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Abstract—Concern about how to aggregate sensitive user data without compromising individual privacy is a major barrier to greater

availability of data. Differential privacy has emerged as an accepted model to release sensitive information while giving a statistical

guarantee for privacy. Many different algorithms are possible to address different target functions. We focus on the core problem of

count queries, and seek to designmechanisms to release data associated with a group of n individuals. Prior work has focused on

designing mechanisms by raw optimization of a loss function, without regard to the consequences on the results. This can lead to

mechanisms with undesirable properties, such as never reporting some outputs (gaps), and overreporting others (spikes). We tame

these pathological behaviors by introducing a set of desirable properties that mechanisms can obey. Any combination of these can be

satisfied by solving a linear program (LP) which minimizes a cost function, with constraints enforcing the properties. We focus on a

particular cost function, and provide explicit constructions that are optimal for certain combinations of properties, and show a closed

form for their cost. In the end, there are only a handful of distinct optimal mechanisms to choose between: one is the well-known

(truncated) geometric mechanism; the second a novel mechanism that we introduce here, and the remainder are found as the solution

to particular LPs. These all avoid the bad behaviors we identify. We demonstrate in a set of experiments on real and synthetic data

which is preferable in practice, for different combinations of data distributions, constraints, and privacy parameters.

Index Terms—Differential privacy, mechanism design, constrained optimization, count queries

Ç

1 INTRODUCTION

THERE has been considerable progress on the problem of
how to release sensitive information with privacy guar-

antees in recent years. Various formulations have been pro-
posed, with the model of differential privacy emerging as
the most popular and robust [1]. Differential privacy (DP)
lays down rules on the likelihood of seeing particular out-
puts given related inputs. Many different algorithms have
been proposed to meet this guarantee, based on different
objectives and input types [2]. The resulting descriptions of
output probabilities for different inputs are referred to as
mechanisms, such as the Laplace mechanism, Geometric
mechanism and Exponential mechanism described in more
detail subsequently.

In this paper, we focus on count queries, a fundamental
problem in private data release that underpins many appli-
cations, from basic statistics of a dataset to complex spatial
and graphical distributions. Count queries are needed to
materialize frequency distributions, instantiate statistical
models, and as the basis of SQL COUNT * queries. Counts
can be applied to arbitrary groups, and based on complex
predicates; hence they represent a very general tool.
Abstractly, we have a group of n individuals, who each
hold a private bit (encoding, for example, whether or not
they possess a particular sensitive characteristic). The aim is

to release information about the sum of the bits, while meet-
ing the stringent differential privacy guarantee. The usual
model assumes the existence of a trusted aggregator, who
receives the individual bits, and who aims to release a noisy
representation of their sum. Since the value of the true
answer is in f0 . . .ng, it is natural to restrict the output of the
mechanism to this range also, to ensure downstream com-
patibility with subsequent data analysis expecting integer
counts in this range. If we analyze how existing approaches
to differential privacy handle this case, we find there
are weaknesses. We consider the most relevant approach,
mechanisms obtained via a linear programming framework.

Linear Programming Framework [3] (cf. Section 3). Ghosh
et al. considered count queries and proved powerful theo-
rems about utility-optimal mechanisms. They showed how
to design mechanisms for count queries which minimize a
loss function, via linear programming. The mechanisms
obtained by solving linear programs specify, for each possi-
ble input, a probability distribution over allowable outputs.
However, for common objectives, including to minimize the
expected absolute error (denoted L1) and squared error (L2),
we observed that the “optimal” mechanisms have some
anomalous behavior, such as never reporting some values.

Fig. 1 gives some examples of this phenomenon in action.
We show four optimal mechanisms generated by solving lin-
ear program described in Section 3 for different input sizes
(n), under a privacy guarantee controlled by a parameter a
(explained later, and set to a fixed value here). Each column
gives the probability distribution over the outputs in the
range 0 to n, for a given input count (also 0 to n). The case of
optimizing the squared error (L2) is most striking: the
“optimal” thing to do in this case is to ignore the input and
always report ‘2’! But other cases are also problematic: all
these optimal mechanisms never report some outputs
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(gaps), and disproportionately report some others (spikes).
For example, minimizing the absolute error for n ¼ 7 has a
chance of reporting the values 2 or 5 with at least 0.7 proba-
bility, regardless of the input value. Similarly, if we try to
minimize the probability of reporting an answer that is more
than 1 step away from the true input (denoted as L0 with
d ¼ 1), there is an over 90 percent chance of reporting 1 or 4.

