure is initialized nstart

times by randomly selecting different initial θ (0) =
(π

(0)
1 , . . . , π

(0)
k , µ

(0)
1 , . . . , µ

(0)
k ,Σ

(0)
1 , . . . , Σ

(0)
k ) sets of

parameters. A simple strategy for this initialization is to

randomly select k × (p + 1) observations and use them,

after splitting them into k groups, to compute k initial

µ
(0)
j centers and k initial scatter matrices Σ

(0)
j . It may

happen that the initial Σ
(0)
j matrices do not satisfy the

required constraints but the constraints will be imposed

in the following iterative step.

2. Iterative step:

t ← t + 1

2.1. Computing observation weights: From θ (t−1), obser-

vation weights are computed as

τ j (xi ; θ (t))

=

⎧
⎨
⎩

1 if W j (xi ; θ (t−1))

= max{W1(xi ; θ (t−1)), . . . , Wk(xi ; θ (t−1))}
0 if not

,

when maximizing (1) and the associated H j sets are

H
(t)
j = {i : τ j (xi ; θ (t)) = 1}. On the other hand,

when maximizing (2), observation weights are com-

puted as

τ j (xi ; θ (t)) =
W j (xi ; θ (t−1))

∑k
j=1 W j (xi ; θ (t−1))

.

2.2. Updating component weights: From these τ j (xi ; θ (t))

weights, we define

n j =
n∑

i=1

τ j (xi ; θ (t)),

and the component weights are updated as

π
(t)
j = n j/n.

2.3. Updating location parameters: Location parameters

are updated as

µ
(t)
j =

1

n j

n∑

i=1

τ j (xi ; θ (t))xi .

2.4. Updating scatter matrices: Updating the scatter

matrices Σ
(t)
j is not so straightforward. As previ-

ously commented, the updated scatter matrices are

obtained as Σ
(t)
j = d j R j D j R′

j , where these d j , D j

and R j terms have to be obtained through iterations.

Our starting point is the k weighted sample covari-

ance matrices defined as

S j =
1

n j

n∑

i=1

τ j (xi ; θ (t))(xi − µ
(t)
j )(xi − µ

(t)
j )′.

2.4.1 Initialization:

u ← 0

Initially set d j = |S j |1/p and R j as follows:

rot=V Take R j as the matrix whose

columns are the eigenvectors of the S j

matrices associated with their eigenvalues

in decreasing order.

rot=I Take R1 = · · · = Rk = Ip.

rot=E Take R1 = · · · = Rk = R where

R is the matrix whose columns are the

eigenvectors of the “pooled” scatter matrix
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S =
∑k

j=1
n j

n
1
d j

S j associated to its eigen-

values.

2.4.2 Iterative part:

u ← u + 1

2.4.2.1 Improving the shape D j matrices (needs

iterations through D
(s)
j ):

(i) s ← 0 and initialize D
(0)
j as follows:

rot=V D
(0)
j = diag(R′

j S j R j )/d j

rot=I D
(0)
j = diag(

∑k
j=1

n j

n
1
d j

S j )

rot=E D
(0)
j = diag(

∑k
j=1

n j

n
1
d j

RS j R′)

(ii) Take s ← s +1 and apply the “within”

constraints as:

{e j1, . . . , e j p} ← opt.trunccshw

(
{1};

{d(s−1)
j1 , . . . , d

(s−1)
j p }

)
,

for j = 1, . . . , k.

(iii) Normalize the elements in {e j1, . . . , e j p}
in order to get unit determinant shape

matrices by taking e jl ← e jl/
p

√∏p

l=1 e jl

for l = 1, . . . , p and j = 1, . . . , k.

(iv) rot=V case: Consider a permutation

σ j , which serves to sort the previous ele-

ments in decreasing order as e jσ j (1) ≥
· · · ≥ e jσ j (p) and take e jl ← e jσ j (l) for

l = 1, . . . , p.

v) Apply the “between” constraints:

{e1l , . . . , ekl} ← opt.trunccshb

(
{n j }k

j=1;
{e1l , . . . , ekl}

)

for l = 1, . . . , p.

(vi) rot=V case: Undo the order transfor-

mations, e jl ← e
jσ−1

j (l)
.

vii) Update D
(s)
j = diag(d

(s)
j1 , . . . , d

(s)
j p )

← diag(e j1, . . . , e j p)

viii) Go back to ii) if s < iter.max.D

and ∆D(·) > tol.D or otherwise con-

clude iterations and finally update

D j ← D
(s)
j .

