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Abstract

For many applications of reinforcement learn-

ing it can be more convenient to specify both

a reward function and constraints, rather than

trying to design behavior through the reward

function. For example, systems that physically

interact with or around humans should satisfy

safety constraints. Recent advances in policy

search algorithms (Mnih et al., 2016; Schul-

man et al., 2015; Lillicrap et al., 2016; Levine

et al., 2016) have enabled new capabilities in

high-dimensional control, but do not consider

the constrained setting. We propose Constrained

Policy Optimization (CPO), the first general-

purpose policy search algorithm for constrained

reinforcement learning with guarantees for near-

constraint satisfaction at each iteration. Our

method allows us to train neural network poli-

cies for high-dimensional control while making

guarantees about policy behavior all throughout

training. Our guarantees are based on a new the-

oretical result, which is of independent interest:

we prove a bound relating the expected returns

of two policies to an average divergence between

them. We demonstrate the effectiveness of our

approach on simulated robot locomotion tasks

where the agent must satisfy constraints moti-

vated by safety.

1. Introduction

Recently, deep reinforcement learning has enabled neural

network policies to achieve state-of-the-art performance

on many high-dimensional control tasks, including Atari

games (using pixels as inputs) (Mnih et al., 2015; 2016),

robot locomotion and manipulation (Schulman et al., 2015;

Levine et al., 2016; Lillicrap et al., 2016), and even Go at

the human grandmaster level (Silver et al., 2016).
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In reinforcement learning (RL), agents learn to act by trial

and error, gradually improving their performance at the

task as learning progresses. Recent work in deep RL as-

sumes that agents are free to explore any behavior during

learning, so long as it leads to performance improvement.

In many realistic domains, however, it may be unacceptable

to give an agent complete freedom. Consider, for example,

an industrial robot arm learning to assemble a new product

in a factory. Some behaviors could cause it to damage it-

self or the plant around it—or worse, take actions that are

harmful to people working nearby. In domains like this,

safe exploration for RL agents is important (Moldovan &

Abbeel, 2012; Amodei et al., 2016). A natural way to in-

corporate safety is via constraints.

A standard and well-studied formulation for reinforcement

learning with constraints is the constrained Markov Deci-

sion Process (CMDP) framework (Altman, 1999), where

agents must satisfy constraints on expectations of auxil-

liary costs. Although optimal policies for finite CMDPs

with known models can be obtained by linear program-

ming, methods for high-dimensional control are lacking.

Currently, policy search algorithms enjoy state-of-the-

art performance on high-dimensional control tasks (Mnih

et al., 2016; Duan et al., 2016). Heuristic algorithms for

policy search in CMDPs have been proposed (Uchibe &

Doya, 2007), and approaches based on primal-dual meth-

ods can be shown to converge to constraint-satisfying poli-

cies (Chow et al., 2015), but there is currently no approach

for policy search in continuous CMDPs that guarantees ev-

ery policy during learning will satisfy constraints. In this

work, we propose the first such algorithm, allowing appli-

cations to constrained deep RL.

Driving our approach is a new theoretical result that bounds

the difference between the rewards or costs of two differ-

ent policies. This result, which is of independent interest,

tightens known bounds for policy search using trust regions

(Kakade & Langford, 2002; Pirotta et al., 2013; Schulman

et al., 2015), and provides a tighter connection between the

theory and practice of policy search for deep RL. Here,

we use this result to derive a policy improvement step that

guarantees both an increase in reward and satisfaction of

constraints on other costs. This step forms the basis for our

algorithm, Constrained Policy Optimization (CPO), which
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computes an approximation to the theoretically-justified

update.

In our experiments, we show that CPO can train neural

network policies with thousands of parameters on high-

dimensional simulated robot locomotion tasks to maximize

rewards while successfully enforcing constraints.

2. Related Work

Safety has long been a topic of interest in RL research, and

a comprehensive overview of safety in RL was given by

(Garcı́a & Fernández, 2015).