Clearly, such results are counter-intuitive and show that
blind optimization of simple objective functions can lead to
unexpected and undesirable outcomes. To address this, we
initiate the study of constrained mechanism design: requiring
mechanisms to satisfy additional properties ensuring
desired structure in the obtained mechanism and avoiding
these pathologies. For example, we define the notion of fair-
ness, which requires that the probability of reporting the
true input is the same for all inputs; and weak honesty, where
we require that the probability of reporting the true input is
at least uniform (i.e., at least 1

nþ1). These both ultimately
entail that every output is reported with a non-zero proba-
bility. We also consider various monotonicity properties,
which preclude big spikes in probability for responses that
are far from the truth. In total, we describe seven natural
properties that one could demand of a mechanism. Our first
result is to show how to extend the linear programming
framework to incorporate these properties and eliminate
pathological outcomes.

Fig. 2 shows the heatmap of constrained mechanisms sat-
isfying all properties. The anomalies (spikes and gaps) seen
in Fig. 1 are now eliminated. Recall that optimizing in the
unconstrained L2 case returns a trivial solution that outputs 2
irrespective of input. Now, the probability mass in the corre-
sponding constrained mechanism is more distributed and
with probability at least 23, themechanism outputs a value dif-
fering from the true answer by atmost 1 for all inputs. Similar
observations can be made in the other instances. We go on to
perform a detailed study of constrained mechanism design
for count queries, and show some surprising outcomes:

� Fully constrained mechanisms minimizing L0;L1;L2 are
similar. The mechanisms for satisfying all constraints
irrespective of what objective function they are mini-
mizing are similar. This means analyzing properties
on just one of the loss functions should give us an
approximate idea of utility offered on others. Hence,
we focus most of our attention on L0 loss function.

� No blow up in number of mechanisms for L0. Given 7 dif-
ferent properties, there are 27 ¼ 128 different combi-
nations that could be requested. Does this mean that

there are over a hundred distinct constrained mecha-
nisms? We show that this is not the case: there are at
most four different behaviours that can be observed.
Two behaviors correspond to explicit constructions of
mechanisms: the (truncated) geometric mechanism
(GM) proposed in [3], which corresponds to the
unconstrained optimal solution; and a new “explicit
fair mechanism” (EM) which simultaneously achieves
all the properties that we introduce. In between are
two mechanisms which achieve variations of the
weak honesty property above, which are found by
solving an optimization problem.

� No significant loss in utility. The Geometric mecha-
nism obtains the minimal value of the L0 loss func-
tion, for which we give a closed form in terms of the
privacy parameter a. However, our most constrained
mechanism (the explicit fair mechanism, EM) is only
incrementally more expensive: the loss function
value is higher by a factor of approximately 1þ 1

n,
which becomes negligible for even moderate n. The
costs of the other constrained mechanisms are sand-
wiched in between.

Consequently, we conclude that the addition of con-
straints provides significant structure to the space of mecha-
nism design, and comes at very low cost. Given these
observations, one may wonder whether there is any mate-
rial difference in behavior between the constrained and
unconstrained mechanisms? This is indeed the case. For
example, Fig. 7 shows a quantitative difference between GM
and EM for n ¼ 4 (chosen to make the results easy to view).
The heatmap shows that GM concentrates the probability
mass on the two extreme outputs, 0 and n, while EM
achieves a more balanced distribution, closer to the leading
diagonal (corresponding to a truthful mechanism). If we
assume a uniform input distribution, EM reports the true
input with probability 0.224, while GM (which maximizes
this quantity) achieves 0.238, only marginally higher but
with a high skew. A third mechanism with the weak hon-
esty property,WM, sits between the two.