2.4.2.2 Improving the volume d j parameters:

Compute ν1, . . . , νk with

ν j = trace(D−1
j R′

j S j R j )/p

and update the d j parameters

{d1, . . . , dk} ← opt.trunc
c

1/p

det

(
{n j }k

j=1;

{ν1, . . . , νk}
)
.

2.4.2.3 Improving rotations R j matrices:

rot=V No change is needed in the R j

matrices

rot=I Nothing to be done because R j =
I

rot=E (needs iterations through R(r)):

Let W j = n j

n
S j and ω j is the largest eigen-

value of W j .

(i) Set r ← 0 and R(0) ← R for R1 =
· · · = Rk = R

(ii) r ← r + 1 and

F =
k∑

j=1

(
1

d j

D−1
j W j −

ω j

d j

D−1
j R(r−1)

)

and F = UΛV its singular value decom-

position

(iii) R(r) ← V U

(iv) Go back to ii) if r < iter.max.R

and ∆R(·) > tol.R or otherwise con-

clude iterations and finally update

R1 = · · · = Rk ← R(r).

2.4.2.4 Go back to Step 2.4.2 if u < iter.max.

dDR and max{∆d,∆D,∆R} > tol.dDR.

2.4.3 Update Σ
(t)
j = d j R j D j R′

j

3. Go back to Step 2 if t < iter.max.theta and ∆θ >

tol.theta.

4. Evaluate the target function after applying this iterative

process, the associate likelihood, depending on the CEM

or EM approach, is computed. The parameters yielding

the highest value of this target function are returned as

the algorithm’s output.

Remark 1 As seen in the algorithm, several constants asso-

ciated with the maximum number of iterations iter.

max.theta,iter.max.dDR,iter.max.D anditer.

max.R have to be specified. With respect to tolerances, we

are using tol.theta, tol.dDR, tol.D and tol.R.

When the monitoring parameters b(h) involving several

terms, i.e., b(h) = {b(h)
1 , . . . , b

(h)
k }, the relative changes in

the h-th iteration are measured as

∆b = max
j=1,...,k

{
||vec(b(h)

j ) − vec(b
(h−1)
j )||/||vec(b(h−1)

j )||
}

.

Notice that we use vec(·) to convert matrices into vectors

when needed. The only exception is when monitoring iterated

R(h) rotation matrices where we use
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∆R =
∣∣p − trace

[
((R(h))′ R(h−1))′(R(h)(R(h−1))′)

]∣∣
p

.

Remark 2 Trivial computational short-cuts can be introduced

in limit cases, where any of these constants cdet, cshw and cshb
are chosen equal to 1 or to ∞. In those cases, many iterative

steps can be avoided. It is also worthwhile to notice that the

most computationally demanding version of the algorithm

happens when rot=E.

The rationale behind all the steps in this algorithm fol-

lows from adaptation of algorithms in the literature. We

always try to improve a subset of parameters conditionally

on the remaining ones, and, of course fulfilling the required

constraints. For instance, the algorithm of Browne and McNi-

cholas (2014) is used in Step 2.4.2.2 and the step in 2.4.2.2

follows from García-Escudero et al. (2020). The“optimal

truncation” operator is also used in step 2.4.2.1 to impose

the novel constraint in (6).

4 Theoretical results

If we assume that {x1, . . . , xn} is a sample from a theoret-

ical probability distribution P , a population version of the

constrained parsimonious methodology can be defined and

existence and consistency results can be proved whenever

finite restriction constants cdet, cshw and cshb are considered.

Given θ = (π1, · · · , πk, µ1, · · · , µk,Σ1, · · · ,Σk), we

introduce the functions W j (x; θ) = π jϕ(x;µ j ,Σ j ) and

W (x; θ) = max{W1(x; θ), . . . , Wk(x; θ)}, and the set

Θ[cdet,cshw,cshb] = {θ : Σ1, . . . , Σk satisfy(4), (5) and (6)

for cdet, cshw and cshb}.

Theorem 1 provides existence (for both theoretical and

sample problem) and consistency result under finite second-

order moment conditions.