Safe policy search methods have been proposed in prior

work. Uchibe and Doya (2007) gave a policy gradient al-

gorithm that uses gradient projection to enforce active con-

straints, but this approach suffers from an inability to pre-

vent a policy from becoming unsafe in the first place. Bou

Ammar et al. (2015) propose a theoretically-motivated pol-

icy gradient method for lifelong learning with safety con-

straints, but their method involves an expensive inner loop

optimization of a semi-definite program, making it unsuited

for the deep RL setting. Their method also assumes that

safety constraints are linear in policy parameters, which is

limiting. Chow et al. (2015) propose a primal-dual sub-

gradient method for risk-constrained reinforcement learn-

ing which takes policy gradient steps on an objective that

trades off return with risk, while simultaneously learning

the trade-off coefficients (dual variables).

Some approaches specifically focus on application to the

deep RL setting. Held et al. (2017) study the problem for

robotic manipulation, but the assumptions they make re-

strict the applicability of their methods. Lipton et al. (2017)

use an ‘intrinsic fear’ heuristic, as opposed to constraints,

to motivate agents to avoid rare but catastrophic events.

Shalev-Shwartz et al. (2016) avoid the problem of enforc-

ing constraints on parametrized policies by decomposing

‘desires’ from trajectory planning; the neural network pol-

icy learns desires for behavior, while the trajectory plan-

ning algorithm (which is not learned) selects final behavior

and enforces safety constraints.

In contrast to prior work, our method is the first policy

search algorithm for CMDPs that both 1) guarantees con-

straint satisfaction throughout training, and 2) works for

arbitrary policy classes (including neural networks).

3. Preliminaries

A Markov decision process (MDP) is a tuple,

(S,A,R, P, µ), where S is the set of states, A is the

set of actions, R : S ×A× S → R is the reward function,

P : S×A×S → [0, 1] is the transition probability function

(where P (s�|s, a) is the probability of transitioning to state

s� given that the previous state was s and the agent took

action a in s), and µ : S → [0, 1] is the starting state

distribution. A stationary policy π : S → P(A) is a map

from states to probability distributions over actions, with

π(a|s) denoting the probability of selecting action a in

state s. We denote the set of all stationary policies by Π.

In reinforcement learning, we aim to select a policy π

which maximizes a performance measure, J(π), which is

typically taken to be the infinite horizon discounted to-

tal return, J(π)
.
= E

τ∼π
[
�∞

t=0
γtR(st, at, st+1)]. Here

γ ∈ [0, 1) is the discount factor, τ denotes a trajectory

(τ = (s0, a0, s1, ...)), and τ ∼ π is shorthand for indi-

cating that the distribution over trajectories depends on π:

s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at).

Letting R(τ) denote the discounted return of a trajec-

tory, we express the on-policy value function as V π(s)
.
=

Eτ∼π[R(τ)|s0 = s] and the on-policy action-value func-

tion as Qπ(s, a)
.
= Eτ∼π[R(τ)|s0 = s, a0 = a]. The

advantage function is Aπ(s, a)
.
= Qπ(s, a)− V π(s).

Also of interest is the discounted future state distribution,

dπ , defined by dπ(s) = (1−γ)
�∞

t=0
γtP (st = s|π). It al-

lows us to compactly express the difference in performance

between two policies π�,π as

J(π�)− J(π) =
1

1− γ
E

s∼dπ
�

a∼π
�

[Aπ(s, a)] , (1)

where by a ∼ π�, we mean a ∼ π�(·|s), with explicit

notation dropped to reduce clutter. For proof of (1), see

(Kakade & Langford, 2002) or Section 10 in the supple-

mentary material.

4. Constrained Markov Decision Processes

A constrained Markov decision process (CMDP) is an

MDP augmented with constraints that restrict the set of al-

lowable policies for that MDP. Specifically, we augment the

MDP with a set C of auxiliary cost functions, C1, ..., Cm

(with each one a function Ci : S × A × S → R map-

ping transition tuples to costs, like the usual reward), and

limits d1, ..., dm. Let JCi
(π) denote the expected dis-

counted return of policy π with respect to cost function

Ci: JCi
(π) = E

τ∼π
[
�∞

t=0
γtCi(st, at, st+1)]. The set of

feasible stationary policies for a CMDP is then

ΠC
.
= {π ∈ Π : ∀i, JCi

(π) ≤ di} ,

and the reinforcement learning problem in a CMDP is

π∗ = arg max
π∈ΠC

J(π).