Our experiments further study the implications of using
constrained mechanisms, and compare their empirical
behavior on a mixture of real and synthetic data. Differences
are most apparent for moderate values of n: as n becomes
very large, these “end effects” become less significant, and
off-the-shelf mechanisms do a good enough job. Thus, we
spend most of our effort studying groups corresponding to
a moderate number of individuals, up to tens. Arguably,
such small groups are most in need of protection, since they

Fig. 1. Heatmaps of unconstrained mechanisms for a ¼ 0:62. Fig. 2. Heatmaps of constrained mechanisms for a ¼ 0:62.
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have only a few participants: there is reduced safety in
numbers for them.

Outline. We discuss prior work, introduce our model and
define useful notions for differential privacy in Section 2. After
defining the Linear Programming framework (Section 3), in
Section 4, we present constraints that can be added to avoid
degeneracy. In Section 5, we revisit the one user/one bit case
(Local Differential Privacy), and show that Randomized
Response represents a natural convergence of multiple differ-
ent approaches to privacy. In Section 6, we observe that some
existing approaches yield seemingly undesirable results for
small groups (with only a few members), which motivates
our further study of differentially private mechanisms. Addi-
tional properties which constrain the output can be obtained
efficiently via solving a constrained optimization problem.
We also propose an explicit construction of a mechanism
which provably achieves all our proposed properties, and
analyze the additional “cost” in terms of various measures of
accuracy. Section 7 reports on our experiments on accuracy
with synthetic and real data.

2 PRELIMINARIES

2.1 Model and Definitions

Our model assumes a group of n participants, each of whom
has some private information which is encoded as a single
bit. They share their information with a trusted aggregator,
whose aim is to release information about the sum of the
values while protecting the privacy of each participant.
Although simple, this question is at the heart of all complex
analysis and modelling, and demands a comprehensive
solution. We simplify the description of the input to just
record the true sum of values j, so we have 0 � j � n. This
captures the case of a count-query over a table D. Our goal
is to design a randomized mechanism that, given input j pro-
duces output i, subject to certain constraints.

Definition 1 (Randomized Mechanism). A randomized
mechanism M is a mapping M : D ) R, where R ¼ f0; ::;
ng ¼ ½n� is the range of the mechanism. We write PrM½ijj� for
the conditional probability that the output MðjÞ (on input
j 2 D) is i 2 R. We will drop the subscriptM in context.

Our mechanism maps inputs in the range 0 to n to out-
puts in the same range. While one could allow a different
set of outputs, it is most natural to restrict to this range.
Consider for example, a downstream analysis step which
expects counts to be integers in the range ½n�: we should
ensure that this expectation is met by the result of applying
mechanisms. Rather than attempt to map different outputs
to this range, it is more direct to build mechanisms that
cover this output set. It is therefore natural to represent M
as an ðnþ 1Þ � ðnþ 1Þ square matrix P, where Pi;j ¼
Pr½MðjÞ ¼ i� ¼ PrM½ijj�. For brevity, we abbreviate this
probability to Pr½ijj�. Note that therefore P is a column sto-
chastic matrix: the entries in each column can be interpreted
as probabilities, and sum to 1.

Privacy of a Mechanism. Differential privacy imposes con-
straints on the probabilities in our mechanism. Specifically,
it bounds the ratio of probabilities of seeing the same output
for neighboring inputs [1]. In our setting, the notion of neigh-
boring is simply that they differ by (at most) one, which

happens when an individual changes their response. Hence,
applying the definition, we obtain

Definition 2 (Differentially Private Mechanisms). Mech-
anismM is a-differentially private for a 2 ½0; 1� if

8i; j : a � Pr½ijj�
Pr½ijjþ 1� �

1

a
:

Here a close to 1 provides a stronger notion of privacy and a
tighter constraint on the probabilities, while a close to zero
relaxes these constraints. It is common in differential privacy
to write a ¼ expð��Þ � 1� �, for some � > 0. We adopt the a
notation for conciseness, and translate results in terms of
�-differential privacy when appropriate. We say a DP con-
straint is tight if the relevant inequality is met with equality.