Theorem 1 If P is not concentrated at k points and EP‖ ·
‖2 < ∞

(a) then there exists some θ ∈ Θ[cdet,cshw,cshb] such that the

maximum of

EP

⎡
⎣log

[ k∑

j=1

W j (·; θ)

]⎤
⎦ (10)

is achieved when θ is constrained to be in Θ[cdet,cshw,cshb].

(b) then there exists θ ∈ Θ[cdet,cshw,cshb] such that the maxi-

mum of

EP

⎡
⎣

k∑

j=1

z j (·; θ) log W j (·; θ)

⎤
⎦ , (11)

with z j (x; θ) = I {x : W (x; θ) = W j (x; θ)}, is achieved

when θ is constrained to be in Θ[cdet,cshw,cshb].

Let us consider an i.i.d. sample {x1, . . . , xn} from the

underlying distribution P and Pn =
∑n

i=1 δ{xi } the associ-

ated empirical distribution. The maximizations (1) and (2)

under constraints (4), (5) and (6) when P = Pn reduce

exactly to the methodology just presented in Sect. 2. Con-

sequently, Theorem 1 also guarantees the existence of the

solution of the empirical problem.

Moreover, a consistency result can be proven for the

sequence of empirical maximizers toward the maximizer

of the theoretical problem if it is unique (up to a rela-

belling). Let θn = (πn
1 , · · · , πn

k , µn
1, · · · , µn

k ,Σn
1 , · · · ,

Σn
k ) ⊂ Θ[cdet,cshw,cshb] denote the sequence of empirical

maximizers for the sequence of empirical sample distribu-

tions {Pn}∞n=1 from P . With this notation, Theorem 2 presents

the consistency result.

Theorem 2 Let us assume that P is not concentrated at k

points, that EP‖ · ‖2 < ∞ and that θ0 ∈ Θ[cdet,cshw,cshb] is

the unique constrained maximizer of (10), resp. (11), up to

a relabelling of the parameters corresponding to each of the

k components, for P. If {θn}∞n=1 is a sequence of empirical

maximizers of (1), resp. (2), when θn ∈ Θ[cdet,cshw,cshb] then

θn → θ0 almost surely.

The proofs of Theorems 1 and 2 derive from similar results

in García-Escudero et al. (2020) given that, trivially, we have

Θ[cdet,cshw,cshb] ⊂ Θc1,c2 , for c1 = cdet and c2 = cshw, with

the same notation for Θc1,c2 as in García-Escudero et al.

(2020). The results in that previous work were, in turn, based

on more general theoretical results in García-Escudero et al.

(2015) that had been proved for eigenvalues ratio constraints.

Remark 3 It can be also proven that finite cdet and cshb val-

ues are just enough for existence and consistence results if

P satisfies EP‖ · ‖2 < ∞ and P is not concentrated at k

hyperplanes.

5 Novel information criteria

In this section, we introduce novel information criteria

intended to automatically choose the number of mixture com-

ponents k and pars = [cdet, cshw, cswb, rot]. The proposal is

to choose

123



2 Page 8 of 15 Statistics and Computing (2022) 32 :2

[̂k, p̂ars] = arg min
k,pars

BIC[k,pars],

for

BIC[k,pars] = −2L
pars
k + v

pars
k log n, (12)

where L
pars
k is the maximum value achieved in the constrained

maximization of (2) under constraints defined by pars, and

where v
pars
k is a penalty term defined as:

v
pars
k = kp︸︷︷︸

means

+ k − 1︸ ︷︷ ︸
weigths

+ (k − 1)

(
1 −

1

c
1/p

det

)
+ 1

︸ ︷︷ ︸
determinant pars.

+ (p − 1)

(
1 −

1

cshw

)[
(k − 1)

(
1 −

1

cshb

)
+ 1

]

︸ ︷︷ ︸
shape pars.

+ k(rot)
p(p − 1)

2︸ ︷︷ ︸
rotation pars.

,

with

k(rot) =

⎧
⎨
⎩

0 if rot=I

1 if rot=E

k if rot=V

.

Notice that larger values of cdet, cshw and cswb yield less

restricted Σ j scatter matrices, given that more complex mod-

els are allowed to be fitted. It is important to note that

“model complexity” here does not necessarily correspond to

an increased number of parameters, and so “smaller complex-

ity” does not necessarily mean that there are fewer parameters

to be interpreted. We also consider a source of complexity

for the Σ j matrices which depends on the allowed rotations

through rot.

