
VLDB Journal manuscript No.
(will be inserted by the editor)

Constrained Physical Design Tuning

Nicolas Bruno · Surajit Chaudhuri

Received: date / Accepted: date

Abstract Existing solutions to the automated physi-
cal design problem in database systems attempt to min-

imize execution costs of input workloads for a given

storage constraint. In this work, we argue that this

model is not flexible enough to address several real-
world situations. To overcome this limitation, we in-

troduce a constraint language that is simple yet pow-

erful enough to express many important scenarios. We

build upon a previously proposed transformation-based

framework to incorporate constraints into the search
space. We then show experimentally that we are able to

handle a rich class of constraints and that our proposed

technique scales gracefully. Our approach generalizes

previous work that assumes simpler optimization mod-
els where configuration size is the only fixed constraint.

As a consequence, the process of tuning a workload be-

comes more flexible but also more complex, and getting

the best design in the first attempt becomes difficult.

We propose a paradigm shift for physical design tuning,
in which sessions are highly interactive, allowing DBAs

to quickly try different options, identify problems, and

obtain physical designs in an agile manner.

Keywords Constrained physical design tuning ·
Access methods · Interactive design and tuning

1 Introduction

In the last decade, automated physical design tuning

became a relevant area of research. As a consequence,

N. Bruno
Microsoft Research
E-mail: nicolasb@microsoft.com

S. Chaudhuri
Microsoft Research
E-mail: surajitc@microsoft.com

several academic and industrial institutions addressed
the problem of recommending a set of physical struc-

tures that increase the performance of the underlying

database system. The central physical design problem

statement has been traditionally stated as follows:

Given a workload W and a storage budget B, find the
set of physical structures, or configuration, that fits
in B and results in the lowest execution cost for W .

This problem is very succinctly described and under-
stood. Consequently, it has recently received consider-

able attention resulting in novel research results [2–4,7–

10,12–14,21,24,26] and industrial-strength prototypes

in all major DBMS [1,16,25]. Despite this substantial

progress, however, the problem statement and existing
solutions do not address important real-life scenarios,

as we discuss next. Consider the following query:

SELECT a, b, c, d, e

FROM R

WHERE a=10

and suppose that a single tuple from R satisfies a=10.
If the space budget allows it, a covering index IC over

(a, b, c, d, e) would be the best alternative for q, requir-

ing a single I/O to locate the qualifying row and all the

required columns. Now consider a narrow single-column
index IN over (a). In this case, we would require two

I/Os to answer the query (one to locate the record-id

of the qualifying tuple from the secondary index IN ,

and another to fetch the relevant tuple from the pri-

mary index). In absolute terms, IC results in a better
execution plan compared to that of IN . However, the

execution plan that uses IN is only slightly less efficient

than the one that uses IC (specially compared to the

näıve alternative that performs a sequential scan over
table R), and at the same time it incurs no overhead

for updates on columns b, c, d, or e. If such updates

are possible, it might make sense to “penalize” wide

2

indexes such as IC from appearing in the final config-

uration. However, current techniques cannot explicitly

model this requirement without resorting to artificial

changes. For instance, we could simulate this behavior

by introducing artificial UPDATE statements in the work-
load. (This mechanism, however, is not general enough

to capture other important scenarios that we discuss

below.)

Note, however, that the previous example does not

lead itself to a new “golden rule” of tuning. There are
situations for which the covering index is the superior

alternative (e.g., there could be no updates on table R

by design). In fact, an application that repeatedly and

almost exclusively executes the above query can result

in a 50% improvement when using the covering index IC

instead of the narrow alternative IN . A subtler scenario

that results in deadlocks when narrow indexes are used

is described in [17].

In general, there are other situations in which the

traditional problem statement for physical design tun-
ing is not sufficient. In many cases we have additional

information that we would like to incorporate into the

tuning process. Unfortunately, it is often not possible

to do so by only manipulating either the input work-

load or the storage constraint. For instance, we might
want to tune a given workload for maximum perfor-

mance under a storage constraint, but ensuring that

no query degrades by more than 10% with respect to

the original configuration. Or we might want to enforce
that the clustered index on a table T cannot be de-

fined over certain columns of T that would introduce

hot-spots (without specifying which of the remaining

columns should be chosen). As yet another example, in

order to decrease contention during query processing,
we might want to avoid any single column from a table

from appearing in more than, say, three indexes (the

more indexes a column appears in, the more contention

due to exclusive locks during updates).

The scenarios above show that the state-of-the-art
techniques for physical design tuning are not flexible

enough. Specifically, a single storage constraint does not

model many important situations in current DBMS in-

stallations. What we need instead is a generalized ver-
sion of the physical design problem statement that ac-

cepts complex constraints in the solution space, and

exhibit the following properties:

- Expressiveness: It should be easy to specify con-

straints with sufficient expressive power.

- Effectiveness: Constraints should be able to effec-
tively restrict the search process (e.g., a näıve ap-

proach that tests a-posteriori whether constraints

are satisfied would not be viable).

- Specialization: In case there is a single storage con-

straint, the resulting configurations should be close

to those obtained by current physical design tools

in terms of quality.

In this work we introduce a framework that ad-

dresses these challenges. For simplicity, we restrict our

techniques to handle primary and secondary indexes
as the physical structures that define the search space.

Specifically, the main contributions of this work are as

follows. First, in Section 2 we present a simple lan-

guage to specify constraints that is powerful enough to

handle many desired scenarios including our motivat-
ing examples. Second, we review a previously studied

transformation-based search framework (Section 3) and

adapt it to incorporate constraints into the search space

(Sections 4 and 5). In Section 6 we report an extensive
experimental evaluation of our techniques. We then rec-

ognize that the task of tuning the physical design of a

database is seldom fully specified upfront, but instead is

an interactive process. In Section 7 we present a frame-

work to enable interactive tuning sessions, which we be-
lieve represents a paradigm shift in the area of physical

design tuning.

2 Constraint Language

Our design approach has been to provide a simple con-

straint language that covers a significant fraction of in-

teresting scenarios (including all the motivating exam-

ples in the previous section). We also provide a lower-
level interface to specify more elaborate constraints as

well as more efficient ways to process them. We next

introduce our language by using examples.

2.1 Data Types, Functions, Constants

Our constraint language understands simple types such

as numbers and strings, and also domain-specific ones.

Specifically, we handle data types that are relevant for

physical design, such as database tables, columns, in-
dexes and queries. We also support sets of elements,

which are unordered collections (e.g., workloads are sets

of queries, and configurations are sets of indexes). These

sets can be accessed using either positional or associa-

tive array notation (e.g., W[2] returns the second query
in W, and W["QLong"] returns the query whose id is QLong).

Our language supports a rich set of functions over

these data types. As an example, we can obtain the
columns of table T using cols(T), the expected size of

index I using size(I), and the expected cost of query

q under configuration C using cost(q, C). In the rest

3

of this section, we introduce additional functions as

needed. Additionally, there are useful constants that

can be freely referenced in the language. We use W to

denote the input workload, and the following constants

to specify certain commonly used configurations:

- C: denotes the desired configuration, on top of which

constraints are typically specified.
- COrig: This is the configuration that is currently de-

ployed in the database system.

- CBase: The base configuration only contains those

indexes originating from integrity constraints. For

instance, suppose that we have a uniqueness con-
straint on columns (a, b) in table T , which is en-

forced by an unique index on such columns. As an-

other example, consider a foreign-key constraint ref-

erencing a primary key that is backed by an index.
Any physical design must contain such indexes, be-

cause their purpose is not improving performance

but instead guaranteeing correctness. CBase contains

only mandatory indexes and is therefore the worst

possible valid configuration for SELECT queries in the
workload, and the one with the lowest UPDATE over-

head.

- CSelectBest: This configuration is the best possible

one for SELECT queries in the workload. Specifically,
CSelectBest contains indexes resulting from access-

path requests generated while optimizing the input

workload (see [7] for more details). Intuitively, in-

dexes in this configuration are the most specific ones

that can be used in some execution plan for a query
in the workload. For instance, the two indexes in

CSelectBest for query:

SELECT a,b,c FROM R

WHERE a<10

ORDER BY b

are (a,b,c), from the access-path request that at-

tempts to seek column a for all tuples that satisfy

a<10 followed by a sort by b, and (b,a,c), from the

access-path-request that scans R in b-order and fil-
ters a<10 on the fly.

2.2 Language Features

We next illustrate the different features of our con-

straint language by using examples.

Simple Constraints: To specify the storage constraint

used in virtually all physical design tuning tools we use:

ASSERT size(C) ≤ 200M

where size(C) returns the combined size of the final con-

figuration. Constraints start with the keyword ASSERT

and follow the function-comparison-constant pattern.

As another example, the constraint below ensures that

the cost of the second query in the workload under the

final configuration is not worse than twice its cost under

the currently deployed configuration:

ASSERT cost(W[2], C) ≤ 2 * cost(W[2], COrig)

Note that, for a fixed query Q, the value cost(Q, COrig)

is constant, so the ASSERT clause above is valid.

Generators: Generators allow us to apply a template

constraint over each element in a given collection. For
instance, the following constraint generalizes the previ-

ous one by ensuring that the cost of each query under

the final configuration is not worse than twice its cost

under the currently deployed configuration:

FOR Q IN W

ASSERT cost(Q, C) ≤ 2 * cost(Q, COrig)

In turn, the following constraint ensures that every in-
dex in the final configuration has at most four columns:

FOR I in C

ASSERT numCols(I) ≤ 4

Filters: Filters allow us to choose a subset of a genera-

tor. For instance, if we only want to enforce the above

constraint for indexes that have leading column col3,
we can extend the original constraint as follows:

FOR I in C

WHERE I LIKE "col3,*"

ASSERT numCols(I) ≤ 4

where LIKE does “pattern matching” on index columns.

Aggregation: Generators allow us to duplicate a con-

straint multiple times by replacing a free variable in the
ASSERT clause with a range of values given by the gen-

erator. In many situations, we want a constraint acting

on an aggregate value calculated over the elements in

a generator. As a simple example, we can rewrite the
original storage constraint used in physical design tools

using generators and aggregates as follows:

FOR I in C

ASSERT sum(size(I)) ≤ 200M

As a more complex example, the following constraint

ensures that the combined size of all indexes defined

over table T is not larger than four times the size of the

table itself:

FOR I in C

WHERE table(I) = TABLES["T"]

ASSERT sum(size(I)) ≤ 4 * size(TABLES["T"])

where TABLES is the collection of all the tables in the

database, and function size on a table returns the size

of its primary index.

4

Nested Constraints: Constraints can have free variables

that are bound by outer generators, effectively result-

ing in nested constraints. The net effect of the outer

generator is to duplicate the inner constraint by bind-

ing each generated value to the free variable in the in-
ner constraint. The following constraint generalizes the

previous one to iterate over all tables:

FOR T in TABLES

FOR I in C

WHERE table(I) = T

ASSERT sum(size(I)) ≤ 4 * size(T)

Soft Constraints: The implicit meaning of the language
defined so far is that a configuration has to satisfy all

constraints to be valid. Among those valid configura-

tions, we keep the one with the minimum expected

cost for the input workload. There are situations, how-
ever, in which we would prefer a relaxed notion of con-

straint. For instance, consider a constraint that enforces

that every non-UPDATE query results in at least 10% im-

provement over the currently deployed configuration. In

general, there might be no configuration that satisfies
this constraint, specially in conjunction with a storage

constraint. In these situations, a better alternative is

to specify a soft constraint, which states that the final

configuration should get as close as possible to a 10%
improvement (a configuration with, say, 8% improve-

ment would still be considered valid). We specify such

soft constraints by adding a SOFT keyword in the ASSERT

clause. The resulting constraint thus becomes:

FOR Q in W

WHERE type(Q) = SELECT

SOFT ASSERT cost(Q, C) ≤ cost(Q, COrig) / 1.1

Note that the traditional optimization function (i.e.,
minimizing the cost of the input workload), can be then

specified as follows:

FOR Q IN W

SOFT ASSERT sum(cost(Q, C)) = 0

If no soft constraints are present in a problem specifi-
cation, we implicitly add the above soft constraint and

therefore optimize for the expected cost of the input

workload. In general, however, soft constraints allow

significantly more flexibility while specifying a physical
design problem. For instance, suppose that we are in-

terested in the smallest configuration for which the cost

of the workload is at most 20% worse than that for the

currently deployed configuration (as shown in [8], this

problem statement is useful to eliminate redundant in-
dexes without significantly degrading the expected cost

of the workload). We can specify this scenario using soft

constraints as follows:
FOR Q IN W

ASSERT sum(cost(Q, C)) ≤ 1.2 * sum(cost(Q, COrig))

SOFT ASSERT size(C) = 0

2.3 Generic Constraint Language

In general, a constraint is defined by the grammar be-

low, where bold tokens are non-terminals (and self-

explanatory), non-bold tokens are literals, tokens be-
tween brackets are optional and “|” represents choice:

constraint:=

[SOFT] ASSERT [agg] function (≤|=|≥) constant

| FOR var IN generator

[WHERE predicate]

constraint

We next show that although our language is simple,

it is able to specify all the motivating examples in the

previous section. In Section 5 we discuss how we can

handle constraints that lie outside the expressive power

of the language by using a specialized interface.