The choice of optimizing only over stationary policies is

justified: it has been shown that the set of all optimal poli-

cies for a CMDP includes stationary policies, under mild
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technical conditions. For a thorough review of CMDPs and

CMDP theory, we refer the reader to (Altman, 1999).

We refer to JCi
as a constraint return, or Ci-return for

short. Lastly, we define on-policy value functions, action-

value functions, and advantage functions for the auxiliary

costs in analogy to V π , Qπ , and Aπ , with Ci replacing R:

respectively, we denote these by V π

Ci
, Qπ

Ci
, and Aπ

Ci
.

5. Constrained Policy Optimization

For large or continuous MDPs, solving for the exact opti-

mal policy is intractable due to the curse of dimensionality

(Sutton & Barto, 1998). Policy search algorithms approach

this problem by searching for the optimal policy within a

set Πθ ⊆ Π of parametrized policies with parameters θ

(for example, neural networks of a fixed architecture). In

local policy search (Peters & Schaal, 2008), the policy is

iteratively updated by maximizing J(π) over a local neigh-

borhood of the most recent iterate πk:

πk+1 = arg max
π∈Πθ

J(π)

s.t. D(π,πk) ≤ δ,
(2)

where D is some distance measure, and δ > 0 is a step

size. When the objective is estimated by linearizing around

πk as J(πk) + gT (θ − θk), g is the policy gradient, and

the standard policy gradient update is obtained by choosing

D(π,πk) = �θ − θk�2 (Schulman et al., 2015).

In local policy search for CMDPs, we additionally require

policy iterates to be feasible for the CMDP, so instead of

optimizing over Πθ, we optimize over Πθ ∩ΠC :

πk+1 = arg max
π∈Πθ

J(π)

s.t. JCi
(π) ≤ di i = 1, ...,m

D(π,πk) ≤ δ.

(3)

This update is difficult to implement in practice because

it requires evaluation of the constraint functions to deter-

mine whether a proposed point π is feasible. When using

sampling to compute policy updates, as is typically done in

high-dimensional control (Duan et al., 2016), this requires

off-policy evaluation, which is known to be challenging

(Jiang & Li, 2015). In this work, we take a different ap-

proach, motivated by recent methods for trust region opti-

mization (Schulman et al., 2015).

We develop a principled approximation to (3) with a par-

ticular choice of D, where we replace the objective and

constraints with surrogate functions. The surrogates we

choose are easy to estimate from samples collected on πk,

and are good local approximations for the objective and

constraints. Our theoretical analysis shows that for our

choices of surrogates, we can bound our update’s worst-

case performance and worst-case constraint violation with

values that depend on a hyperparameter of the algorithm.

To prove the performance guarantees associated with our

surrogates, we first prove new bounds on the difference

in returns (or constraint returns) between two arbitrary

stochastic policies in terms of an average divergence be-

tween them. We then show how our bounds permit a new

analysis of trust region methods in general: specifically,

we prove a worst-case performance degradation at each up-

date. We conclude by motivating, presenting, and proving

gurantees on our algorithm, Constrained Policy Optimiza-

tion (CPO), a trust region method for CMDPs.

5.1. Policy Performance Bounds

In this section, we present the theoretical foundation for

our approach—a new bound on the difference in returns

between two arbitrary policies. This result, which is of in-

dependent interest, extends the works of (Kakade & Lang-

ford, 2002), (Pirotta et al., 2013), and (Schulman et al.,

2015), providing tighter bounds. As we show later, it also

relates the theoretical bounds for trust region policy im-

provement with the actual trust region algorithms that have

been demonstrated to be successful in practice (Duan et al.,

2016). In the context of constrained policy search, we later

use our results to propose policy updates that both improve

the expected return and satisfy constraints.

The following theorem connects the difference in returns

(or constraint returns) between two arbitrary policies to an

average divergence between them.