The proposal follows a similar philosophy so that intro-

duced in Cerioli et al. (2018). The same arguments in terms

of “relative volumes” (as those in Theorem 3.1 in that paper)

have been taken into account to derive the previous expres-

sion for v
pars
k . It is easy to see that v

pars
k exactly coincides

with the number of free parameters for the classical 14

parametrizations which appear as limit cases (restriction con-

stants equal to 1 or tending to ∞) reviewed in Table 1.

Moreover, the proposal also coincides with the BIC proposal

for the “deter-and-shape” constraints previously introduced

in García-Escudero et al. (2020) when the constraint (6) is

removed by taking cshb → ∞. In that case, the contribution

to v
pars
k due to parameters associated to “shape elements” is

just

k(p − 1)

(
1 −

1

cshw

)

and k(rot) = k (no constraints on the rotation matrix).

In this work, we have just focused on the BIC proposal,

which is an extension of the MIX-MIX approach in Cerioli

et al. (2018). A classification likelihood approach can be also

applied by replacing the target function (2) with (1) to define

extensions of the MIX-CLA and CLA-CLA approaches (in

the spirit of the ICL criterion in Biernacki et al. (2000)).

The minimization of the criterion (12) over all the possible

combinations of k and pars is not an easy task. In order to

circumvent this problem, we just consider powers of 2 for the

restriction constants and propose the following procedure:

1. Fix K as an upper bound for the maximum number of

components and C such that 2C is large enough that the

constraints enforced are not very strict.

2. We first obtain

[k∗, c∗
det, c∗

shw, c∗
shb, rot

∗]
= arg max

(k,pars)∈{1,...,K }×{1,2C−1}3×{I,E,V}
BIC[k,pars]. (13)

This implies applying the proposed methodology for

K × 14 slightly constrained models (and guaranteeing

that numerical issues due to singularities are avoided), in

correspondence with all the feasible models in Table 1.

These K × 14 models need also to be fitted initially as

happens with other BIC proposals for parsimonious mod-

els. All the other intermediate models (to evaluate) are

included within those model fitted with restriction con-

stants equal to 2C−1.

This maximization will directly provide our final choice

for the number of clusters k∗ and for the chosen rotation

rot∗. Moreover, it also returns our final choices for cdet,

cshw and cshb whenever any of these c∗
det

, c∗
shw

and c∗
shb

take the value 1.

3. Constants cdet, cshw and cshb need to be refined because

just upper bounds are initially allowed in Step 1. To per-

form these refinements, let us obtain

[c∗∗
det, c∗∗

shw, c∗∗
shb]

= arg max
(cdet,cshw,cshb)∈C

BIC[k = k∗, cdet, cshw, cshb, rot

= rot∗], (14)

where

C =
{
20, . . . , min{c∗

det, 2C−1}
}

×
{
20, . . . , min{c∗

shw, 2C−1}
}

×
{
20, . . . , min{c∗

shb, (c
∗
shw)(p−1)/p, 2C−1}

}
.

We are taking advantage of the initial information about

parameters resulting from Step 1 and applying Lemma
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1 to reduce notably the number of configurations to be

tested.

4. After this process, we finally consider [k∗, c∗∗
det

, c∗∗
shw

,

c∗∗
shb

, rot∗] as a suggestion for [̂k, p̂ars].

6 Simulation study

In this section, we show the advantage of our constrained

proposals using simulated datasets. We first consider exam-

ples where the number of clusters k is assumed to be known

(Sect. 6.1). We then show the effectiveness of the novel

information criteria for choosing models (Sect. 6.2). As men-

tioned in the introduction section, we do not claim that the

well-established and widely applied proposals considered for

comparison in this section are useless, since they clearly have

long proven their validity in many scenarios and real data

applications. We show examples that highlight the usefulness

of the proposed methodology in achieving extra stability.

6.1 Comparison for a fixed number of components

We compare first the performance of the proposed method-

ology with respect to well-known implementations of the 14

parsimonious model-based clustering methods when assum-

ing a known number of components and the parametrization

needed (the VVV parametrization in all cases).