2.4 Motivating Examples Revisited

We now specify constraints for the motivating examples

in Section 1. The following constraint ensures that no

column appears in more than three indexes to decrease
the chance of contention:

FOR T in TABLES

FOR col in cols(T)

FOR I in C WHERE I LIKE "*,col,*"

ASSERT count(I) ≤ 3

The next constraint enforces that the clustered in-

dex on table T must have a, b, or c as its leading column:

FOR I in C

WHERE clustered(I)

ASSERT I LIKE "(a,*)|(b,*)|(c,*)"

Note that the ASSERT clause is a predicate and does not

follow the pattern “function-comparison-constant” in-

troduced earlier. We thus implicitly replace a predicate

ρ with δ(ρ)=1, where δ is the characteristic function
(δ(true)=1 and δ(false)=0).

The constraint below enforces that no SELECT query

degrades by more than 10% compared to the currently
deployed configuration:

FOR Q in W

WHERE type(Q) = SELECT

ASSERT cost(Q, C) ≤ 1.1 * cost(Q, COrig)

The last constraint enforces that no index can be

replaced by its narrow version without at least doubling

the cost of some query:

FOR I in C

FOR Q in W

ASSERT cost(Q, C - I + narrow(I))/cost(Q, C) ≤ 2

where narrow(I) results in a single-column index with

I’s leading column (e.g., narrow((a,b,c)) = (a)).

5

2.5 Language Semantics

Constrained physical design is a multi-constraint multi-

objective optimization problem (soft-constraints nat-

urally lead to more than a single optimization func-

tion). A common approach to handle such problems is

to transform constraints into objective functions (we
call these c-objectives for short) and then solve a multi-

objective optimization problem.

From Constraints to C-Objectives

Note that the function-comparison-constant pattern for

ASSERT clauses enables us to assign a non-negative real
value to each constraint with respect to a given con-

figuration. It is in fact straightforward to create a c-

objective that returns zero if the constraint is satisfied

and positive values when it is not (and moreover, the
higher the value the more distant the configuration to

one that satisfies the constraint). Table 1 shows this

mapping, where F (C) and K denote, respectively, the

function (of the current configuration) and the constant

in the ASSERT clause. For constraints that iterate over
multiple ASSERT clauses, we sum the values of the indi-

vidual ASSERT clauses1.

Constraint Objective

F (C) ≤ K max(0, F (C) − K)
F (C) = K |F (C) − K|
F (C) ≥ K max(0, K − F (C))

Table 1 Converting constraints into c-objectives.

By proceeding as before, each configuration is now

associated with ns + nh values for ns soft constraints

and nh hard (i.e., non-soft) constraints. Minimizing the

nh c-objectives down to zero results in a valid configura-

tion that satisfies all hard constraints, while minimizing
the ns c-objectives results in the most attractive config-

uration (which might not satisfy some hard constraint).

Usually, the nh c-objectives are in opposition to the ns

c-objectives and also to each other, and therefore our
search problem is not straightforward.

A common approach to address multi-objective prob-

lems is to combine all c-objectives together into a new

single objective function, as follows:

singleObjective(C) =
n

∑

i=1

wi · αi(C)

1 Instead, we could consider each ASSERT within a generator
individually. Our experiments show that this alternative results
in additional complexities without improving the effectiveness of
the search strategy.

where αi(C) denotes the i-th c-objective and wi are

user-defined weights. While this approach is universally

applicable, it suffers from a series of problems. The

choice of weights is typically a subtle matter, and the

quality of the solution obtained (or even the likelihood
of finding a solution whatsoever) is often sensitive to

the values chosen. A deeper problem arises from the

fact that usually c-objectives are non-commensurate,

and therefore trade-offs between them range from ar-
bitrary to meaningless. Section 6.3 shows empirically

why this is not an easily solvable problem.

For this reason, we do not reduce the original prob-

lem to a single-optimization alternative. Instead, we

rely on the concept of Pareto optimality, which in gen-
eral does not look for a single solution but instead for

the set of solutions with the “best possible trade-offs”.

Pareto Optimality for Configurations

The concept of Pareto optimality can be explained by

using the notion of dominance. We say that vector x =

(x1, . . . , xn) dominates vector y = (y1, . . . , yn) if the
value of each dimension of x is at least as good as that of

y, and strictly better for at least one dimension. There-

fore, assuming that smaller values are better:

x dominates y ⇐⇒ ∀i : xi ≤ yi ∧ ∃j : xj < yj

An element x ∈ X is said to be Pareto Optimal in x if

it is not dominated by any other vector y ∈ X . (The
Pareto Optimal elements of a set are also said to form

the skyline [5] of the set).

In our scenario, each configuration is associated with

a vector of size ns + nh for ns soft constraints and nh

hard constraints, and thus we can talk about dominance
of configurations. If there is a single soft constraint and

all hard constraints are satisfiable, there must be a

unique Pareto optimal solution. In fact, for a config-

uration to be valid, each of the nh c-objectives must be
zero, and thus the valid configuration with the smallest

c-objective value for the soft-constraint dominates ev-

ery other configuration. For multiple soft constraints,

the Pareto optimal solutions might not be unique, but

instead show the best trade-offs among soft-constraints
for the set of valid configurations.

In this section we reduced a specification in our

constraint language into a multi-objective optimization

problem, without giving an explicit mechanism to per-
form the optimization. In the following sections we in-

troduce our framework to solve the constrained physical

design problem.

6

3 Search Framework

We now review the general architecture of our search
framework, which we adapted from [7,8]. For presenta-

tion purposes, we address in this section the traditional

physical design problem (i.e., we assume that there is a

single storage constraint and we optimize for expected
cost). In Section 4 we explain how to incorporate mul-

tiple constraints into the search framework.

3.1 General Architecture

Figure 1 shows a high-level architectural overview of

our search framework. An important component of the
framework is the global cache of explored configurations

(shown at the bottom of Figure 1). This global cache

is structured in three tiers, which respectively contain

(i) the best configuration found so far, (ii) the set of

non-dominated configurations in case there are multi-
ple soft constraints, and (iii) the remaining suboptimal

configurations.

�✁✁ ✂✄☎✆✝✞✟✠✡☛ ✝✄☎☞
✌☎✝☛✝✡✁✂✄☎✆✝✞✟✠✡☛✝✄☎ ✍✄☎✎✏✄✑✝☎✡☛✒✏ ✂✄☎✆✝✞✟✠✡☛✝✄☎☞

✂✟✠✠✒☎☛✂✄☎✆✝✞✟✠✡☛✝✄☎ ✓✒☞☛✂✄☎✆✝✞✟✠✡☛✝✄☎
✔ ✂✡☎✏✝✏✡☛✒✂✄☎✆✝✞✟✠✡☛✝✄☎☞✕ ✖

✗
✘✙✚✛✜✢✣ ✤✜✥✙✦✜✧✜ ✛✜★ ✘✦✩✪ ✫✜✬✥✭✜✛✜✙✮✥✜✯✥✰✙✜✤✜✥✙✦✜✧✜ ✱✚✥✲✚✥

Fig. 1 Architecture of the Search Framework.

We begin the search from an initial configuration
(step 1 in the figure), which becomes the current config-

uration. After that, we progressively explore the search

space until a stopping condition is satisfied (typically

a time bound). Each exploration iteration consists of
the following steps. First, we evaluate the current con-

figuration and store it in the global cache (step 2 in

the figure). Then, we perform a pruning check on the

current configuration. If we decide to prune the current

configuration, we keep retrieving from the global cache
previously explored configurations until we obtain one

that is not pruned (this step effectively implements a

backtracking mechanism). At this point, we use trans-

formation rules to generate new candidate configura-
tions from the current one (step 3 in the figure). We

rank candidate configurations based on their expected

promise and pick the best candidate configuration that

is not already in the global cache, which becomes the

current configuration. This cycle repeats until the stop-

ping criterium is met, and we output the best configu-

ration(s) found so far (step 4 in the figure).

Looking at the search strategy at a high level, we
start with some configuration (either the initial one or a

previously explored one) and keep transforming it into

more and more promising candidates until a pruning

condition is satisfied. We then pick a new configuration
and begin a new iteration. In the rest of this section we

discuss additional details on the search framework.

3.1.1 Configuration Evaluation

Each search iteration requires evaluating a previously

unexplored configuration, which consists of two tasks.

First, we need to determine whether the storage con-
straint is satisfied, and if not, how close is the current

configuration to a viable state. With a storage con-

straint of B, we simply estimate the size of the cur-

rent configuration, size(C). If size(C) ≤ B, the storage

constraint is satisfied. Otherwise, the value size(C) − B

quantifies how close we are to a valid configuration.

Second, we need to evaluate the optimizing function,

that is, the expected cost of the workload under the cur-

rent configuration. In order to do so, we need to opti-
mize the queries in the workload in a what-if mode [13],

which returns the expected cost of each query without

materializing the configuration. This step is usually the

bottleneck of the whole process, since optimizer calls

are typically expensive. There are several ways to re-
duce this overhead. One approach is to use information

about previous optimizations to infer, in some cases,

the cost of a query under a given configuration with-

out issuing an optimization call (examples of such tech-
niques use atomic configurations [12] or a top-down re-

laxation approach [7]). A recent approach introduced

in [11] results in accurate approximations of the cost of

a query at very low overhead (typically orders of mag-

nitude faster than a regular optimization call).

3.1.2 Transformations

After evaluating the current configuration, we apply
transformation rules to generate a set of new, unex-

plored configurations in the search space. For that pur-

pose, we use the merge-reduce family of transforma-

tions [8]. Specifically, the transformations that are con-
sidered for the current configuration are as follows:

Merging rules: Merging has been proposed as a way
to eliminate redundancy in a configuration with-

out losing significant efficiency during query pro-

cessing [8,14]. The (ordered) merging of two indexes

7

I1 and I2 defined over the same table is the best in-

dex that can answer all requests that either I1 and

I2 do, and can efficiently seek in all cases that I1

can. Specifically, the merging of I1 and I2 is a new

index that contains all the columns of I1 followed
by those in I2 that are not in I1 (if one of the orig-

inal indexes is a clustered index, the merged index

will also be clustered). For example, merging (a, b, c)

and (a, d, c) returns (a, b, c, d). Index merging is an
asymmetric operation (i.e., in general merge(I1,I2)

6= merge(I2,I1)). Let C be a configuration and (I1, I2)

a pair of indexes defined over the same table such

that {I1, I2} ⊆ C. The merging rule induced by I1

and I2 (in that order) on C, denoted merge(C, I1 , I2)
results in a new configuration C′ = C − {I1, I2} ∪
{merge(I1, I2)}.