Theorem 1. For any function f : S → R and any policies

π� and π, define δf (s, a, s
�)

.
= R(s, a, s�)+ γf(s�)− f(s),

�π
�

f

.
= max

s
|Ea∼π�,s�∼P [δf (s, a, s

�)]| ,

Lπ,f (π
�)

.
= E

s∼dπ

a∼π

s�∼P

��

π�(a|s)

π(a|s)
− 1

�

δf (s, a, s
�)

�

, and

D±

π,f (π
�)

.
=

Lπ,f (π
�)

1− γ
±

2γ�π
�

f

(1− γ)2
E

s∼dπ

[DTV (π
�||π)[s]] ,

where DTV (π
�||π)[s] = (1/2)

�

a |π
�(a|s)− π(a|s)| is

the total variational divergence between action distribu-

tions at s. The following bounds hold:

D+

π,f (π
�) ≥ J(π�)− J(π) ≥ D−

π,f (π
�). (4)

Furthermore, the bounds are tight (when π� = π, all three

expressions are identically zero).

Before proceeding, we connect this result to prior work.

By bounding the expectation Es∼dπ [DTV (π
�||π)[s]] with

maxs DTV (π
�||π)[s], picking f = V π , and bounding �π

�

V π
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to get a second factor of maxs DTV (π
�||π)[s], we recover

(up to assumption-dependent factors) the bounds given by

Pirotta et al. (2013) as Corollary 3.6, and by Schulman

et al. (2015) as Theorem 1a.

The choice of f = V π allows a useful form of the lower

bound, so we give it as a corollary.

Corollary 1. For any policies π�,π, with �π
� .

=
maxs |Ea∼π� [Aπ(s, a)]|, the following bound holds:

J(π�)− J(π)

≥ 1

1− γ
E

s∼dπ

a∼π
�

�

Aπ(s, a)− 2γ�π
�

1− γ
DTV (π

�||π)[s]

�

.
(5)

The bound (5) should be compared with equation (1). The

term (1 − γ)−1Es∼dπ,a∼π� [Aπ(s, a)] in (5) is an approxi-

mation to J(π�)− J(π), using the state distribution dπ in-

stead of dπ
�

, which is known to equal J(π�)− J(π) to first

order in the parameters of π� on a neighborhood around π

(Kakade & Langford, 2002). The bound can therefore be

viewed as describing the worst-case approximation error,

and it justifies using the approximation as a surrogate for

J(π�)− J(π).

Equivalent expressions for the auxiliary costs, based on the

upper bound, also follow immediately; we will later use

them to make guarantees for the safety of CPO.

Corollary 2. For any policies π�,π, and any cost func-

tion Ci, with �π
�

Ci

.
= maxs |Ea∼π� [Aπ

Ci
(s, a)]|, the follow-

ing bound holds:

JCi
(π�)− JCi

(π)

≤ 1

1− γ
E

s∼dπ

a∼π
�

�

Aπ

Ci
(s, a) +

2γ�π
�

Ci

1− γ
DTV (π

�||π)[s]

�

.

(6)

The bounds we have given so far are in terms of the

TV-divergence between policies, but trust region methods

constrain the KL-divergence between policies, so bounds

that connect performance to the KL-divergence are de-

sirable. We make the connection through Pinsker’s in-

equality (Csiszar & Körner, 1981): for arbitrary distribu-

tions p, q, the TV-divergence and KL-divergence are related

by DTV (p||q) ≤
�

DKL(p||q)/2. Combining this with

Jensen’s inequality, we obtain

E
s∼dπ

[DTV (π
�||π)[s]] ≤ E

s∼dπ

�

�

1

2
DKL(π�||π)[s]

�

≤
�

1

2
E

s∼dπ

[DKL(π�||π)[s]] (7)

From (7) we immediately obtain the following.

Corollary 3. In bounds (4), (5), and (6), make the substi-

tution

E
s∼dπ

[DTV (π
�||π)[s]] →

�

1

2
E

s∼dπ

[DKL(π�||π)[s]].

The resulting bounds hold.

5.2. Trust Region Methods

Trust region algorithms for reinforcement learning (Schul-

man et al., 2015; 2016) have policy updates of the form

πk+1 = arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]

s.t. D̄KL(π||πk) ≤ δ,

(8)

where D̄KL(π||πk) = Es∼πk
[DKL(π||πk)[s]], and δ > 0

is the step size. The set {πθ ∈ Πθ : D̄KL(π||πk) ≤ δ} is

called the trust region.