Utility of a Mechanism. The true test of the utility of a
mechanism is the accuracy with which it allows queries to
be answered over real data. However, we aim to design
mechanisms prior to their application to data, and so we
seek a suitable function to evaluate their quality. Since there
are many column stochastic matrices that satisfy DP, the
problem of finding a mechanism that provides the maximal
utility can be framed as an optimization problem. Specifi-
cally, we can encode our notion of utility as a penalty func-
tion, where we seek to penalize the mechanism for
reporting results that are far from the true answer.

Definition 3 (Objective Function Value). We define the
objective function Ot;�ðPÞ of a mechanism P as

Ot;�ðPÞ ¼ �j

X
i

wj Pr½ijj�ji� jjt;

where � is an operator like
P

ormax, and
P

j wj ¼ 1.

Observe that the weights wj can be thought of as a prior
distribution on the input values j. Then Ot;

PðPÞ gives the

expected error of the mechanism, when taking its output as
the true answer, and ji� jjt penalizes the extent by which
the output was incorrect. When not otherwise stated, we
take wj ¼ 1

nþ1, i.e., a uniform prior over the inputs. Common
choices for t in the definition would be t ¼ 2, corresponding
to a squared error (L2 norm), t ¼ 1, corresponding to an
absolute error (L1 norm), and t ¼ 0, corresponding to the
probability of any wrong answer (L0 norm). In what fol-
lows, we devote most of our attention to the case L0. We
argue that this is an important case: (i) maximizing the
probability of reporting the truth is a natural objective in
mechanism design; we aim to ensure that the reported
answer is the maximum likelihood estimator (MLE) for the
true answer, for use in downstream processing; (ii) due to
the differential privacy constraints, maximizing the proba-
bility of the true answer has the additional effect of making
nearby answers likely, as our experiments validate; (iii) our
internal study shows that objectives like L1 and L2 often
give pathological results, as seen in Fig. 1. Working with L0

gives more robust behavior. We therefore initiate the study
of constrained mechanism design for L0, and give some ini-
tial results for other objectives. It is convenient to apply a
rescaling of the loss function by a factor of nþ1

n : this sets the
cost of a trivial mechanism to 1 (Definition 5). We refer to
this rescaled cost as L0, as this corresponds to a scaled
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version of O0;
P that sums the probabilities of a wrong

answer, and so

L0ðPÞ ¼ nþ 1

n
� trace P

n
: (1)

Abusing notation slightly, we also define the objective
function, L0;d ¼ nþ1

n

Pn
i;j:ji�jj	d wj Pr½ijj� which computes a

rescaled sum of probabilities more than d steps off the main
diagonal, so that L0 ¼ L0;0.

2.2 Prior Work and Existing Mechanisms

We now review the most relevant existing approaches that
apply in our setting. The model of differential privacy [1],
[4], [5] has received a lot of attention in the decade since it
was christened, from a variety of communities including
systems [6], machine learning and signal processing [7] and
data management [8]. For a more thorough overview of the
area, there are several detailed surveys [2], [9], [10].

The most relevant work to our interests is due to Ghosh
et al. [3] who study the problem of designing mechanisms
optimizing for expected utility. Their contributions are to
introduce a linear programming formulation of the problem,
and to show that a certain mechanism (denotedGM) emerges
as the basis of other optimal mechanisms, discussed in more
detail below. Gupte and Sundararajan proved a similar uni-
versality result for “minimax” loss functions and uniform
weightswj [11]. They provided a simple test for when a given
mechanism can be obtained by first applying GM and then
modifying the result (e.g., by randomly sampling from a dis-
tribution indexed by the observed output from GM). Subse-
quent work by Brenner and Nissim shows that such
“universally optimal”mechanisms are not possible in general
for other computations, such as computing histograms [12].
Other relevant work studies special cases of differential pri-
vacy. An important variant is the model of local differential pri-
vacy (LDP), where users first perturb their input before
passing it to an (untrusted) aggregator. That is, each user
applies a mechanism for a group of size n ¼ 1. LDP is used in
Google’s Chrome via the RAPPOR tool to collect browser and
system statistics [13], and in Apple’s iOS 10 to collect app
usage statistics [14]. In Section 5, we observe that all adapta-
tions of standard DP methods converge on the same idea: a
decades-old statistical sampling technique called Random-
ized Response [15].