Reduction rules: Reduction rules replace an index

with another that shares a prefix of the original
index columns. For instance, reductions of index

(a, b, c, d) are (a), (a, b), and (a, b, c). A reduction

rule denoted as reduce(C, I, k), where k is the num-

ber of columns to keep in I, replaces I in C with its

reduced version reduce(I, k).
Deletion rules: Deletion rules, denoted remove(C, I),

remove index I from configuration C. If the removed

index is a clustered index, it is replaced by the cor-

responding table heap. Then, remove(C, I) returns a
new configuration C′:

C′ = C−{I}∪

{

heap(T) if I is clustered index of T

∅ otherwise

The number of transformations for a given config-
uration C is O(n · (n + m)) where n is the number of

indexes in C and m is the maximum number of columns

in an index in C. Of course, in real situations this num-

ber is likely to be much smaller, because indexes are
spread throughout several tables (and therefore merg-

ing is valid for only a subset of the possible cases),

and also because not all reductions need to be con-

sidered. To clarify the latter point, consider index I on

(a, b, c, d, e) and the single-query workload:

SELECT a,b,c,d,e

FROM R

WHERE a=10

In this situation, the only useful reduction for the index

is I ′ on (a), since any other prefix of I is going to be
both larger than I ′ and less efficient for processing the

query.

3.1.3 Candidate Configuration Ranking

After generating all valid transformations for the cur-

rent configuration, we need to rank them in decreasing

order of “promise”, so that more promising configura-

tions are chosen and explored first. For that purpose,

we estimate both the expected cost of the workload

and the expected size (i.e., the storage constraint) of

each resulting configuration. While estimating sizes can
be done efficiently, estimating workload costs is much

more challenging. The reason is that often there are

several candidate configurations to rank (typically one

per transformation), and the cost of optimizing queries
(even using the optimizations described earlier) is too

costly. To address this issue, we use the local transfor-

mation approach of [7,9] and obtain upper bounds on

the cost of queries for each candidate transformation.

Consider a query q and a configuration C′ obtained
from C. We analyze the execution plan of q under C

and replace each sub-plan that uses an index in C −C′

with an equivalent plan that uses indexes in C′ only.

Consider for instance the execution plan P at the

left of Figure 2 under configuration C. Index I on (a, b, c)
is used to seek tuples that satisfy a < 10 and also to

retrieve additional columns b and c, which would even-

tually be needed at higher levels in the execution plan.

Suppose that we are evaluating a configuration C′ ob-
tained by reducing I to I ′ on (a, b). We can then replace

the small portion of the execution plan that uses I with

a small compensating plan that uses I ′ (specifically, the

replacement sub-plan uses I ′ and additional rid-lookups

to obtain the remaining required c column). The result-
ing plan P ′ is therefore valid and at most as efficient as

the best plan found by the optimizer under C′.✳✴✵✶✷✸✹✸✺✻✼✽✽✾ ✶✷✿❀❁✻ ✳❂✴❂✵✶✷✸✹✻✼✽✽✾ ✶✷✿❀❁✻❃❄❅ ❆❇❇✾❈❉✴✵✶✷✸✹✸✺✻ ❃✽❅❈✺✽❅ ❊❇ ✴❂✵✶✷✸✹✻
Fig. 2 Local transformations to obtain upper-bound costs.

Once we obtain estimates for both the optimizing

function and the deviation from the storage constraint

for each of the alternative configurations, we need to

put together these values to rank the different candi-

date transformations. In the context of a single storage
constraint, reference [7] uses the value ∆cost/∆size to

rank transformations, where ∆cost is the difference in

cost between the pre- and post-transformation config-

uration, and ∆size is the respective difference in re-
quired storage. The rationale behind this metric is that

it slightly adapts the greedy solution for the fractional

knapsack problem [6].

8

3.1.4 Configuration Pruning

As explained in Figure 1, we keep transforming the cur-

rent configuration until it is pruned, at which point we
backtrack to a previous configuration and start another

iteration. Consider a single storage constraint B, and

assume a SELECT-only workload. Suppose that the cur-

rent configuration C exceeds B, but after transform-

ing C into C′ we observe that C′ is within the storage
bound B. In this case, no matter how we further trans-

form C′, we would never obtain a valid configuration

that is more efficient than C′. The reason is that all the

transformations (i.e., merges, reductions and deletions)
result in configurations that are less efficient for the in-

put workload. Therefore, C′ dominates the remaining

unexplored configurations, and we can stop the current

iteration by pruning C′. When there are multiple rich

constraints, the pruning condition becomes more com-
plex, and is discussed in Section 4.

3.1.5 Choosing the Initial Configuration

Although any configuration can be chosen to be the

starting point in our search, the initial configuration

effectively restricts the search space. Specifically, our

search framework is able to eventually consider any con-
figuration that is a subset of the closure of the initial

configuration under the set of transformations. Let C

be a configuration and Ci (i ≥ 0) be defined as follows:

- C0=C
- Ci+1=Ci ∪ {merge(I1, I2) for each I1, I2 ∈ Ci}

∪ {reduce(I, K) for each I ∈ Ci, K < |I|}

We define closure(C) = Ck, where k is the smallest in-

teger that satisfies Ck = Ck+1. The closure of a config-
uration C is then the set of all indexes that are either in

C or can be derived from C through a series of merging

and reduction operations. For that reason, if no subset

of the closure of the initial configuration satisfies all the
constraints, the problem is unfeasible. Unless a specific

initial configuration is given, the default starting point

is CSelectBest, which contains the most specific indexes

that can be used anywhere by the query optimizer for

the input workload, and thus should be appropriate to
handle all but non-standard constraints2. The details on

how to obtain CSelectBest can be found in [7,11]. Essen-

tially, we instrument the query optimizer to track each

logical expression that can be answered with appropri-
ate access paths, and obtain the best possible index

that satisfies each of such “access-path-requests”. The

2 An example of such constraint would be the requirement that
some index not useful for any workload query be present in the
final configuration.

net effect is that, if all such indexes were materialized,

the optimizer would find, at each step, the best possible

indexes and therefore result in the best possible query

execution plan for varying configurations.

4 Constrained Physical Tuning

So far we introduced a small constraint language (Sec-
tion 2) and a mechanism to transform a specification in

our language into a multi-objective optimization prob-

lem (Section 2.5). We additionally reviewed a general

transformation-based strategy to traverse the space of

valid configurations for the case of a single constraint
(Section 3). In this section we explain how to general-

ize this search framework to incorporate multiple ob-

jectives and leveraging Pareto-optimality concepts.

4.1 Configuration Ranking

Using the notion of dominance, we can obtain a total

ranking of configurations in two steps (a variation of
this approach is used in [18,23] in the context of con-

strained evolutionary algorithms). First, we assign to

each configuration a “rank” equal to the number of so-

lutions which dominate it. As an example, Figure 3(b)
shows the rankings of all the two-dimensional vectors

shown in Figure 3(a). This ranking induces a partial

order, where each vector with ranking i belongs to an

equivalence class Li, and every element in Li goes be-

fore every element in Lj for i < j (see Figure 3(c) for
an illustration3. The final ranking is then obtained by

probabilistically choosing a total order consistent with

the partial order given by equivalence classes Li (see

Figure 3(d))4. This can be implemented as follows:

RankConfigurations (C=c1, c2, . . . , cn:configurations)

Output R: a ranked list of configurations

01 for each ci ∈ C

02 rank(ci) = |{cj ∈ C : cj dominates ci}|
03 R = []

04 for each i ∈ {1..n}
05 Li = {c ∈ C : rank(c) = i}
06 LPi = random permutation of Li

06 append LPi to R

07 return R

As explained in Section 3, our search strategy re-

lies on the ability to rank configurations at two specific

3 Note that equivalence classes Li are not the same as “sky-
bands,” where each class Li is the skyline of the subset that does
not contain any Lj (j < i). We experimentally evaluated this
“sky-band” alternative, but it was more expensive to compute
and also produced slightly worse results than our approach.

4 We shuffle ranks in each equivalence class to decrease the
chance of getting caught in local minima due to some arbitrary
ordering scheme.

9❋ ❋ ❋● ●❍ ■ ❍❏ ❑ ❑ ❑▲ ▲▼ ◆ ▼❖P◗ P❘ P❙P❚P❯ ❱ ❲ ❳❨ ❩ ❬ ❭ ❪❫
(a) Original Points. (b) Pareto ranking. (c) Pareto layers. (d) Instance ranking.

Fig. 3 Inducing a partial order from the dominance relationship.

points. First, in Step 3 in Figure 1 we pick the transfor-

mation that would result in the most promising config-
uration. Second, after pruning the current configuration

in Step 2 in Figure 1, we pick, among the partially ex-

plored configurations, the most promising one to back-

track to. Whenever we require to rank a set of configu-
rations, we evaluate (or approximate) the values of all

the c-objectives as explained in Sections 3.1.1 and 3.1.3.

Then, using the pseudo-code above we obtain a partial

order and probabilistically choose a ranking consistent

with this partial order.

4.2 Search Space Pruning

In Section 3 we described a mechanism to prune a given

configuration, which relied on identifying when future

transformations were not able to improve the current
configuration. We now extend this technique to work

with multiple, richer constraints. We introduce a func-

tion D that takes a configuration and the left-hand-side

function F of an ASSERT clause, and returns one of four
possible values (which intuitively represent the “direc-

tion” on which F moves after applying transformations

to the input configuration). Thus,

D : configuration × function → {↑, ↓,↔, ?}

Recall that, for any given configuration instance C0, we
evaluate the value F (C0) by binding the free variable

C in F (i.e., the objective configuration) with C0. The

semantics of D(C, F) are as follows:

D(C, F) =

↑ if F (C′) ≥ F (C) for all C′ ∈ closure(C)
↓ if F (C′) ≤ F (C) for all C′ ∈ closure(C)
↔ if F (C′) = F (C) for all C′ ∈ closure(C)
? otherwise

As an example, consider the following constraint:

ASSERT size(C) - size(COrig) ≤ 200M

In this situation, D(C, F) =↓ for any C because any

sequence of transformations starting with C will result
in a smaller configuration, and therefore the value of

function F always decreases. Although the definition

of D is precise, in practice it might be unfeasible to

evaluate D for arbitrary values of F . We adopt a best-

effort policy, and try to infer D values. If we cannot
prove that D(C, F) ∈ {↑, ↓,↔} we return the unknown

value “?”. Operationally, we evaluate D in an inductive

manner. We first assign D values for the base numeric

function calls, such as, for instance:

D(C, size(C)) =↓
D(C, size(Tables[”R”])) =↔
D(C, cost(Q, C)) = if type(Q) is SELECT then ↑ else ?

and propagate results through operators using rules,
such as (i) ↑ + ↑=↑, (ii) ↑+↓=?, and (iii) max(↑,↔)=↑.
Consider the following example:

ASSERT cost(W[1], C) / cost(W, COrig) ≤ 0.1

In this case, if W[1] is a SELECT query then D(C, F) =↑.
In fact, D(C, cost(W[1],C))=↑, D(C, cost(W,COrig))=↔,

and ↑ / ↔=↑. Constraints with generators and aggre-

gations are handled similarly, but the inference mecha-

nism is generally less accurate. For a constraint of the
form FOR x IN X ASSERT F(x) ≤ K we need to check both

D(C, F (x)) for each x and also D(C, |X |). For instance,

consider a generalization of the previous constraint:

FOR Q in W ASSERT cost(Q, C) / cost(W, COrig) ≤ 0.1

If all queries in the workload are SELECT queries, we

would obtain, as above, that D(C, F (Q)) =↑ for each

Q in W . Also, since transformations do not change
the workload, we have that D(C, |W |) =↔. Combin-

ing these facts we can infer that D =↑ overall (recall

from Section 2.5 that in presence of generators we sum

the values of each individual ASSERT clause).