The primary motivation for this update is that it is an ap-

proximation to optimizing the lower bound on policy per-

formance given in (5), which would guarantee monotonic

performance improvements. This is important for opti-

mizing neural network policies, which are known to suffer

from performance collapse after bad updates (Duan et al.,

2016). Despite the approximation, trust region steps usu-

ally give monotonic improvements (Schulman et al., 2015;

Duan et al., 2016) and have shown state-of-the-art perfor-

mance in the deep RL setting (Duan et al., 2016; Gu et al.,

2017), making the approach appealing for developing pol-

icy search methods for CMDPs.

Until now, the particular choice of trust region for (8) was

heuristically motivated; with (5) and Corollary 3, we are

able to show that it is principled and comes with a worst-

case performance degradation guarantee that depends on δ.

Proposition 1 (Trust Region Update Performance). Sup-

pose πk, πk+1 are related by (8), and that πk ∈ Πθ. A

lower bound on the policy performance difference between

πk and πk+1 is

J(πk+1)− J(πk) ≥
−
√
2δγ�πk+1

(1− γ)2
, (9)

where �πk+1 = maxs
�

�Ea∼πk+1
[Aπk(s, a)]

�

�.

Proof. πk is a feasible point of (8) with objective value 0,

so Es∼dπk ,a∼πk+1
[Aπk(s, a)] ≥ 0. The rest follows by (5)

and Corollary 3, noting that (8) bounds the average KL-

divergence by δ.

This result is useful for two reasons: 1) it is of independent

interest, as it helps tighten the connection between theory

and practice for deep RL, and 2) the choice to develop CPO

as a trust region method means that CPO inherits this per-

formance guarantee.
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5.3. Trust Region Optimization for Constrained MDPs

Constrained policy optimization (CPO), which we present

and justify in this section, is a policy search algorithm for

CMDPs with updates that approximately solve (3) with a

particular choice of D. First, we describe a policy search

update for CMDPs that alleviates the issue of off-policy

evaluation, and comes with guarantees of monotonic per-

formance improvement and constraint satisfaction. Then,

because the theoretically guaranteed update will take too-

small steps in practice, we propose CPO as a practical ap-

proximation based on trust region methods.

By corollaries 1, 2, and 3, for appropriate coefficients αk,

βi
k the update

πk+1 = arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]− αk

�

D̄KL(π||πk)

s.t. JCi
(πk) + E

s∼dπk

a∼π

�

Aπk

Ci
(s, a)

1− γ

�

+ βi
k

�

D̄KL(π||πk) ≤ di

is guaranteed to produce policies with monotonically non-

decreasing returns that satisfy the original constraints. (Ob-

serve that the constraint here is on an upper bound for

JCi
(π) by (6).) The off-policy evaluation issue is allevi-

ated, because both the objective and constraints involve ex-

pectations over state distributions dπk , which we presume

to have samples from. Because the bounds are tight, the

problem is always feasible (as long as π0 is feasible). How-

ever, the penalties on policy divergence are quite steep for

discount factors close to 1, so steps taken with this update

might be small.

Inspired by trust region methods, we propose CPO, which

uses a trust region instead of penalties on policy divergence

to enable larger step sizes:

πk+1 =arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]

s.t. JCi
(πk) +

1

1− γ
E

s∼dπk

a∼π

�

Aπk

Ci
(s, a)

�

≤ di ∀i

D̄KL(π||πk) ≤ δ.
(10)

Because this is a trust region method, it inherits the perfor-

mance guarantee of Proposition 1. Furthermore, by corol-

laries 2 and 3, we have a performance guarantee for ap-

proximate satisfaction of constraints:

Proposition 2 (CPO Update Worst-Case Constraint Viola-

tion). Suppose πk,πk+1 are related by (10), and that Πθ in

(10) is any set of policies with πk ∈ Πθ. An upper bound

on the Ci-return of πk+1 is

JCi
(πk+1) ≤ di +

√
2δγ�

πk+1

Ci

(1− γ)2
,

where �
πk+1

Ci
= maxs

�

�Ea∼πk+1

�

Aπk

Ci
(s, a)

�
�

�.