The most relevant existing approaches to us are the
following:

Mechanisms from Coin-Tossing: Randomized Response.
There are many variations of Randomized Response [15]. A
canonical form for the case n ¼ 1 has the user report the
true value of their input bit with probability p > 1

2, but
report the negation of their input with probability 1� p.
Without loss of generality, we can assume that p > 1

2. We
can write this as a randomized mechanism

R ¼ p 1� p
1� p p

� �
: (2)

It is immediate that this procedure achieves a-differential
privacy for a ¼ 1�p

p (see Definition 2). Due to its simplicity
and privacy guarantees, randomized response has recently
found use in a number of systems, such as RAPPOR [13],

which applies randomized response in conjunction with a
Bloom filter to accommodate many possible elements. Geng
et al. in [16] give a natural extension of 1 bit randomized
response to n-ary data, which reports its input with proba-
bility p, else another output is chosen uniformly. This gives
low utility for count queries.

Defining Sampling Probabilities: Exponential Mechanism.
McSherry and Talwar [17] proposed the Exponential Mech-
anism as a generic approach to designing mechanisms. Let
D be the domain of input dataset and R the range of per-
turbed responses. The crux of the exponential mechanism is
in designing a quality function Q : D�R ) R so that Qðd; rÞ
measures the desirability of providing output r for input d.
The mechanism is then defined by setting

Pr½r 2 Rjd� ¼ exp �Qðd;rÞ
2s

� �.P
r02R exp �Qðd;r0Þ

2s

� �
; (3)

where s captures the amount by which changing an individ-
ual’s input can alter the output of Q in the worst case. It is
proved that this mechanism obtains at least expð��Þ-differ-
ential privacy. However, although we can use Q to indicate
that some outputs are more preferred, it is not possible to
modify a given Q to directly enforce the properties that we
desire, such as ensuring that the probability of returning the
true output is at least as good as that of a uniform distribu-
tion (“weak honesty”, (14)).

Rounding Numeric Outputs: Laplace and Geometric Mecha-
nisms. Perhaps the best known differentially private mecha-
nism is the Laplace mechanism, which operates by adding
random noise to the true answer from an appropriately
scaled Laplace distribution (a continuous exponential distri-
bution symmetric around zero). Note that in order to fit our
definition of a mechanism (Definition 1), it will be necessary
to round and truncate the output of the mechanism to the
range ½n�. Here, the Laplace mechanism does not easily fit the
requirements. Instead, the appropriate method is the discrete
analog of the Laplace mechanism, which is the (truncated)
Geometric mechanism, introduced by Ghosh et al. [3], who
showed that it is the basis for unconstrainedmechanisms.

Definition 4. Range Restricted Geometric Mechanism [3] (GM)
Let q be the true (unperturbed) result of a count query. The GM
responds with minðmaxð0; q þ dÞ; nÞ, where d is a noise drawn
from a random variable X with a double sided geometric distri-

bution, Pr½X ¼ d� ¼ ð1�aÞjdj
1þa

for d 2 Z.

That is,GM adds noise from a two sided geometric distri-
bution to the query result and remaps all outputs less than 0
onto 0 and greater than n to n. Though GM does not include
any zero rows, we observe that each column distribution in
GM has spikes at the extreme values, which tend to distort
the true distribution quite dramatically, as the next example
shows.