Constraint template Instance D(C, F)

F ≤ K, F 6= K F (C) > K ↑ or ↔
F ≥ K, F 6= K F (C) < K ↓ or ↔

Table 2 Sufficient pruning conditions for hard constraints.

Using the definition of D, Table 2 specifies sufficient

conditions to prune the current configuration for a given
hard constraint. Consider again the constraint:

ASSERT cost(W[1], C) / cost(W, COrig) ≤ 0.1

10

and suppose that during the search procedure the cur-

rent configuration C satisfies F (C) > 0.1 (i.e., C vio-

lates the constraint). We can then guarantee that no el-

ement in closure(C) obtained by transforming C would

ever be feasible, because values of F (C′) are always
larger than F (C) for any C′ transformed from C. There-

fore, pruning C is safe (see Figure 4 for an illustra-

tion of this reasoning). Note that for a simple storage

constraint of the form ASSERT size(C) ≤ B, the pruning
condition reduces to that of previous work (i.e., if the

current configuration is smaller than the storage con-

straint B, prune it and backtrack to a previous config-

uration [7]).

❴❵❛❜❝❞ ❡❢❣❝❤✐❥❦❧♠♥❦❧♦❥♠♣q
Constraint: F ≤ K

F (C) > K

D(C, F) =↑
Result: Prune

Fig. 4 Sample pruning condition.

Soft Constraints: In addition to the conditions stated

in Table 2, pruning a configuration C based on a soft

constraint additionally requires that C satisfy all the

hard constraints (since any value of the c-objective as-
sociated with the soft constraint is acceptable, we might

otherwise miss overall valid solutions).

In the remainder of this section, we show how we can

alter the default search procedure in our framework by

modifying the way we deal with constraints, and thus

obtain new functionality.

4.2.1 Additional Pruning Guidance

Although the above technique safely prunes configura-
tions guaranteed to be invalid, there are certain situa-

tions in which we require additional support. Suppose

that we want to minimize the cost of a workload with

updates using the constraint below:

SOFT ASSERT cost(W, C) ≤ 0

Since the workload has updates, D(C, cost(W, C))=?.

However, suppose that the initial configuration does not

contain any index on table R, and all updates queries

refer exclusively to table R. In this situation we know
that the cost of the workload would always increase

as we apply transformations, but our system cannot

infer it. To address such scenarios, we augment the

constraint language with annotations that override the

default pruning behavior. Specifically, by adding the

keyword MONOTONIC UP (respectively, MONOTONIC DOWN) be-

fore the ASSERT clause, we specify that the respective

constraint function F satisfies D(C, F) =↑ (respectively
D(C, F) =↓). Of course, our framework has no way to

verify whether the annotation is correct (otherwise it

would have used this knowledge upfront!) and implic-

itly trusts the annotation as being correct. The example
above can then be augmented as follows:

SOFT MONOTONIC UP ASSERT cost(W,C) ≤ 0

4.2.2 Heuristic Pruning

To allow for additional flexibility in defining the search

strategy, we introduce annotations that heuristically
restrict the search space. In contrast to the previous

section, these annotations result in a trade-off between

search space coverage and the efficiency of the search

procedure, and are interesting when at least one con-
straint satisfies D(C, F) =?. Our search strategy keeps

applying transformation rules to the current configu-

ration with the objective to obtain the best configu-

ration that satisfies all constraints. Since c-objectives

are usually conflicting, a configuration that improves
some objectives might move away from others. How-

ever, if the transformed configuration does not improve

any objective, there might not be an incentive to con-

tinue exploring beyond that point (of course, this is a
heuristic and as such it might prune valid solutions). In-

stead, we might consider the configuration an end-point

and backtrack to a previously seen configuration. This

pruning condition can be succinctly expressed using the

notion of dominance. Suppose that the current config-
uration, C was obtained by using some transformation

over configuration Cp. Then, whenever Cp dominates C

we prune C and backtrack. We can enable this heuristic

pruning by annotating the global constraint specifica-
tion with the value USE DOMINANCE PRUNING.

To provide additional flexibility into the search strat-

egy, we introduce two annotations that alter how prun-
ing is handled for individual constraints that satisfy

D(C, F) =?. Specifically, we can specify the following

behaviors:

HILL CLIMB : If a constraint is marked as HILL CLIMB, any

transformation from Cp to C that results in a value

of the constraint in C that is worse than that of Cp

gets pruned, even though Cp does not dominate C.
KEEP VALID : Values of a constraint marked as KEEP VALID

can go up or down from Cp to C. However, if Cp

satisfies the constraint and C does not, we prune C.

11

The annotations discussed in this section effectively

change the search strategy and require a non-trivial un-

derstanding of the search space, its relationship with

constraints, and even the internal workings of the frame-

work. Providing guidance to assist users or even propose
the usage of such annotations is a very important prob-

lem that lies outside the scope of this work.

4.2.3 Transformation Guidance

Suppose that we want an existing index goodI (or some

of its merges/reductions) to appear in the final config-

uration. We can achieve this with:
FOR I in C

WHERE name(I) = "goodI"

ASSERT count(I) = 1

This is a common situation so we provide an alternative,
direct approach to achieve the same goal:

AVOID delete(I) WHERE name(I)="goodI"

would ignore any transformation that matches the pred-

icate. In general the syntax of such specification is:

AVOID transformations [WHERE predicate]

As a less trivial example, to avoid merging large indexes

we can use the following fragment:

AVOID merge(I1,I2)

WHERE size(I1)≥100M OR size(I2)≥100M

As with other heuristic annotations discussed in this

section, the usage of these alternatives should be guided

by special knowledge about the search space and its
impact on the input constraints.

4.2.4 Handling Constraint Priorities

By manipulating the pruning conditions, we can enable

a prioritized way of dealing with constraints. In this

special modality, constraints are sorted in the order in

which they appear in the specification, and we must
satisfy them in such order. For concreteness, let the

ordered constraints be X1, . . . ,Xn, and suppose that we

transform Cbefore into Cafter. Let X before
i and X after

i be

the score of Xi under Cbefore and Cafter, respectively.
We can implement prioritized constraints by pruning

Cafter whenever the following condition holds:

∃ i ≤ n : X after
i > X before

i and ∀j < i : X before
j = 0

which is operationally described below:

Prioritized-Prune (CBefore, CAfter: Configurations)

01 i = 1

02 while (i ≤ n and Xbefore
i

= 0)

03 if (Xafter
i

> 0)

04 return false

05 i = i + 1;

06 return (i ≤ n and Xafter
i

> Xbefore
i

)

5 Implementation Details

In this section we provide some implementation details

of a prototype built using the constraint optimization

framework described earlier. We also explain some ex-

tensions that enable additional flexibility and perfor-
mance. Figure 5 illustrates the different required steps

to go from a problem specification to a SQL script that

deploys the resulting physical design. Initially, we pro-

vide a specification for the constrained optimization

problem. A full specification contains a header, which
includes database and workload information (e.g., the

location to find the DBMS and the workload), and the

main body, which includes the initial configuration and

all the constraints specified in the language of Section 2.
A special-purpose compiler consumes the specification

and produces two C++ files. One file provides the neces-

sary plumbing mechanism to initialize the search frame-

work and perform the optimization and the other spec-

ifies each of the constraints by using C++ classes (more
details are discussed in Section 5.1). Note that it is pos-

sible to directly specify constraints in C++, which pro-

vides more flexibility at the expense of simplicity. After

all constraints are translated into C++ classes, the next
step compiles this intermediate code and links the result

with the search framework library. This step produces a

program that connects to the database system and at-

tempts to solve the constrained optimization problem.

Upon completion, the executable returns a SQL script,
which can be used to deploy the best configuration, and

additional reports that provide details on the configu-

ration to be deployed, the overall search process, and

allow DBAs to analyze the benefits of a particular con-
figuration. rst✉✈✇✈✉①②✈③④⑤④✈②✈①⑥✈⑦①②✈③④ ⑧③④⑨②⑩①✈④②⑨ ❶②❷t⑩ ⑧③④⑨②⑩①✈④②⑨❸⑨t⑩ ❹t✇✈④t❺⑤④⑨②①④✉t rt①⑩✉❷❻⑩①❼t❽③⑩❾⑧③④⑨②⑩①✈④t❺❶s②✈❼✈⑦t⑩
⑧③④⑨②⑩①✈④② ❿①④➀➁①➀t⑧➂➂ ⑧③❺t❶➃➄t✉② ⑧③❺t➅➆t✉➁②①➃⑥t ❹➇➈r➉ts③⑩②⑨ ❹ts⑥③➊❼t④②r✉⑩✈s②r➋❿ ➂ ➌t➆②
Fig. 5 From Problem Specification to Results.

12

5.1 Compilation into C++ classes

An important extensibility mechanism results from us-

ing C++ as an intermediate language to specify con-

straints. In fact, we can use C++ to directly specify con-

straints that are too complex to be handled inside the

constraint language, or constraints that require specific
extensions for performance. We now describe the com-

pilation step from the original specification language

into C++. Each constraint is translated into a class de-

rived from the base Constraint class, defined as follows:

class Constraint {
protected:

typedef enum {TNONE, TUP, TDOWN, ...} TPruning;
virtual TPruning pruning(Conf* conf) {return TNONE;}
virtual double score(Conf* conf) = 0;

virtual double estScore(Conf* fromConf,
Conf* toConf,

Transformation* t);
...
}

The base Constraint class exposes three virtual meth-

ods. The first one, pruning, returns the value D(C, F).

By default it always returns TNONE (i.e., corresponds to

D(C, F) =?) and its definition implements the inference

mechanism and the heuristic annotations discussed in
Section 4.2. The second one, score, is called every time

we need to obtain the value of the c-objective associ-

ated with the constraint. It takes a configuration as an

input and returns a real number. The result value from
score should be zero when the constraint is satisfied,

and larger than zero otherwise (its magnitude should

reflect the degree of constraint violation). Clearly, the

simplicity of the constraint language makes the compi-

lation step into derived classes fully mechanical. As an
example, consider the following constraint, which en-

forces that no index is larger than half the size of the

underlying table:

FOR I in C

ASSERT size(I) ≤ 0.5 * size(table(I))

The generated function would then look as follows:

class C1: public Constraint {
...

double score(Conf* conf) {
double result = 0;

for (int i=0; i<conf->numIndexes(); i++) {
double f = size(conf[i]);
double c = 0.5 * size(table(conf[i]));

double partialResult = MAX(0.0, f - c);
result += partialResult;

}
return result;

}
...
};

The third function in the base Constraint class (i.e.,

estScore), is called every time we need to estimate the
c-objective for a given transformation. It takes as in-

puts the original configuration, the transformation, and

the resulting configuration, and returns a real number.

There is a default implementation of estScore that mim-

ics almost exactly the implementation of score working

on the transformed configuration. A subtle point is that

the methods that obtain the cost of the workload un-

der a given configuration are automatically replaced in
estScore with those that exploit local transformations

from the original configuration, and therefore the de-

fault implementation is very efficient. We can, however,

replace the default implementation estScore with a cus-
tomized version that further improves efficiency. Con-

sider again the storage constraint:

FOR I in C

ASSERT sum(size(I)) ≤ 200MB

and suppose that the transformation merges I1 and I2

into I3. Using the following equality:
∑

I∈toConf

size(I) =

∑

I∈fromConf

size(I) + size(I3) − size(I1) − size(I2)

we can compute the size of the transformed configura-
tion in constant time, provided that we have the size

of the original configuration available. Note that all

transformations follow the same general pattern, i.e.,

Cafter = Cbefore ∪ I+ − I−, where I+ and I− are set
of indexes. We could then incrementally evaluate ASSERT

functions by reusing previously computed values.

6 Experimental Evaluation

We now report an experimental evaluation of the search

framework described in this work.

6.1 Experimental Setting

Our experiments were conducted using a client pro-

totype that connects to an customized version of Mi-

crosoft SQL Server 2005. The server code-base was ex-

tended to support the techniques in [7,11] to provide

what-if functionality and the ability to exploit local
transformations. For our experiments we used a TPC-H

database and workloads generated with QGen5.