The first example is based on k = 3 normally distributed

components, where the first two coordinates (X1, X2)
′ of

these components are generated from bivariate normals with

mean parameters equal to (0, 0)′, (2, 6)′ and (6, 0)′ , and the

covariances matrices are

(
2 0

0 2

)
,

(
3 0

0 1

)
and

(
1 0

0 2

)
,

respectively. A third independent component X3 is gener-

ated from a univariate normal with 0 mean and variance 100,

i.e., X3 ∼ N (0, 100). This simulation scheme is denoted as

“lower p” case, but we also add an independent fourth coor-

dinate X4 ∼ N (0, 100) to generate the “higher p” case. In

the simulation study, we take random samples with n1 = 50,

n2 = 20 and n3 = 20 from each component in the “lower n”

case, and doubled sizes n1 = 100, n2 = 40 and n3 = 40 in

the “higher n” case.

To explore the effect of the restriction constants, always

applying the rot=V case, a three letters notation is used

when summarizing the simulation results. The first letter cor-

responds to the restriction constant chosen in cdet, the second

letter to the constant in cshw and the third letter to the con-

stant cshb. In these three letters, we use the letter “C” when

the constant defining the constraint is exactly chosen equal

to the maximal ratio for this constant computed from the true

model generating the data. On the other hand, we use letter

“U” when this constant is chosen so high that the procedure

is (almost unrestricted) by fixing it to be equal to 1010 (just

to avoid very extreme numerical issues). Letter “D” is used

when we double the value for the constant fixed in C, letter

“E” when we multiply the constant in C by 22, letter “F”

when we multiply by 24 and letter “G” when we multiply by

28.

We always consider the case k = 3 and rot=V and

apply the algorithm in Sect. 3 with nstart= 1000 and

iter.max= 100. We have included in the simulation study

two particular cases, namely, the CCU (that corresponds to

the “deter-and-shape” proposal with a large cshb = 1010),

and the CUC (corresponding to a large cshw = 1010).

The results obtained are compared with those which come

from applying the mixture (Browne et al. 2018) and the

Mclust (Scrucca et al. 2016) packages in R, when using

the VVV parametrization in both cases and when searching

for k = 3 components. We consider two available options for

initializing based on the k-means method (“mix_km”) and on

1000 random starts (“mix_rs”) when applying the mixture

package.

Figure 2 shows the value of the ARI-Adjusted Rand

Indexes (Hubert and Arabie 1985) for the obtained parti-

tions, with respect to the true classification, on the same 100

simulated data sets for each of the four possible scenarios

depending on the two possible dimensions and two possible

sample sizes.

In order to see the effect on the estimation of the param-

eters, the Euclidean distances when estimating all the true

mean vectors µ1 = (0, 0, 0)′, µ2 = (2, 6, 0)′ and µ3 =
(6, 0, 0)′ (lower p) and µ1 = (0, 0, 0, 0)′, µ2 = (2, 6, 0, 0)′

and µ3 = (6, 0, 0, 0)′ (higher p) are shown in Fig. 3.

Relabelling has been applied to match estimators with the

estimated location parameters.

Figure 4 finally shows the maximum values achieved by

the mixture likelihood obtained when maximizing the defin-

ing target likelihood function in (2).

As expected, the “higher n” cases exhibit clearly better

performances. We can also see in Figs. 2 and 3 that the

constrained approaches seem to provide higher ARI values

and lower estimation errors than their competitors, and that

those including letters C and D exhibit the most accurate

results among them. We can also see that the least constrained

approaches (including letters E, F, G and U) do not provide

good results (because stability seems to be lost when increas-

ing the restriction constants), but values of these constants

greater than the true ones in C are in general not excessively

detrimental. On the other hand, the unconstrained case UUU

gives the worst performance. We can also see similar unsat-

isfactory behavior as in the UUU case when applying the

VVV models with the mixture and the Mclust packages.

These approaches also considered theoretically a fully unre-
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Fig. 2 ARI values in the

comparative study for the k = 3

components example

Fig. 3 Sum of the Euclidean

distances when estimating the

true mean vectors in the

comparative study for the k = 3

components example

stricted approach as in the UUU case. However, despite this

lack of constraints in the scatter matrices, we observe that

the performance of mixture and Mclust depend heavily

on the initializing procedure. In this regard, we can see that

the initialization based on k-means is not satisfactory due to

the particular data generation scheme, which is clearly not

appropriate for k-means.