Example 1. Consider the case of n ¼ 2, corresponding to a
group of two individuals, with a moderate setting of the
privacy parameter a ¼ 9

10. For an input of 1 (i.e., one user
has a 1, and the other has a 0), we obtain that the probabil-
ity of seeing an output of 0 is � 0:47, and the same for an
output of 2. Meanwhile, the probably of reporting the
true output is � 0:05—in other words, the chance of see-
ing the true answer is eighteen times lower than seeing
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an incorrect answer. Meanwhile, if the input is 0, then
output 0 is returned with probability � 0:53: so the mech-
anism is much more likely to report the true answer
when it is 0 than when it is 1. As we increase the privacy
parameter a closer to 1 (more privacy), the probability of
outputs other than 0 and n approaches 0.

As observed in Example 1, an apparent weakness of GM
for interpretability is that it can give quite low probabilities
for reporting accurate answers. In order to allow more sense
to be made of the outputs of the designed mechanisms, we
can specify additional constraints to guide the optimization
to producing the best interpretable result. This prompts us
to define a collection of plausible properties that a mecha-
nism can obey. We will show analytically and empirically
that these constraints do not significantly affect the obtained
objective function values (i.e., the raw utility), but consider-
ably improve the interpretability of the resulting mecha-
nism. In particular, we demonstrate that it is possible to
find a mechanism which achieves all the given properties
with only marginal increase in objective function value, and
improved interpretability.

3 UNCONSTRAINED MECHANISM DESIGN

A natural starting point is to use optimization tools to find
optimal mechanisms. Following [3], the key observation is
that the DP requirements can be written as linear constraints
over variables which represent the entries of the mechanism.
The objective function is also a linear function of these varia-
bles. Formally, we define variables ri;j forPr½ijj�, andwrite

minimize:
Xn
j¼0

wj

Xn
i¼0

ji� jjpri;j (4)

subject to: 0 � ri;j � 1 8i; j 2 ½n� (5)

Xn
i¼0

ri;j ¼ 1 8j 2 ½n� (6)

ri;j 	 ari;jþ1; and ri;jþ1 	 ari;j 8i 2 ½n�; j 2 ½n� 1�:
(7)

The constraints can be understood as follows: (5), (6)
ensure that the entries of the matrix are probabilities and
each column encodes a probability distribution, i.e., sums to
1. Constraint (7) encodes the differential privacy constraints.
Finally, (4) encodes a loss function of Definition 4 for the
notion of utility we aim for. We refer to the set of con-
straints (5), (6) and (7) as BASICDP. The result is a linear pro-
gram with a quadratic number of variables, and a quadratic
number of constraints, each containing at most a linear
number of variables. Therefore, solving the resulting LP
obtains a mechanism minimizing the given objective func-
tion with the desired properties, in time polynomial in n.

Applying this approach yields results like those in Fig. 1.
Our studies found that similar undesirable results were
found across a range of choices of n, a and loss function.
Simple attempts to prevent these outcomes are not effective.
For example, we can ensure that no entry is zero by adding
a constraint to the LP enforcing this. However, the conse-
quence is that rows which were zero are now set to be the

smallest allowable value, which is unsatisfying. Instead, we
propose an additional set of properties to eliminate degen-
eracy and provide more structure in our solutions.

4 CONSTRAINED MECHANISM DESIGN

We now propose a set of structural properties that help to
control the objective function in addition to meeting differ-
ential privacy. We believe that these constraints are natural
and intuitive and often observed in other mechanisms satis-
fying differential privacy. We present properties of three
types: those which operate on rows of the matrix, those
which apply to columns of the matrix, and those which
apply to the diagonal.

Row Honesty (RH). Amechanism is row honest if

8i; j:Pr½iji� 	 Pr½ijj�: (8)

Row honesty means that a mechanism should have higher
probability of reporting i when the input is i than for any
other input.

Row Monotone (RM). Amechanism is row monotone if

81 � j � i : Pr½ijj� 1� � Pr½ijj�
8i � j < n : Pr½ijjþ 1� � Pr½ijj�: (9)

This property generalizes row honesty: row monotonic-
ity implies row honesty. It requires that entries in row i are
monotone non-increasing as we move away from the diago-
nal element Pr½iji�. Note that row monotonicity is indepen-
dent of differential privacy: we can find mechanisms that
achieve DP but are not row monotone, and vice-versa.