6.2 Single Storage Constraint

We first consider the traditional scenario with a single

storage constraint, and compare our framework against

previous work in the literature. We used a 1GB TPC-H

data and tuned a 22-query workload with both our

5 Available at http://www.tpc.org.

13

framework and the relaxation approach of [7] augmented

with the techniques of [11] so that both approaches rely

on the same underlying query optimization strategy. We

used three minutes for each tuning session, and simu-

lated the approach in [7] with the following constraint
specification:

Initial = CSelectBest

SOFT ASSERT cost(W,C) = 0

ASSERT size(C) ≤ B

where B is the storage bound (note that the last line is

the only strictly required one, since the other two are al-

ways included by default). Figure 6 shows the resulting

execution cost of the workload for different values of B.
We can see that the results are virtually indistinguish-

able for storage bounds that cover the whole spectrum

of alternatives. Figure 7 compares the efficiency of both

approaches. We can see that our framework can evalu-

ate roughly half of the number of configurations in the
approach of [7,11], and the trends are similar in both

approaches. The additional time per configuration in

our approach comes from additional layers of infrastruc-

ture required to generalize the approach in [7] to work
with arbitrary constraints (i.e., many components are

hardwired in [7]). Considering that our framework is

substantially more general and there are many oppor-

tunities for performance improvement, we believe that

our approach is very competitive.

➍➎➍➍➏➍➍➍➏➎➍➍➐➍➍➍➐➎➍➍➑➍➍➍
➏➒➐➓➔ ➏➒➎➓➔ ➐➓➔ ➐➒➎➓➔ ➑➓➔ ➑➒➎➓➔ →➓➔ ➣↔↕➙➛➜➝➞➟➝➠➡➢➤➟ ➥➦➧➨➩➫➭➯➧➲➳➦➨➩➵➲➦

➸➺➻➼➽➾↔➚➻➪➶ ➹➘➴➴➾↔➶➚➽➚➺➻↔➷ ➹➘➴
Fig. 6 Quality of recommendations for storage constraint.

➬➮➱➬➱➮
✃➬

➱❐➮❒❮ ✃❒❮ ✃❐➮❒❮ ❰❒❮ ❰❐➮❒❮ Ï❒❮ÐÑÒÓÔÕÖ×ØÔÙÚÛÜÝÕÞßÛÔÙàá
àÖâã

äåæçèéê ëæìíåçèîìåïðñòóôõöñ÷ø ùúûûôõøöóöðñõü ùúû
Fig. 7 Efficiency of different alternatives.

Figure 8 shows the expected cost of the best ex-

plored configuration over time, for different storage con-

straints (we do not include in the figure the start-up

cost required to optimize each query for the first time).

We can see that usually the search procedure finds an
initial solution relatively quickly, and then it refines it

over time. It is important to note that after only 60 sec-

onds, the search strategy converged to very competitive

solutions in all cases.

ýþýýÿýýýÿþýý�ýýý�þýý
ý �ý ✁ý ✂ý✄☎✆✝✞✟✝✠✡☛☞✟ ✌✍✎✏

ÿ✑þ✒✓�✒✓✔✒✓✁✒✓
Fig. 8 Quality of recommendations over time.

Figure 9 illustrates the six initial iterations with
backtracking when tuning the same workload with a

storage constraint of 3GB. In many cases, the most

promising configuration is not always the best one, and

therefore the stochastic backtracking mechanism is cru-

cial in exploring the search space.

✕✖✖✖✗✖✖✖✘✖✖✖✙✖✖✖✚✖✖✖
✘✖✖ ✙✖✖ ✚✖✖ ✛✖✖ ✜✖✖ ✢✖✖✣✤✥✦✧★✦✩✪✫✬✦ ✭✮✯✰✱✲✰✳✴✵✶✲

Fig. 9 Backtracking to an earlier configuration.

Finally, Figure 10 shows the number of candidate

transformations against the number of indexes of the

originating configuration for the first 300 configurations
evaluated in Figure 9. We can see that the number of

candidate transformations is indeed quadratic in the

number of indexes (due to the merge transformations),

but the quadratic coefficient is significantly less than
one –0.2 in Figure 10– due to restrictions in the set of

feasible transformations.

6.3 Single-Objective Optimization

In Section 2.5 we argued against combining different

optimizing functions into a single quantity and used

14

✷✸✷✷✹✷✷✺✷✷✻✷✷✼✷✷✽✷✷
✷ ✸✷ ✹✷ ✺✷ ✻✷ ✼✷ ✽✷ ✾✷✿❀❁❂❃❄❅❆❇❄❈❉❊❆❅❄❁❈❋●

❅❉❊
❍■❏❑▲▼◆❖ P◗❘▲❙▲❚ ❯◗❱◆◗❖❯❲■▼❳❨❯◆◗

Fig. 10 Number of candidate transformations.

instead Pareto-optimality concepts to rank configura-
tions. The reason is that combining different optimiz-

ing functions is not a robust approach as there is no

easy way to balance the different original optimizing

objectives. To better illustrate this issue, we tuned the
22-query workload of the previous section with a stor-

age bound of 2GB. However, rather than using Pareto-

Optimality to rank the alternative configurations, we

used the following scoring function:

scoreW (C) = cost(W, C) + w · max(0, size(C) − 2000)

where size(C) returns the size of C in megabytes and w

is a real number that balances the relative importance

of the two conflicting constraints (i.e., minimizing cost

of the workload versus getting the size of the configu-
ration below 2GB). We used three different values for

w: 1/1000, 1, and 1000, which correspond to trading

one unit of execution with one gigabyte, megabyte, or

kilobyte of space, respectively. Given enough time, the

search strategy would visit every possible configuration,
so the difference in scoring functions make sense in sce-

narios for which an exhaustive search is unfeasible.

❩❬❩❩❩❭❩❩❩❪❩❩❩❫❩❩❩❴❩❩❩❵❩❩❩❛❩❩❩
❫❩❩ ❵❩❩ ❜❩❩ ❬❩❩❩ ❬❭❩❩ ❬❫❩❩ ❬❵❩❩ ❬❜❩❩❝❞❡❢❞❣❤✐ ❥❦❧♠♥♦♠♣ qrs♦

t✉✈✇ ✉①②③ t✉✈✇ ✉①④③ t✉✈✇ ✉① ⑤③
Fig. 11 Initial search space with different ranking functions.

Figure 11 shows the first 25 iterations of the search

framework when using the three versions of the scor-

ing function (each point in the figure corresponds to

a different configuration). We can see that when us-
ing w = 1/1000 (i.e., balancing execution units and

gigabytes) the search is very conservative about mov-

ing toward configurations that increase execution cost.

The reason is that each execution unit of overhead is

the same as 1 gigabyte (out of just six) of reduction in

space. Analogously, when using w = 1000 the search

strategy is much more liberal in reducing storage and

reaches the goal of 2GB quicker than the other alter-
natives (by also performing worse in terms of expected

cost). Using w = 1 results in a middle-ground strategy

between the previous two extremes. Even in this simple

example with two constraints, the choice of w heavily
influences the search strategy, and it is not obvious how

to set a good value of w for arbitrary constraints.

⑥⑦⑦⑦⑥⑧⑦⑦⑥⑨⑦⑦⑥⑩⑦⑦⑥❶⑦⑦⑧⑦⑦⑦⑧⑧⑦⑦⑧⑨⑦⑦
⑦ ⑥⑦ ⑧⑦ ❷⑦ ⑨⑦❸❹❺❻❼❽❻❾❿➀➁❽ ➂➃➄➅➆➅➇➈➄➅➉➊➋➅➆➌ ➍➎➌➏➉➊➐➎➑

➒➓➔→ ➓➣ ↔↕ ➒➓➔→ ➓➣➙↕➒➓➔→ ➓➣ ➛↕ ➜➝➞→➟➠➡➢➤➟➓➥➝➦➓➟➧
Fig. 12 Best configuration for different ranking functions.

To further illustrate the issue above, Figure 12 shows
the expected cost of the best configuration found over

time for each of the ranking functions, and also for the

strategy that uses Pareto-optimality to rank alterna-

tives. We can see that in this case the strategy that

uses w = 1 (coincidentally) performs better than ei-
ther w = 1000 or w = 1/1000. The reason is that

workload costs vary in the range of 1000-2500 execu-

tion units, and configuration sizes vary in the range of

2000-6000 MB, which are very similar in magnitude. Of
course, this is easy to see on hindsight, but very diffi-

cult to predict beforehand, specially for multiple com-

plex constraints. It is interesting to note, also, that our

approach, which uses Pareto-optimality to rank alter-

natives, is initially worse than the approach that uses
w = 1, but recovers and results in a configuration that

is comparable to that of w = 1. In contrast, the strate-

gies using w = 1/1000 and w = 1000 do not find a

better configuration for a long time (roughly 5 times
the interval shown in the figure).

6.4 Multiple, Richer Constraints

We now explore more complex scenarios that require

additional constraints. Consider the tuning session with

a 3GB storage bound that we described in the previous
section. The dark bars in Figure 13 show the number of

indexes per table in the resulting configuration. We can

see that many tables have 6 or 7 indexes. Suppose that

15

we want to limit the number of indexes in any given ta-

ble by four. We can then search for a configuration that

additionally satisfies the following constraint, denoted

IPT for indexes-per-table:

FOR T TABLES

FOR I in indexes(T)

ASSERT count(I) ≤ 4

➨➩➫
➭➯

➲➳➵➸➳➺➸➻ ➼➽➾➾➲➳➸➚ ➾➪➚➺ ➵➪➺➳➶➵ ➹➽➼➺➶➻➸➚ ➚➸➘➳➶➵ ➾➪➚➺➼➽➾➾ ➶➚➴➸➚➼➷➬➮➱✃❐❒❮❰ÏÐ✃Ñ✃Ò ÓÔÕÖ×Ø
ÙÚÛ ÜÝÞßàÝáâáÙÚÛãä➫

Fig. 13 Number of indexes per table in two configurations.

Since we specified a single soft-constraint, there is

a single optimal configuration. Figure 14 shows this so-

lution (at the bottom-left of the figure) along with all

non-dominated configurations that are cheaper but do
not satisfy all constraints. This visualization provides

additional insights to DBAs, who might be willing to

trade-off efficiency for some slight constraint violation.

åæææåçææèæææèçææçæææççææéæææ
æ ç êæ êç ëæ ëç åæ åçìíîï ðñòóôõö÷øùöú

Fig. 14 Non-dominated set of configurations for IPT ≤ 4.

The chosen configuration at the bottom-left of Fig-
ure 14 satisfies the new IPT constraint, as shown with

the lighter bars in Figure 13. Note that the resulting

configuration is not a strict subset of the original one,

in which we simply removed indexes until the new con-

straint was satisfied. This is clearly observed in Fig-
ure 15, which depicts the cost of each query under both

configurations. For each query in the figure there is a

narrow line, which bounds the cost of the query under

CBase from above, and under CSelectBest from below (for
SELECT queries, any configuration results in an expected

cost between these two values). Each query is also as-

sociated in the figure with a wider bar, whose extremes

mark the cost of the query under the configuration ob-

tained with just a storage constraint, and the configu-

ration obtained by additionally bounding the number

of indexes per table to four (i.e., IPT ≤ 4). If the configu-

ration obtained with IPT ≤ 4 is the cheaper one, the bar
is painted black; otherwise it is painted white. Since the

figure contains both black and white bars, we conclude

that there are queries that are more efficiently executed

under either the original configuration and IPT ≤ 4. Of
course, the total cost of the workload under the original

configuration (676 units) is smaller than that under the

IPT ≤ 4 configuration (775 units), because the space of

solutions for IPT ≤ 4 is more restrictive.