6. Practical Implementation

In this section, we show how to implement an approxima-

tion to the update (10) that can be efficiently computed,

even when optimizing policies with thousands of parame-

ters. To address the issue of approximation and sampling

errors that arise in practice, as well as the potential viola-

tions described by Proposition 2, we also propose to tighten

the constraints by constraining upper bounds of the auxil-

liary costs, instead of the auxilliary costs themselves.

6.1. Approximately Solving the CPO Update

For policies with high-dimensional parameter spaces like

neural networks, (10) can be impractical to solve di-

rectly because of the computational cost. However, for

small step sizes δ, the objective and cost constraints are

well-approximated by linearizing around πk, and the KL-

divergence constraint is well-approximated by second or-

der expansion (at πk = π, the KL-divergence and its gra-

dient are both zero). Denoting the gradient of the objective

as g, the gradient of constraint i as bi, the Hessian of the

KL-divergence as H , and defining ci
.
= JCi

(πk) − di, the

approximation to (10) is:

θk+1 = argmax
θ

gT (θ − θk)

s.t. ci + bTi (θ − θk) ≤ 0 i = 1, ...,m

1

2
(θ − θk)

TH(θ − θk) ≤ δ.

(11)

Because the Fisher information matrix (FIM) H is al-

ways positive semi-definite (and we will assume it to be

positive-definite in what follows), this optimization prob-

lem is convex and, when feasible, can be solved efficiently

using duality. (We reserve the case where it is not feasi-

ble for the next subsection.) With B
.
= [b1, ..., bm] and

c
.
= [c1, ..., cm]T , a dual to (11) can be expressed as

max
λ≥0

ν�0

−1

2λ

�

gTH−1g − 2rT ν + νTSν
�

+ νT c− λδ

2
,

(12)

where r
.
= gTH−1B, S

.
= BTH−1B. This is a convex

program in m+1 variables; when the number of constraints

is small by comparison to the dimension of θ, this is much

easier to solve than (11). If λ∗, ν∗ are a solution to the dual,

the solution to the primal is

θ∗ = θk +
1

λ∗
H−1 (g −Bν∗) . (13)

Our algorithm solves the dual for λ∗, ν∗ and uses it to pro-

pose the policy update (13). For the special case where

there is only one constraint, we give an analytical solution

in the supplementary material (Theorem 2) which removes

the need for an inner-loop optimization. Our experiments
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Algorithm 1 Constrained Policy Optimization

Input: Initial policy π0 ∈ Πθ tolerance α

for k = 0, 1, 2, ... do

Sample a set of trajectories D = {τ} ∼ πk = π(θk)

Form sample estimates ĝ, b̂, Ĥ, ĉ with D
if approximate CPO is feasible then

Solve dual problem (12) for λ∗
k, ν

∗
k

Compute policy proposal θ∗ with (13)

else

Compute recovery policy proposal θ∗ with (14)

end if

Obtain θk+1 by backtracking linesearch to enforce sat-

isfaction of sample estimates of constraints in (10)

end for

have only a single constraint, and make use of the analyti-

cal solution.

Because of approximation error, the proposed update may

not satisfy the constraints in (10); a backtracking line

search is used to ensure surrogate constraint satisfaction.

Also, for high-dimensional policies, it is impractically ex-

pensive to invert the FIM. This poses a challenge for com-

puting H−1g and H−1bi, which appear in the dual. Like

(Schulman et al., 2015), we approximately compute them

using the conjugate gradient method.

6.2. Feasibility

Due to approximation errors, CPO may take a bad step and

produce an infeasible iterate πk. Sometimes (11) will still

be feasible and CPO can automatically recover from its bad

step, but for the infeasible case, a recovery method is nec-

essary. In our experiments, where we only have one con-

straint, we recover by proposing an update to purely de-

crease the constraint value:

θ∗ = θk −
�

2δ

bTH−1b
H−1b. (14)

As before, this is followed by a line search. This approach

is principled in that it uses the limiting search direction as

the intersection of the trust region and the constraint region

shrinks to zero. We give the pseudocode for our algorithm

(for the single-constraint case) as Algorithm 1, and have

made our code implementation available online.1

6.3. Tightening Constraints via Cost Shaping

Because of the various approximations between (3) and our

practical algorithm, it is important to build a factor of safety

into the algorithm to minimize the chance of constraint vi-

olations. To this end, we choose to constrain upper bounds

1https://github.com/jachiam/cpo

on the original constraints, C+

i , instead of the original con-

straints themselves. We do this by cost shaping:

C+

i (s, a, s�) = Ci(s, a, s
�) +∆i(s, a, s

�), (15)

where ∆i : S × A × S → R+ correlates in some useful

way with Ci.