Even though “mix_rs” is also based on 1000 random ini-

tializations, as in our constrained proposals, we can see in

Fig. 4 that it does not reach values in the target likelihood so

high as those obtained in the UUU case (that could perhaps be

even greater if these constants were chosen at values greater

than 1010). Therefore, the type of initializations considered

in Step 1 of our algorithm seems to better explore the para-

metric space than the initializations in “mix_rs”. The same

happens with the initializations provided by k-means or by

the initializing procedure based on hierarchical model-based

clustering applied byMclust. The initializations can be use-

ful to avoid spurious solutions, but it is also important to note

that they are not striving to maximize the target likelihood
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Fig. 4 Maximum values

achieved when maximizing the

target likelihood function for the

k = 3 components example

function and they clearly influence the performance of the

methodology. Figure 4 also shows how the target likelihoods

steadily increase when increasing the values of the restric-

tion constants (C, D, E, F, G and U) and this could serve

to understand the degree of stability provided by constraints

and help us to achieve smooth transitions between models.

We briefly present another example with a higher k = 6

number of components. The example starts from a bivari-

ate mixture of six spherical normally distributed components

with the same scatter and component sizes equal to n1 = 23,

n2 = 36, n3 = 93, n4 = 38, n5 = 123 and n6 = 12

with the following mean vectors: (−4.5, 3.6)′, (0.40, 3.6)′,
(−4.4,−1)′, (9.2,−1)′, (0.4,−1)′, and (9.2, 3.6)′. We add

a third dimension by using an independent variable X3 ∼
N (0, 100), which makes these clusters become elongated.. A

simulation study, completely analogous to the one previously

described is considered. Figure 5 provides the Euclidean dis-

tances when estimating the corresponding six means of the

components individually.

We can see that the constrained approach seems to provide

better results also in this k = 6 example.

6.2 Comparison when choosing number of
components andmodels

We also compare the performance of the novel informa-

tion criteria introduced in Sect. 5 with respect to the BIC

procedures resulting from the application of the mixture

package (Browne et al. 2018). With this aim in mind, we sim-

ulate 100 samples of size n = 200 in dimension p = 10 for

each of the 14 classical parsimonious models. To be more

precise, each sample is generated from a k = 3 compo-

nents mixture where µ1, µ2 and µ3 and Σ1, Σ2 and Σ3 are

randomly generated parameters in such a way that the covari-

ance matrices satisfy the specific model constraints and also

a prefixed overlap rate equal to 0.05. That overlap is achieved

by applying the extension of the MixSim method of Maitra

and Melnykov (2010) given in Riani et al. (2015). Given two

clusters j and l obtained from normal densities φ(·;µ j ,Σ j )

and φ(·;µl ,Σl), with probabilities of occurrence π j and πl ,

the overlap between groups j and l is defined as the sum

of the two misclassification probabilities w jl = w j |l + wl| j

where w j |l = P[πlφ(X;µl ,Σl) < π jφ(X;µ j ,Σ j )]. The

average overlap is the sum of the off-diagonal elements of the

matrix of the misclassification probabilities w j |l divided by

k(k −1)/2. Note that when we say that the covariance matri-

ces satisfy the model constraints, we mean that we ensure

that the Σ1, Σ2 and Σ3 matrices do exactly satisfy the con-

strained models with the values of cdet, cshw and cswb as in

Table 1 but replacing the values of “∞” in that table by values

equal to 100 in the case of cdet or cshw and by a value equal

to 10 in the case of cswb. The mixture components weights

are always π1 = π2 = π3 = 1/3.

Figure 6 shows the ARI indexes between the true partition

and the partition obtained from the fitted mixture suggested

by the BIC-type information criterion. In this figure, we

use the notation “new” for the results associated with the

new proposed methodology and “mix_km” for those with

the mixture package when initialized with k-means and

“mix_rs” when initialized by using random starts (the same

number of random starts nstart as in “new” are consid-

ered).
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Fig. 5 Euclidean distances

when estimating the true mean

vectors in the comparative study

for the k = 6 components

example. Each panel

corresponds to one of the

components

Fig. 6 ARI values for the

simulated data sets when

applying the novel information

criteria and the BIC procedure

in the mixture package

Figure 7 shows the proportion of times that the true num-

ber of components, k = 3, is determined by the BIC-type

information criteria.