ûüûýûûýüûþûûþüûÿûû
ý þ ÿ � ü ✁ ✂ ✄ ☎ ýû ýý ýþ ýÿ ý� ýü ý✁ ý✂ ý✄ ý☎ þû þý þþ✆✝✞✟✠✡✟☛☞✌✍✡ ✎✏✑✒✓✑✔

Fig. 15 Expected query costs for IPT ≤ 4.

As another example, suppose that we want to find

a good configuration under 2GB that additionally sat-

isfies that no query under the final configuration exe-

cute slower than 70% the time of the query under the
currently deployed configuration (we denote that con-

straint S70 below). The specification looks as follows:

FOR I IN C ASSERT sum(size(I)) ≤ 2G

FOR Q IN W ASSERT cost(Q, C) ≤ 0.7 * cost(Q, COrig)

✕✖✗✗✘✙✗✗✘✖✗✗✙✙✗✗✙✖✗✗
✚✗✗ ✖✗✗ ✕✗✗✗ ✕✘✗✗ ✕✛✗✗✜✢✣✤ ✥✦✧★✩✪✫✬✭✮✬✯✪

Fig. 16 Non-dominated configurations for S70.

Running the tool for five minutes produced no fea-

sible solution to this specification. Instead, the search

procedure returned the non-dominated unfeasible con-
figurations in Figure 16 (each circle in the figure corre-

sponds to one configuration, and the area of the circle

represents the degree of violation of the S70 constraint).

16

We might infer that the constraints might be too strict.

Specifically, the tight storage constraint is preventing si-

multaneously satisfying the S70 constraint. To relax the

problem, we modify the storage constraint as follows:

FOR I IN C SOFT ASSERT sum(size(I)) ≤ 2G

thus resulting in a multi-objective problem (reducing

execution time and storage) with a single S70 constraint.
As there are multiple soft-constraints, the search strat-

egy is not guaranteed to return a single solution. In-

stead, it returns the set of non-dominated configura-

tions shown in Figure 17. These configurations present

the best trade-offs between size and execution cost that
satisfy the S70 constraint (it also shows why the origi-

nal specification resulted in no solutions – the smallest

such configuration requires 2.4GB).

✰✱✱✱✲✱✱✱✳✱✱✱✴✱✱✱✵✱✱✱
✳✱✱ ✴✱✱ ✵✱✱ ✶✱✱ ✷✱✱ ✸✱✱ ✹✱✱✱ ✹✹✱✱✺✻✼✽ ✾✿❀❁❂❃❁❄❅❆❇❃

Fig. 17 Non-dominated configurations for relaxed S70.

Suppose that we pick this smallest configuration in

Figure 17 (after all, our initial hard constraint limited

the storage to 2GB). Figure 18 contrasts the execution
cost of the queries in the workload under both this con-

figuration and the one obtained when only optimizing

for storage (i.e., when dropping the S70 constraint), but

giving the 2.4GB storage bound that the S70 configu-

ration required. Each query in the figure is associated
with a light bar that represents 70% of the cost of the

query under the base configuration (i.e., the baseline

under the S70 constraint). Additionally, each query in

the figure is associated in the figure with two points:
the expected cost of the query under the configuration

obtained with just a storage constraint (No S70 in the

figure) , and the configuration obtained by additionally

enforcing S70 (S70 in the figure). We can clearly see

that the configuration satisfying S70 is always under
the baseline (as expected). The figure also helps under-

stand the trade-offs in cost for queries when the S70

constraint is additionally enforced. The S70 constraint

is worse than the storage-only constraint overall (905 vs
1058 units) because the search space is more restricted.

However, some queries in the No S70 configuration fail

to enforce the 70% bound that is required.

❈❉❈❊❈❈❊❉❈❋❈❈❋❉❈
❊ ❋ ● ❍ ❉ ■ ❏ ❑ ▲ ❊❈ ❊❊ ❊❋ ❊● ❊❍ ❊❉ ❊■ ❊❏ ❊❑ ❊▲ ❋❈ ❋❊ ❋❋▼◆❖P◗❘P❙❚❯❱❘ ❲❳❨❩❬❨❭

❪❫❴❵❛❜❜ ❝❏❈❞❡ ❢❛ ❣❏❈ ❝▲❈❉ ❤✐❥❤❡ ❣❏❈ ❝❊❈❉❑ ❤✐❥❤❡
Fig. 18 Expected query costs for S70.

6.5 Scalability

We now analyze the scalability of our search strategy

with respect to the number and complexity of the in-
put constraints. We first generated specifications with

varying numbers of simple storage constraints (strictly

speaking, the most restrictive of these implies the rest,

but our framework cannot make this inference and con-

siders each one individually). Figure 19 shows the im-
pact of the number of input constraints on the search

efficiency. Increasing the number of constraints by 50x

only reduces the number of evaluated configurations per

second from eight to around two. Even 100 simultane-
ous constraints result in more than one (specifically,

1.39) configurations being analyzed per second6. It is

important to note that the approach in [7] without the

optimizations in [11] analyzes 1.09 configurations per

second for a single storage constraint.

❦❧♠♥
♦♣❦

♣ q ♣❦ q❦ ♣❦❦rst✉✈✇①②③✈④⑤⑥⑦⑧✇⑨⑩⑥✈④❶❷
❶①❸❹

❺❻❼❽❾❿➀➁ ➂➀➃➄➅❿➆➇➃➅➄
Fig. 19 Scalability with respect to number of constraints.

We next explore the scalability of our approach for

varying complexity of the constraints. For that pur-
pose, we created a “dummy” constraint, parameterized

by (α, β) that is always satisfied but takes α millisec-

onds to evaluate each configuration (Section 3.1.1) and

β milliseconds to estimate the promise of each candi-
date transformation (Section 3.1.3). Figure 20 shows

the number of configurations evaluated per second when

varying the values of parameters α and β for the dummy

6 A fraction of the overhead is due to using suboptimal code
to maintain non-dominated configurations.

17

constraint. Clearly, the larger the values of α and β the

fewer configurations are evaluated per unit of time. We

can see from the picture that it is feasible to have eval-

uation functions (i.e., α) values in the second range,

and our strategy would still evaluate one configuration
per second, which is similar to the performance in [7].

Higher values of β, however, degrade the efficiency of

our strategy much more rapidly, because the estima-

tion function is called multiple times per configuration
to rank all the candidate transformations. Therefore, it

is crucial to use efficient procedures to estimate config-

uration promise. We note that all the constraints dis-

cussed in this work result in sub-millisecond α and β

values. Consider the soft constraint that minimizes ex-
ecution cost. This is a expensive constraint, since it

requires performing local transformations to estimate

candidate promises and either optimizing queries or us-

ing the techniques in [11] to evaluate configurations.
Our experiments showed average values of α=9.2 ms

and β=0.008 ms for this constraint.➈➉➊➉➋ ➈➌➊➉➋ ➈➌➉➊➉➋ ➈➌➉➉➊ ➉➋ ➈➌➉➉➉➊➉➋➈➌➉➊ ➉➍➌➋ ➈➌➉➊ ➉➍➎➋ ➈➌➉➊ ➌➋ ➈➌➉➊ ➎➋ ➈➌➉➊ ➌➉➋➉➏➐
➑➒➓➔→➣↔→↕➙➛➜➝➞➟➠➡↔➢→↕➠➝➞➤➥➤

➙➦➧ ➨➩➫➭➯➲➳ ➵➸➩➺➻➩➼➯➽➲ ➾➚➺➩➭➨➩➫➭➯➲➳ ➵➪➼➯➶➩➼➯➽➲ ➾➚➺➩➭
Fig. 20 Scalability with respect to constraint complexity.

7 Interactive Physical Design Tuning

The previous sections introduced a language to enable

specification of constraints for physical design tuning.
We showed that this mechanism results in significant

flexibility and allows much more control during the

physical design tuning process. At the same time, how-

ever, it also accentuates the need for a different way of
conducting the physical design tuning process. Current

physical design tools are monolithic, expose tuning op-

tions that are set at the beginning, and generate, with-

out further user input, a final configuration to deploy

into a production system.
We believe that a change of paradigm is required

to take physical design tuning to the next level. Specif-

ically, we claim that tuning sessions should be highly

interactive. Current monolithic architectures in physi-
cal design tools force users to specify the whole prob-

lem upfront and prevent users from making changes a

posteriori or in general interacting with the system. We

��������� ➹➘➴➷➬➮➷➱✃ ❐❒➱✃❮❒✃❰ÏÐÑ➴ ❒ÒÓ❒➱➘❰Ò ÔÕÖÏ×➷Ï❮❒Ø➷Ù❒➮➷Ñ➱Ï
	
�����������Ú➷✃ÛÜØ❰Ó❰Ø Ò❒➮❒ Ï➮➴❮➘➮❮➴❰ÏÝÞ❮❰➴ßà á➱Ò❰âà ãÑ➴äØÑ❒Òà åæ
������������

��������� Ö➘➘❰ÏÏÜ➬❒➮Û ➴❰ç❮❰Ï➮ ➷➱➮❰➴➘❰➬➮➷Ñ➱èÓ❰➱➮ Û❒➱ÒØ➷➱✃èâ➮❰➱Ò❰Ò é❰â➬Ø❒➷➱ê ëÑÒ❰ãÛ❒➮Ü➷ÐÑ➬➮➷ë➷Ù❒➮➷Ñ➱ ëÑÒ❰
ã➷Ù❒➴ÒÏ ÐÑ➴➘ÑëëÑ➱ ➮❒ÏäÏ

ãÑ➴äØÑ❒Ò ✃❒➮Û❰➴➷➱✃
ìÑë➬ÑÏ❒íØ❰ ❒Ø✃Ñ➴➷➮ÛëÏÝ➹➷➱✃Ø❰Üç❮❰➴ßÜ➮❮➱➷➱✃àë❰➴✃➷➱✃à ➴❰Ò❮➘➮➷Ñ➱åæ

Fig. 21 Architectural layers for next-generation physical design
tuning tools.

hinted at a more interactive approach in the examples of

Section 6.4, where the output of a session was analyzed,

tweaked and re-submitted with different (relaxed) con-

straints. In the remaining of this section we present a

new architecture that is more suitable for interactive
sessions (Section 7.1), review Windows PowerShell [19]

as one possible infrastructure that can support our ar-

chitecture (Section 7.2), and present a working proto-

type that illustrates our vision (Section 7.3).

7.1 A Layered Architecture for Physical Design Tuning

Figure 21 shows a layered architecture for next genera-

tion physical design tools that can result in better and

richer interaction with DBAs. While the two lowest lay-

ers are already implemented in commercial systems, the
remaining ones differ considerably from current imple-

mentations. We next describe the architecture in more

detail.

- Core DBMS: The lowest layer resides within the

database system and provides native support for op-

erations such as what-if optimization [13] (with the
additional fast variant of [11]) and access-path re-

quest interception functionality, as described in [7].

- Low-level APIs: The low-level APIs expose, in for-

mats that are simple to consume (e.g., XML), the

functionality of the Core DBMS layer (and also the
DBMS itself). As an example, they expose primi-

tives to manipulate what-if mode, and also richer ex-

plain modes after optimizing queries, which surface

optimization information required at higher levels.
These APIs also encapsulate existing DBMS func-

tionality, such as the ability to monitor and gather

workloads.

18

- High-level APIs: The previous two layers are, in

some form or another, already present in current

commercial DBMS. Physical design tools are typ-

ically built on top of the low-level APIs and only

expose a rigid functionality (e.g., point to a work-
load, set the storage constraint, and optimize). In-

stead, we suggest a high-level API layer that exposes

the internal representation and mechanisms used by

current physical design tools in a modular way. Ba-
sic concepts such as queries, indexes, and access-

path requests are exposed as to higher layers to be

used in different ways. In addition to these data

structures, the high-level API layer exposes com-

posable and simple algorithms that current tuning
tools rely on. For instance, this layer exposes mech-

anisms to merge two indexes, or obtaining the best

set of indexes for a single query. These primitive

data structures and algorithms are not necessarily
meant to be consumed by DBAs, but instead pro-

vide a foundational abstraction for applications to

be built on top.