Analogous to the row-wise properties, we define mono-
tonicity and honesty along columns also.

Column Honesty (CH). Amechanism is column honest if

8i; j : Pr½jjj� 	 Pr½ijj�: (10)

Column honesty requires that the mechanism be honest
enough to report the true answer more often than any indi-
vidual false answer. As demonstrated by Example 1, GM
does not obey column honesty.

Column Monotone (CM). A mechanism is column monotone
if

81 � i � j : Pr½i� 1jj� � Pr½ijj�
8j � i < n : Pr½iþ 1jj� � Pr½ijj�: (11)

As in the row-wise case, column monotonicity implies
column honesty (but not vice-versa). It captures the prop-
erty that outputs closer to the true answer should be more
likely than those further away.

Fairness (F). A mechanism is fair when the probability of
reporting the true input is constant, i.e.,

8i; j : Pr½iji� ¼ Pr½jjj� :¼ y: (12)

Example 1 shows that GM is not a fair mechanism. If a
mechanism is fair and has row honesty, then all off-diagonal
elements are at most y, so the mechanism also satisfies col-
umn honesty. Symmetrically, a fair and column honest
mechanism is row honest. While this may seem like a
restrictive constraint, we observe that mechanisms
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proposed in other contexts have this property, such as the
staircase mechanism of [16].

Lemma 1. If a mechanism is required to be fair, then any mecha-
nism that minimizes the objective O0;

P is simultaneously opti-
mal for all settings of weights wj.

Proof. Let the diagonal element of the fair mechanism be y.
The objective function value isX

j2½n�

X
i2½n�

wj Pr½ijj�ði� jÞ0 ¼
X
j2½n�

wjð1� yÞ ¼ 1� y:

(13)

That is, the value is independent of the wjs. tu
Weak Honesty (WH). Amechanism satisfies weak honesty if

8i : Pr½iji� 	 1

nþ 1
: (14)

We can consider this property a weaker version of column
honesty, as CH implies WH: for any column j, summing the
column honesty property over all rows iwe obtain

ðnþ 1ÞPr½iji� ¼
Xn
i¼0

Pr½jjj� 	
Xn
i¼0

Pr½ijj� ¼ 1;

so after rearranging, we have Pr½iji� 	 1
nþ1.

Weak honesty ensures that a mechanism reports the true
answer with probability at least that of uniform guessing
(formalized as the uniform mechanism UM in Definition 5).
It also ensures that the mechanism does not have any rows
that are all zero (corresponding to outputs with no probabil-
ity of being produced). GM does not always obey weak hon-
esty, as is shown by Example 1.

The final property we consider is a natural symmetry
property (formally, it is that the matrix P is centrosymmetric):

Symmetry (S). Amechanism is symmetric if

8i; j : Pr½ijj� ¼ Pr½n� ijn� j�: (15)

Since the input and output domains, and the objective
functions are symmetric, it is natural to seek mechanisms
which are also symmetric. Our next result shows that sym-
metry is always achievable without any loss in objective
function.

Theorem 1. Given a mechanism M which meets a subset of
properties P from those defined above, we can construct a sym-
metric mechanism M
 which also satisfies all of P and achieves
the same objective function value asM.

Proof. Our construction to achieve symmetry is simple.
Define a matrix MS from M as ðMSÞi;j ¼ Mn�i;n�j. Then
set M
 ¼ 1

2 ðM þMSÞ. We first observe that M
 is indeed
symmetric, since it is equal to

1

2
ðMi;j þMn�i;n�jÞ ¼ 1

2
ðMn�i;n�j þMn�ðn�iÞ;n�ðn�jÞÞ ¼ M


n�i;n�j;

as required by (15). The (L0) objective function value is
unchanged since (invoking (1))

traceðM
Þ ¼ 1
2 ðtraceðMÞ þ traceðMSÞÞ ¼ traceðMÞ:

For the other diagonal properties (fairness and weak
honesty), it is immediate that if either of these properties
are satisfied by M, then they are also satisfied by M
. We
prove the claim for row properties; the case for column
properties is symmetric.