We can see in these two figures that the BIC methodol-

ogy in the mixture package is reasonably able to recover

the right number of components and the true data generat-

ing mechanism. However, the comparison is clearer in Fig.

7 when looking at the proportion of times that the true num-

ber of components is detected. We see that better results are

obtained when applying the new constrained approaches. Of

course, those differences are not so noticeable for the most

constrained (VVI, EVI, …, EII) models, where no great

advantages can be achieved by restricting even more.

The improvement is more clearly seen in Fig. 7 than in

Fig. 6, perhaps because spurious components, made up of

few observations, do not significantly modify the ARI, even

though they change the number of components detected. This

wrong determination of the number of components may of

course be problematic, when interpreting results. Note also

that constrained approaches seem to avoid partitions exhibit-

ing very low ARI values (outliers outside whiskers in Fig.

6).
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Fig. 7 Proportion of times that

the true number of components

k = 3 is determined by the

information criteria

7 Real data example: COVID data

The example is inspired by the analysis of a real data set

on the SARS-CoV-2 symptoms kindly provided to us by

the ASL3 Genovese Hospital. Measurements on six vari-

ables x1 = “heart rate (the number of beats the heart per

minute)”, x2 = “Oxygen Uptake Efficiency Slope (index

of functional reserve derived from the logarithmic relation

between oxygen uptake and minute ventilation during incre-

mental exercise),” x3 = “watts (reached by the patient during

the stress test on a cycle ergometer (stationary bike) at the

aerobic threshold, that is, when the patient ’begins to strug-

gle’),” x4 = “watts peak (watts reached at maximum effort

(during exercise test on exercise bike),” x5 = “value of the

maximum repetition (maximum force of muscle contraction

of the quadriceps femoris of the dominant limb expressed in

kg)” and x6 = “previous variable corrected on the subject (in

relation to the patient’s weight)” on 79 COVID patients and

77 non-COVID ones. Figure 8a shows the (supposedly) true

classification, as provided by the doctors. Data have been

collected by “Post-COVID Outpatient Rehabilitation Center

ASL3 Liguria Region Health System” and approved by the

Ethics Committee of Liguria region (Italy).

We will apply the (unsupervised) constrained model-

based clustering approach to see if something close to the

doctor’s classification partition is achieved. We will use the

modified BIC approach described in Sect. 5 to determine the

underlying number of clusters and the set of constraints to

be imposed.

The proposed BIC approach described in Sect. 5 is applied

with K = 5 and C = 8 (i.e., 2C−1 = 128). In the max-

imization of (13), after fitting 5 × 14 models, we obtain

k∗ = 2, c∗
det

= 1, c∗
shw

= 128, c∗
shb

= 1 and rot∗=E.

Afterwards, we perform the maximization in (14) where

C = 1 × {20, 21, . . . , 27−1} × 1. This means that we need to

obtain

c∗∗
shw = arg max

cshw∈{1,2,...,128}
BIC[k = 2, cdet = 1, cshw, cshb

= 1, rot = E],

(as we directly have c∗∗
det

= 1 and c∗∗
shb

= 1). Our BIC pro-

posal suggests [̂k, p̂ars] = [2, 1, 128, 1, E]. This is a quite

constrained solution where only the “within” components

shape elements are left notably unrestricted (the value of cshw
is such that only a slightly constrained ratio is considered).

The associated partition is shown in Fig. 8b and exhibits an

ARI index with respect to the “true” doctor’s classification

equal to 0.5891.

On the other hand, the BIC approach implemented through

function gpcm() in the mixture package in R (Browne

et al. 2018) suggests k = 2 but the EEE parameterization

results in an ARI equal to 0.0117 with respect to the doctor’s

suggested partition. This result is obtained when consider-

ing a k-means type initialization but the results do not seem

to improve when considering random initializations. The

results, for this particular data set, do not improve when we

apply the BIC criterion provided by the Mclust package

(Scrucca et al. 2016) that only suggests one k = 1 component

for this data set. TheVEE parameterization is suggested when

considering Mclust’s BIC criterion but restricted to mod-

els with k = 2, which yields a ARI=0.0414 that is notably
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Fig. 8 a Doctor-based “true”

classification for the COVID

data set with COVID patients

denoted with C symbols and

non-COVID by N symbols with

observations represented in the

first two principal components.

b Clustering results of the

constrained parsimonious

model-based clustering proposal

with parameters chosen from the

new BIC procedure

smaller that the 0.5891 achieved when applying the proposed

methodology with the new BIC proposal.