- Front-ends: Front-ends are based on both the low-

and high-level APIs and deliver functionality to end-
users. A very powerful interaction model, which we

describe in detail in the rest of this section, is a

scripting platform to interact with physical database

designs. The scripting language understands the data
structures and algorithms exposed by the underly-

ing layers and allows users to write small interactive

scripts to tune the physical design of a database.

Common tasks, such as minimizing cost for a single

storage constraint (or other functionality provided
by current physical design tools), can be seen as

just pre-existing scripts that can be accessed using

graphical user interfaces by relatively inexperienced

DBAs.

We next review Windows PowerShell, a scripting
language that can be used as a front-end in our archi-

tecture, and then describe a prototype implementation

of our architecture using Windows PowerShell.

7.2 An Extensible Shell and Scripting Language

Windows PowerShell is an interactive, scripting lan-

guage that integrates with the Microsoft .NET Frame-
work. It provides an environment to perform adminis-

trative tasks by execution of cmdlets (which are basic

operations), scripts (which are composition of cmdlets),

stand-alone applications, or by directly instantiating
regular .NET classes [19,20]. There are several server

products that already leverage Windows PowerShell for

management support, such as Windows Server, SQL

Server, Exchange Server, and IBM WebSphere MQ,

among others. The main features of Windows Power-

Shell are:

- Tight integration with .NET: Windows PowerShell

leverages the .NET framework to represent data,
and understands .NET classes natively, as illustrated

below:

> # integer assignment and expression evaluation
> $a = 14

> $a + 10
24

> # create a new .NET random number generator
> $r = New-Object System.Random

> # invoke a method on $r
> $r.Next()

198831340

This also means that new classes written in the

.NET framework are easily available as first-class

citizens in Windows PowerShell.
- Strict naming conventions: All cmdlets in Windows

PowerShell follow strict naming conventions, namely

verb-noun, and parameters are passed in a unified

manner. Some examples of such built-in cmdlets

are Start-Service, which starts an OS service in the
current machine, Get-Process, which returns a list

of processes currently executing, Clear-Host, which

clears the screen, and Get-ChildItem which, if located

in a file system directory, returns all its subdirec-
tories or files. There are also aliases for the com-

mon cmdlets, so we can write dir or ls rather than

Get-ChildItem.

- Object pipelines: Similar to Unix shells, cmdlets can

be pipelined using the | operator. However, unlike
Unix shells, which typically pipeline strings, Win-

dows PowerShell pipelines .NET objects. This is a

very powerful mechanism. For instance, the script:

> Get-Process | Sort-Object -Property Handles -Desc |
Select-Object -first 5 | Stop-Process

obtains the list of all running processes, pipes the

result (which is a list of System.Diagnostics.Process

.NET objects) to the Sort-Object cmdlet, which un-

derstands the semantics of the objects and sorts

them by the property Handles in descending order.

In turn, the result of this cmdlet (i.e., an ordered list

of processes) is passed to the Select-Object cmdlet,
which takes the first five and passes them to the

next cmdlet in the pipeline, Stop-Process, which ter-

minates them (something that might not be advis-

able to do in a production system). The following
script returns the number of lines that contains the

word constraint in any LATEX file in the current di-

rectory that is below 100,000 bytes long:

19

> Get-ChildItem -Path *.tex |
Where-Object -FilterScript { $.Length -lt 100000 } |

Foreach-Object -Process {
Get-Content $ | Select-String constraint

} |
Measure-Object

Count : 404

which gets all files in the current path that have a

tex extension and keeps only those that are smaller

than 100,000 bytes. Then, each file is processed by

first getting its content (which returns a list of string
.NET classes), selecting only those that contain the

work constraints. The combined result of this sub-

script (which is a list of strings) is measured and the

count is returned. This might seem a little verbose,
but there are several mechanisms to shorten Power-

Shell scripts, such as aliases (e.g., Get-ChildItem be-

comes dir, Where-Object becomes ?, Foreach-Object be-

comes %), and positional cmdlet parameters, so for

instance we do not need to explicitly write -Path af-
ter dir. An equivalent script is shown below:

> dir *.tex | ? { $.Length -lt 100000 } |

% { gc $ | Select-String constraint } | measure
Count : 404

- Data Providers: PowerShell has the ability to ex-

pose hierarchical data models by means of providers,

which are then accessed and manipulated using a
common set of cmdlets. As an example, the file sys-

tem is one such provider. When situated in some

node inside the file system provider, we can use

Get-ChildItem to obtain the subdirectories or files
in the current location, access contents of elements

using Get-Content, and navigate the provider using

Set-Location (aliased as cd). However, Windows Pow-

erShell natively exposes the registry and the envi-

ronment variables as providers. There also are third-
party providers that give a unified surface to access,

query, and modify Active Directory, SharePoint and

SQL Server, among others.

In the next section, we describe how we take advan-

tage of the different features of Windows PowerShell

to provide an interactive experience for physical design

tuning.

7.3 Towards Interactive Physical Design Tuning

In the remainder of this section we introduce a proto-

type implementation that enables interactive physical
design tuning sessions. We first discuss the architecture

of our solution and then provide examples that show-

case the functionality and flexibility of our approach.

���������

	
�����������

������������

��������������������

�	
�����

����������

�������������

����������

	��������

���������
�îïðñòóôõñö÷ñö øùúòûüöý
Fig. 22 Prototype enabling interactive physical design tuning.

7.3.1 Architecture

Figure 22 shows how we map the different layers of

Figure 21 into our prototype implementation. We next

describe each layer in more detail.

Low-level APIs

We implemented both the Core DBMS and Low-level

APIs layers by instrumenting Microsoft SQL Server.
Some components (e.g., what-if optimization) are al-

ready part of the shipping product, while others (e.g.,

access-path request interception) were added. Essen-

tially, we re-used the same instrumented DBMS de-
scribed in Section 6.

High-level APIs

We implemented the high-level API layer by introduc-

ing a new .NET assembly that encapsulates and exposes

classes and algorithms relevant to physical design tun-
ing. Among the classes that the assembly exposes are

Database, Table, Index, Column, Query, Configuration and

Request. We made these classes rich in functionality, so

for instance the class Index has methods that return

merged and reduced indexes, and methods that create
hypothetical versions of the index in the database. The

class Query has methods that evaluate (optimize) it un-

der a given configuration, and methods that return its

set of access-path requests.

Additionally, as part of the .NET assembly, we built

a sophisticated caching mechanism that avoids opti-

mizing the same query multiple times in the database

server. Instead, each query remembers previous opti-
mizations and, if asked again to optimize itself with

a previously seen configuration, it returns the cached

values without doing the expensive work again.

Using these classes, we can rather easily build func-

tionality similar to existing physical design tools and

package it in yet another monolithic tool. However, the

20

more interesting alternative is that, since all classes are

exposed in an assembly, we can load all definitions di-

rectly into Windows PowerShell and start exploring, in

a rudimentary but already interactive form, the physi-

cal design of a database, as illustrated below:

> # create a new Database object from namespace PDTCore

> # pointing to server nicolasb02 and database tpch01g
> $db = New-Object PDTCore.Database("nicolasb02", "tpch01g")

Connecting to server nicolasb02
Populating tables: LINEITEM CUSTOMER SUPPLIER NATION REGION

PARTSUPP PART ORDERS (8 read)

> # examine the Database object just created
> $db

Name : tpch01g
Connection : nicolasb02

Tables : LINEITEM, CUSTOMER, SUPPLIER, NATION...
Configurations : base, initial

Queries : {}

> # obtain information on tables larger than 500 pages

> # and sort the result by size
> $db.Tables.Values | ? { $.Pages -gt 500 } | sort Pages |

select Name, Pages, Columns

Name Pages Columns

---- ----- -------
PARTSUPP 1573 {PS PARTKEY, PS SUPPKEY...}
ORDERS 2288 {O ORDERKEY, O CUSTKEY...}
LINEITEM 11486 {L ORDERKEY, L PARTKEY...}

> # create a new query
> $q = [PDTCore.Query]::Create($db,

"SELECT * FROM LINEITEM WHERE L ORDERKEY=15")

> # evaluate the query under the base configuration
> $db.Configurations["base"].Eval($q)

Name Config Query Source Cost SelectInfos Update
---- ------ ----- ------ ---- ----------- -------

base Q1 base Q1 Server 0.0032831 1 False

Front-end

Although the examples above are compelling, they are

still not user friendly (we need to call the .NET meth-
ods directly). Also, they require considerable effort be-

fore actually tuning a database design. Using the ca-

pabilities of Windows PowerShell, we add the following

functionality to our prototype:

- Provider. We implemented a PowerShell provider
that exposes all the information about a tuning ses-

sion in a hierarchical and intuitive object model.

Figure 23 shows an XML representation of a por-

tion of a simplified version of the hierarchy exposed
by the provider. By using this provider, we can nav-

igate and manipulate the state of a tuning session

easily, as illustrated below:

Fig. 23 Fragment of the Provider object model.

> # create a new provider on server nicolasb02
> # and default database tpch1g

> New-PDTDrive -Name P -Server nicolasb02 -Database tpch1g

> # go into the tables of tpch1g
> cd p:/tpch1g/tables

> # return all tables that start with part
> dir part* | sort Rows

Name Database Rows Pages Cols Indexes
---- -------- ---- ----- ---- -------

part tpch1g 200000 3618 9 2
partsupp tpch1g 800000 15628 5 2

> # get all indexes in the base configuration that have

> # more than two key columns
> dir P:/tpch01g/configurations/base/indexes |

? { $.NumKeys -gt 1 }

Name Table Keys Includes

---- ----- ---- --------
PK LINEITEM 07F6335A LINEITEM 2 14
PK PARTSUPP 0519C6AF PARTSUPP 2 3

- Visualizations: An interesting side effect of using a

composable, interactive script language is that we
can very easily include third-party add-ins that of-

fer specific functionality. One such example is Pow-

erGadgets7, which provides simple cmdlets to dis-

play data graphically. One such cmdlet is Out-Chart,
which displays a chart of the data that is pipelined

in with many different visualization options. As a

very simple example, we can graphically display the

relative sizes of all tables in a database by using:

> dir p:/tpch1g/tables |
Out-Chart -gallery pie -label Name -values Pages

7 Available at http://www.powergadgets.com.

21

- Cmdlets: In addition to the provider, we augmented

the bare .NET classes and methods with compos-

able cmdlets. The following examples illustrate a

fraction of such cmdlets:
> # load queries stored in a file. Note that results

> # can later be accessed via P:/tpch1g/queries
> Get-Query -Path D:/workloads/tpch-first-3.sql

Reading queries from D:/workloads/tpch-first-3.sql...
Name Database Type Rows Requests SQL

---- -------- ---- ---- -------- ---
Q0 tpch1g Select 5.74262 6 SELEC...

Q1 tpch1g Select 100 63 SELEC...
Q2 tpch1g Select 10 26 SELEC...