In our experiments, where we have only one constraint, we

partition states into safe states and unsafe states, and the

agent suffers a safety cost of 1 for being in an unsafe state.

We choose ∆ to be the probability of entering an unsafe

state within a fixed time horizon, according to a learned

model that is updated at each iteration. This choice confers

the additional benefit of smoothing out sparse constraints.

7. Connections to Prior Work

Our method has similar policy updates to primal-dual

methods like those proposed by Chow et al. (2015), but

crucially, we differ in computing the dual variables (the

Lagrange multipliers for the constraints). In primal-dual

optimization (PDO), dual variables are stateful and learned

concurrently with the primal variables (Boyd et al., 2003).

In a PDO algorithm for solving (3), dual variables would

be updated according to

νk+1 = (νk + αk (JC(πk)− d))
+
, (16)

where αk is a learning rate. In this approach, intermedi-

ary policies are not guaranteed to satisfy constraints—only

the policy at convergence is. By contrast, CPO computes

new dual variables from scratch at each update to exactly

enforce constraints.

8. Experiments

In our experiments, we aim to answer the following:

• Does CPO succeed at enforcing behavioral constraints

when training neural network policies with thousands

of parameters?

• How does CPO compare with a baseline that uses

primal-dual optimization? Does CPO behave better

with respect to constraints?

• How much does it help to constrain a cost upper bound

(15), instead of directly constraining the cost?

• What benefits are conferred by using constraints in-

stead of fixed penalties?

We designed experiments that are easy to interpret and mo-

tivated by safety. We consider two tasks, and train multiple

different agents (robots) for each task:
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Returns:

Constraint values: (closer to the limit is better)

(a) Point-Circle (b) Ant-Circle (c) Humanoid-Circle (d) Point-Gather (e) Ant-Gather

Figure 1. Average performance for CPO, PDO, and TRPO over several seeds (5 in the Point environments, 10 in all others); the x-axis is

training iteration. CPO drives the constraint function almost directly to the limit in all experiments, while PDO frequently suffers from

over- or under-correction. TRPO is included to verify that optimal unconstrained behaviors are infeasible for the constrained problem.

• Circle: The agent is rewarded for running in a wide

circle, but is constrained to stay within a safe region

smaller than the radius of the target circle.

• Gather: The agent is rewarded for collecting green

apples, and constrained to avoid red bombs.

For the Circle task, the exact geometry is illustrated in Fig-

ure 5 in the supplementary material. Note that there are

no physical walls: the agent only interacts with boundaries

through the constraint costs. The reward and constraint cost

functions are described in supplementary material (Section

10.3.1). In each of these tasks, we have only one constraint;

we refer to it as C and its upper bound from (15) as C+.

We experiment with three different agents: a point-mass

(S ⊆ R
9, A ⊆ R

2), a quadruped robot (called an ‘ant’)

(S ⊆ R
32, A ⊆ R

8), and a simple humanoid (S ⊆
R

102, A ⊆ R
10). We train all agent-task combinations ex-

cept for Humanoid-Gather.

For all experiments, we use neural network policies with

two hidden layers of size (64, 32). Our experiments are

implemented in rllab (Duan et al., 2016).

8.1. Evaluating CPO and Comparison Analysis

Learning curves for CPO and PDO are compiled in Figure

1. Note that our constraint value graphs show C+ return,

instead of the C return (except for in Point-Gather, where

we did not use cost shaping due to that environment’s short

time horizon), because this is what the algorithm actually

constrains in these experiments.

For our comparison, we implement PDO with (16) as the

(a) Humanoid-Circle (b) Point-Gather

Figure 2. The Humanoid-Circle and Point-Gather environments.