8 Conclusions and further directions

We have introduced a new methodology for constrained

parsimonious model-based clustering that depends on three

restriction constants cdet, cshw and cshb and on fixing a par-

ticular type rot of rotations. The methodology provides a

smooth transition among the well-known 14 parsimonious

models that are commonly applied in model-based clus-

tering when assuming normality for the components. The

proposed constraints result in mathematically well-defined

problems and provide extra control on the covariance matri-

ces of the fitted components. Novel information criteria have

been introduced to help the user in providing sensible choices

for all the tuning decisions.

There are many open research lines related to this new

approach. For instance, dealing with computational aspects

could still be needed to speed up the procedures. Although

MATLAB code for its practical application is now avail-

able, we are developing a more dedicated and easy to apply

implementation within the FSDA MATLAB toolbox (Riani

et al. 2012). This implementation will hopefully include more

elaborate graphical and numerical tools in helping to deter-

mine and explore the solutions obtained when moving all the

involved parameters in the spirit of Cerioli et al. (2018). With

that aim, stability and ARI distances among partitions could

be taken into account in order to derive a reduced (and ranked)

list of sensible partitions and also graphical summaries as

the “car-bike plots.” The methodology can be also adapted

to include “trimming” to introduce new robust model-based

clustering approaches.
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Appendix A: Proof of Lemma 1

Let us consider ξ j,l = log γ jl such that

ξ j,1 ≥ · · · ≥ ξ j,l ≥ · · · ≥ ξ j,p,

as in (7), under the constraint

p∑

l=1

ξ j,l = 0, (15)

(given that
∏p

l=1 γ jl = 1). Constraints (5), after log-

transformation, reduce to ξ j,l − ξ j,l ′ ≤ log cshw for any

l, l ′ ∈ {1, . . . , p} for a fixed j .

It is not difficult to see that the maximal possible difference

is achieved with repeated ξ j,l values and setting that maximal
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difference equal to log cshw. In that case, the most extreme

difference is for j and j ′ when

ξ j,1 = · · · = ξ j,l = ξ j,p + log cshw and ξ j,l+1 = · · · = ξ j,p

and

ξ j ′,1 = · · · = ξ j ′,l−1 = ξ j ′,p + log cshw and

ξ j ′,l = · · · = ξ j ′,p.

By taking into account the zero sum condition (15), we have

0 = pξ j,p + l log cshw and 0 = pξ j ′,p + (l − 1) log cshw, for

these two configurations. Therefore,

p(ξ j,l − ξ j ′,l) = (pξ j,l − (pξ j,p + l log cshw))

−(pξ j ′,l − (pξ j ′,p + (l − 1) log cshw))

= (p − 1) log cshw,

where we have used that ξ j,l − ξ j,p = log cshw and that

ξ j ′,l − ξ j ′,p = 0. Consequently, ξ j,l − ξ j ′,l = p−1
p

log cshw
for that most extreme possible difference and so (8) is just

proven after exponentiation.

Appendix B: “Optimal truncation” operator

For sake of completeness, we review the “optimal truncation”

procedure (Fritz et al. 2013) that has been extensively used

in the algorithm in Sect. 3.

Given a d ≥ 0 and a fixed restriction constant c ≥ 1, we

introduce the m-truncated value is defined as

dm =

⎧
⎨
⎩

d if d ∈ [m, cm]
m if d < m

cm if d > cm

.

Given {n j }J
j=1 ∈ NJ and {d j1, . . . , d j L}J

j=1 ∈ [0,∞)J×L ,

we define that operator as

opt.truncc

(
{n j }J

j=1; {d j1, . . . , d j L}J
j=1

)
,

which returns {d∗
j1, . . . , d∗

j L}J
j=1 ∈ [0,∞)J×L with d∗

jl =
d

mopt

jl for mopt being the optimal threshold value obtained as

mopt = arg min
m

J∑

j=1

n j

L∑

l=1

(
log

(
dm

jl

)
+

d jl

dm
jl

)
. (16)

Obtaining that optimal threshold value only requires the max-

imization of a real-valued function and mopt can be efficiently

obtained by performing only 2 · J · L + 1 evaluations (Fritz

et al. 2013) of (16) through a procedure which can be fully

vectorized.
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