> # create two indexes and merge them
> $i1 = New-Index -Table lineitem -Keys l orderkey

> $i2 = New-Index -Table lineitem -Keys l partkey
-Includes l tax, l orderkey

> $i3 = $i1.merge($i2)
> $i3.keys

Name Table Width
---- ----- -----

l orderkey lineitem 4
l partkey lineitem 4

> # create a new configuration
> $c = New-Configuration -Indexes $i1, $i3

> # evaluate the three most expensive queries

> # under the new hypothetical configuration
> dir p:/tpch1g/queries | sort -desc Cost |

select -first 3 | Eval-Query -Configuration $c

Name Config Query Cost

---- ------ ----- ----
C2 Q2 C2 Q2 143.075
C2 Q1 C2 Q1 6.05483

C2 Q0 C2 Q0 120.384

- Scripts: The power of our implementation comes

from scripts (either user defined or several of the

ones that we already built). For instance, the script

below is a simplified implementation of a common

operation called refinement, in which a given input
configuration is repeatedly “relaxed” via merging

an reduction operations until it fits in the available

storage, so that the expected cost of the resulting

configuration is as good as possible8. At each iter-
ation, we calculate all possible transformations (us-

ing a cmdlet) and obtain the one that is expected to

result in the smaller execution cost, repeating this

process until a valid configuration is reached:

function Refine-Configuration() {
Param ([PDTCore.Query[]] $Workload,

[PDTCore.Configuration] $Configuration,

[double] $Size)
$act = $Configuration

while ($act.Size -gt $Size) {
$tr = Get-Transformations $Workload -Config $act |

sort Cost | select -first 1

$act = $tr.Apply()
}
return $act

}

In addition to Refine-Configuration, we implemented
other common algorithms, such as the relaxation-

based tuning approach in [7] and also a version that

8 See [8] for additional details on this operator.

handles the constraint language of Section 2. This

script is called TuneConstrained-Workload and takes as

inputs a workload, a timeout, and a set of con-

straints as defined in Section 2. It heavily uses the

.NET classes exported by the high-level APIs and
is implemented as a PowerShell script in fewer than

100 lines of code. It is interesting to note that this

PowerShell script corresponds to a rather non-trivial

algorithm but is easily implemented reusing primi-
tives exposed by lower layers.

7.3.2 A Sample Interactive Tuning Session

We conclude this section with an annotated trace of

a session that we conducted using our prototype. Fig-

ure 24 illustrates how an interactive approach can ben-
efit DBAs by providing flexibility and control during

physical design tuning. The example uses the provider,

cmdlets and scripts described earlier, and some new

others (specially concerning visualization). We expect

that advanced DBAs create their own scripts to fur-
ther customize the physical design tuning experience.

Moreover, native PowerShell features, such as remoting

(which allows to execute commands in other machines)

or eventing and automation can surely complement tun-
ing scripts providing additional flexibility.

8 Related Work

With the aim of decreasing the total cost of ownership

of database installations, physical design tuning has be-

come an important and active area of research. Several
pieces of work (e.g., [2,12,14,21,24,26]) present solu-

tions that consider different physical structures, and

some of these ideas found their way into commercial

products (e.g., [1,2,12–14,16,24–26]). In contrast with

this work, most of previous research has focused on a
single storage constraint.

References [7–9,11] introduce some of the building

blocks of our search strategy. Specifically, [7] introduces

the concept of a transformational engine and the notion
of a CSelectBest configuration. Reference [9] exploits the

techniques in [7] in the context of local optimizations,

by transforming a final execution plan into another

that uses different physical structures. Reference [8]

considers a unified approach of primitive operations
over indexes that can form the basis of physical design

tools. Finally, reference [11] introduces Configuration-

Parametric Query Optimization, which is a light-weight

mechanism to re-optimize queries for different physical
designs at very low overhead. By issuing a single opti-

mization call per query, [11] is able to generate a com-

pact representation of the optimization space that can

22

> # create a new provider

> New-PDTDrive -Name P -Server nicolasb02 -Database tpch1g

> # set the current location at the root of the provider

> cd P:

> # load TPC-H workload
> $w = Get-Query -Path D:/workloads/tpch-all.sql

Reading queries from D:/workloads/tpch-all.sql...

> # get the cost of all queries in the base configuration in decreasing order of cost
> $c = Get-Configuration base

> $w | Eval-Query -Configuration $c | sort -desc cost | out-chart -values Cost -label Name

> # show the top-3 most expensive queries

> $expW = $w | Eval-Query -Configuration $c | sort cost -desc | select -first 3 | % {$.query}
> $expW

Name Database Type Rows Requests
---- -------- ---- ---- --------

Q20 tpch1g Select 100 45
Q8 tpch1g Select 172.421 48
Q14 tpch1g Select 999.809 8

> # for each expensive query, obtain the access-path requests and infer the best indexes

> $bestIdx = $expW | % {$.Requests} | % { $.BestIndex }
> $bestIdx

Name Table Keys Includes
---- ----- ---- --------

PDT I17 orders 1 1
PDT I18 orders 1 1

PDT I19 lineitem 1 3
...

> # create a new configuration with all these best indexes
> $bestC = New-Configuration -Indexes $bestIdx -Name "MyC"

> # compare this configuration with the base one for all queries in the workload

> Compare-Configurations -Workload $w -Config1 $bestC -Config2 (Get-Configuration base)

> # bestC surely is better, but what is its size compared to that of base?

> $bestC.size, (get-configuration base).size
3535.4453125
1234.5234375

Fig. 24 Interactive Physical Design Tuning Example

23

> # bestC is 2.9 times larger than base, refine it down to 2.5GB

> $refC = Refine-Configuration -Configuration $bestC -Size 2500 -Workload $w -Timeout 20
> $refC
Name Database Size Cost Indexes

---- -------- ---- ---- -------
C11 tpch1g 2454.9765625 1080.27443 27

> # show all configurations evaluated by Refine-Configuration graphically

> dir P:/tpch1g/configurations | out-chart -values size -xvalues cost -gallery scatter

> # looks like refC gives a good time/space tradeoff; compare queries in refC against all evaluated configurations

> # displaying, for each query, min/max cost and current cost under refC
> Contrast-Configuration -Workload $w -Configs (dir P:/tpch1g/configurations) -Config $refC

> # identified Q17 and Q20 as the only two that could be improved given more space
> # of these, Q17 is as bad as it gets (around 90 units)

> # Use Constraints to tune again so that no query is worse than 1.2x the cost under refC, but additionally

> # Q17 is expected to execute in fewer than 60 units. For that, try to get as close as possible to 2000MB
> $ct1 = "FOR Q in W ASSERT cost(Q,C) <= cost(Q,refC)*1.2"

> $ct2 = "ASSERT cost(W[’Q17’], C) <= 60"
> $ct3 = "SOFT ASSERT size(C) = 2000"
> TuneConstrained-Workload -Workload $w -Timeout 600 -Constraints $ct1, $ct2, $ct3

> ...

Fig. 24 (cont.) Interactive Physical Design Tuning Example

then produce very efficiently execution plans for the in-

put query under arbitrary configurations.

The field of constrained optimization has been ex-

tensively studied in the past, and the approaches vary

depending of the nature of both constraints and the

optimization function. When variables are continuous

and the optimization function and constraints can be
expressed as linear functions, the simplex algorithm has

proved to be an effective tool. When the unknown vari-

ables are required to be integer, the problem is called

integer programming, which is NP-Hard and can be
solved by branch and bound and cutting-plane meth-

ods. Non linear but twice differentiable constraints can

be solved using the non-linear optimization techniques

in [15]. A sub-field more closely related to ours is com-

binatorial optimization, which is concerned with prob-

lems where the set of feasible solutions is discrete. Com-
binatorial optimization algorithms solve instances of

problems that are believed to be hard in general (refer-

ence [22] proves that the general physical design prob-

lem is NP-Hard). Therefore, usually heuristic search
methods (or metaheuristic algorithms) have been stud-

ied. Examples of such techniques are simulated anneal-

ing, tabu search, or evolutionary algorithms (e.g., [18,

23]).

24

9 Conclusion

In this work we introduced the constrained physical

design problem and proposed a language that enables

the specification of rich constraints. As DBMS applica-

tions become increasingly complex and varied, we be-

lieve that constrained physical design tuning is an im-
portant addition to the repertoire of tools of advanced

DBAs. As discussed in this work, many new scenarios

can be successfully and efficiently handled by our frame-

work. We also explained how a transformation-based
search strategy can be used to solve the constrained

physical design problem. When using constraints dur-

ing physical design tuning, many new opportunities are

possible. While this is clearly an advantage for advanced

DBAs, it is not clear how feasible it is to follow a model
in which a long script with constraints is written, ex-

ecuted, and analyzed for deployment. In this work we

claim that a paradigm shift in the way DBAs interact

with physical design tools is required, where interactiv-
ity is crucial. We believe that the prototype discussed

in Section 7 represents a first step in that direction,

and opens up new and exciting opportunities for both

research and practice.

References

1. S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database Tuning Advisor
for Microsoft SQL Server 2005. In Proceedings of the In-

ternational Conference on Very Large Databases (VLDB),
2004.

2. S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated se-
lection of materialized views and indexes in SQL databases.
In Proceedings of the International Conference on Very
Large Databases (VLDB), 2000.

3. S. Agrawal, E. Chu, and V. Narasayya. Automatic physical
design tuning: workload as a sequence. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), 2006.

4. S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical
and horizontal partitioning into automated physical database
design. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2004.

5. S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In Proceedings of the International Conference on
Data Engineering (ICDE), 2001.

6. G. Brassard and P. Bratley. Fundamental of Algorithmics.
Prentice Hall, 1996.

7. N. Bruno and S. Chaudhuri. Automatic physical database
tuning: A relaxation-based approach. In Proceedings of the
ACM International Conference on Management of Data
(SIGMOD), 2005.

8. N. Bruno and S. Chaudhuri. Physical design refinement: The
“Merge-Reduce” approach. In International Conference on
Extending Database Technology (EDBT), 2006.

9. N. Bruno and S. Chaudhuri. To tune or not to tune? A
Lightweight Physical Design Alerter. In Proceedings of the
International Conference on Very Large Databases (VLDB),

2006.
10. N. Bruno and S. Chaudhuri. An online approach to physical

design tuning. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), 2007.

11. N. Bruno and R. Nehme. Configuration-parametric query
optimization for physical design tuning. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), 2008.

12. S. Chaudhuri and V. Narasayya. An efficient cost-driven
index selection tool for Microsoft SQL Server. In Proceedings
of the International Conference on Very Large Databases
(VLDB), 1997.

13. S. Chaudhuri and V. Narasayya. Autoadmin ’What-if’ index
analysis utility. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 1998.

14. S. Chaudhuri and V. Narasayya. Index merging. In Proceed-
ings of the International Conference on Data Engineering
(ICDE), 1999.

15. A. R. Conn, N. I. M. Gould, and P. L. Toint. Large-scale
nonlinear constrained optimization: a current survey. In Al-
gorithms for continuous optimization: the state of the art,
1994.

16. B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Zi-
auddin. Automatic SQL Tuning in Oracle 10g. In Proceedings
of the International Conference on Very Large Databases
(VLDB), 2004.

17. B. Duncan. Deadlock Troubleshooting (Part 3), 2006.
Accessible at http://blogs.msdn.com/bartd/archive/2006/09/-

25/ deadlock-troubleshooting-part-3.aspx.
18. C. M. Fonseca and P. J. Fleming. Genetic algorithms for mul-

tiobjective optimization: Formulation, discussion and gener-
alization. In Proceedings of the Conference on Genetic Al-
gorithms, 1993.

19. Microsoft. Windows Powershell, 2006. Accessi-
ble at http://www.microsoft.com/windowsserver2003/-

technologies/management/powershell/default.mspx.
20. Microsoft. How Windows Powershell Works, 2008.
21. S. Papadomanolakis and A. Ailamaki. An integer linear pro-

gramming approach to database design. In Workshop on
Self-Managing Database Systems, 2007.

22. G. P. Shapiro. The optimal selection of secondary indices is
NP-Complete. In SIGMOD Record 13(2), 1983.

23. P. D. Surry, N. J. Radcliffe, and I. D. Boyd. A Multi-
Objective Approach to Constrained Optimisation of Gas
Supply Networks : The COMOGA Method. In Evolution-
ary Computing. AISB, 1995.

24. G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley.
DB2 advisor: An optimizer smart enough to recommend its
own indexes. In Proceedings of the International Conference
on Data Engineering (ICDE), 2000.

25. D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 design advisor: In-
tegrated automatic physical database design. In Proceedings
of the International Conference on Very Large Databases
(VLDB), 2004.

26. D. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. Lohman,
R. Cochrane, H. Pirahesh, L. Colby, J. Gryz, E. Alton,
D. Liang, and G. Valentin. Recommending materialized
views and indexes with IBM DB2 design advisor. In In-
ternational Conference on Autonomic Computing, 2004.