In Humanoid-Circle, the safe area is between the blue panels.

update rule for the dual variables, using a constant learning

rate α; details are available in supplementary material (Sec-

tion 10.3.3). We emphasize that in order for the compari-

son to be fair, we give PDO every advantage that is given to

CPO, including equivalent trust region policy updates. To

benchmark the environments, we also include TRPO (trust

region policy optimization) (Schulman et al., 2015), a state-

of-the-art unconstrained reinforcement learning algorithm.

The TRPO experiments show that optimal unconstrained

behaviors for these environments are constraint-violating.

We find that CPO is successful at approximately enforc-

ing constraints in all environments. In the simpler envi-

ronments (Point-Circle and Point-Gather), CPO tracks the

constraint return almost exactly to the limit value.

By contrast, although PDO usually converges to constraint-

satisfying policies in the end, it is not consistently

constraint-satisfying throughout training (as expected). For

example, see the spike in constraint value that it experi-



Constrained Policy Optimization

ences in Ant-Circle. Additionally, PDO is sensitive to the

initialization of the dual variable. By default, we initial-

ize ν0 = 0, which exploits no prior knowledge about the

environment and makes sense when the initial policies are

feasible. However, it may seem appealing to set ν0 high,

which would make PDO more conservative with respect

to the constraint; PDO could then decrease ν as necessary

after the fact. In the Point environments, we experiment

with ν0 = 1000 and show that although this does assure

constraint satisfaction, it also can substantially harm per-

formance with respect to return. Furthermore, we argue

that this is not adequate in general: after the dual variable

decreases, the agent could learn a new behavior that in-

creases the correct dual variable more quickly than PDO

can attain it (as happens in Ant-Circle for PDO; observe

that performance is approximately constraint-satisfying un-

til the agent learns how to run at around iteration 350).

We find that CPO generally outperforms PDO on enforc-

ing constraints, without compromising performance with

respect to return. CPO quickly stabilizes the constraint re-

turn around to the limit value, while PDO is not consis-

tently able to enforce constraints all throughout training.

8.2. Ablation on Cost Shaping

In Figure 3, we compare performance of CPO with and

without cost shaping in the constraint. Our metric for com-

parison is the C return, the ‘true’ constraint. The cost shap-

ing does help, almost completely accounting for CPO’s

inherent approximation errors. However, CPO is nearly

constraint-satisfying even without cost shaping.

8.3. Constraint vs. Fixed Penalty

In Figure 4, we compare CPO to a fixed penalty method,

where policies are learned using TRPO with rewards

R(s, a, s�)− νC+(s, a, s�) for ν ∈ {1, 5, 50}.

We find that fixed penalty methods can be highly sensitive

to the choice of penalty coefficient: in Ant-Circle, a penalty

coefficient of 1 results in reward-maximizing policies that

accumulate massive constraint costs, while a coefficient of

5 (less than an order of magnitude difference) results in

cost-minimizing policies that never learn how to acquire

any rewards. In contrast, CPO automatically picks penalty

coefficients to attain the desired trade-off between reward

and constraint cost.

9. Discussion

In this article, we showed that a particular optimization

problem results in policy updates that are guaranteed to

both improve return and satisfy constraints. This enabled

the development of CPO, our policy search algorithm for

CMDPs, which approximates the theoretically-guaranteed

(a) Ant-Circle Return (b) Ant-Gather Return

(c) Ant-Circle C Return (d) Ant-Gather C Return

Figure 3. Using cost shaping (CS) in the constraint while optimiz-

ing generally improves the agent’s adherence to the true constraint

on C return.

(a) Ant-Circle Return (b) Ant-Circle C
+-Return

Figure 4. Comparison between CPO and FPO (fixed penalty opti-

mization) for various values of fixed penalty.

algorithm in a principled way. We demonstrated that CPO

can train neural network policies with thousands of param-

eters on high-dimensional constrained control tasks, simul-

taneously maximizing reward and approximately satisfying

constraints. Our work represents a step towards applying

reinforcement learning in the real world, where constraints

on agent behavior are sometimes necessary for the sake of

safety.
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