(i) Differential privacy: if we have a � Mi;j=Mi;jþ1 �
1=a for all i; j, then this also holds for MS

i;j=M
S
i;jþ1.

Summing both inequalities, and using that
minðab ; cdÞ � aþc

bþd � maxðab ; cdÞ, this holds for M
,
henceM
 satisfies differential privacy.

(ii) Row monotonicity: consider a pair i; j with
1 � i � j. Then we haveMj;i�1 � Mj;i (from (9)). It
is also the case that n� j � n� i < n, which
means that Mn�j;n�iþ1 � Mn�j;n�i (also from (9)).
Then MS

j;i�1 � MS
j;i. Combining these two inequal-

ities, we have thatM

j;i�1 � M


j;i.
(iii) Row honesty: if 8i; j:Mi;i 	 Mi;j, then MS

i;i 	 MS
i;j

also. Summing both inequalities, we obtain
M


i;i 	 M

i;j as required. tu

Consequences of these Properties. We first argue that these
properties all contribute to avoiding the degenerate mecha-
nisms shown above. The (column, row) honesty and mono-
tonicity properties work to prevent the “spikes” observed
when a value far from the true input is made excessively
likely. The (column) honesty properties do so by preventing
a far output being more likely than the true input; the (col-
umn) monotonicity properties do so more strongly by
ensuring that any further output is no more likely than one
that is nearer to the true input. Fairness, column honesty
and weak honesty prevent gaps (zero rows): they ensure
that the diagonal entry in each row is non-zero, and then
the DP requirement ensures that all other entries in the
same row must also be non-zero. We next show that there is
an efficient procedure to find an optimal constrained mech-
anism for any n > 1.

Theorem 2. Given any subset of the structural constraints, we
can find an optimal (constrained) mechanism which respects
these constraints in time polynomial in n.

Proof. We break the proof into two pieces. First, we argue
that given any subset of structural constraints we can cre-
ate a Linear Program describing it, and second we argue
that there exists a mechanism satisfying them all. Observe
that all seven properties listed above can be encoded as
linear constraints. For example, symmetry is written as

ri;j ¼ rn�i;n�j 8i; j 2 ½n�;
while weak honesty is

ri;i 	 1=ðnþ 1Þ:
Row monotonicity becomes

rj;i�1 � rj;i 8j 2 ½n�; i < j

rj;iþ1 � rj;i 8i 2 ½n� 1�; j < i:
tu

Consequently, we can create a linear program of size
polynomial in n, by adding these to the BASICDP con-
straints (5), (6) and (7) established in Section 3. This shows
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the first part of the proof. Next, we show that any such LP is
feasible by defining a trivial baseline mechanism:

Definition 5 (Uniform Mechanism, UM). The uniform
mechanism of size n has Pr½ijj� ¼ 1

nþ1, for all i; j 2 ½n�.
That is, UM ignores its input and picks an allowable out-

put uniformly at random. It demonstrates that all our prop-
erties are (simultaneously) achievable, albeit trivially. By
observation, the mechanism is symmetric and fair for any
a0 � 1. It meets the inequalities specified for rowmonotonic-
ity, column monotonicity and weak honesty with equality.
UM also satisfies differential privacy for all a � 1.

Clearly, UM is undesirable from the perspective of pro-
viding utility. We easily calculate that the objective function
value O0;

P achieved by UM is n
nþ1, which is close to the

maximum possible value of 1. Note that we chose our defi-
nition of the L0 function to assign this mechanism a
(reweighted) score of 1.

5 CONSTRAINED MECHANISMS: n ¼ 1

In this section, we consider an important special case of our
problem: where a single user has a single private bit value.
This is the limiting case of our setting, corresponding to
n ¼ 1. It turns out to be an important scenario that has been
studied over many decades, as it asks each user to reveal a
(noisy) version of their information for subsequent aggrega-
tion. We briefly revisit this case in the light of the objectives
and properties defined above. The main conclusions we
find are that for n ¼ 1, all approaches to building DPmecha-
nisms are essentially the same, and trivially obey all our
constraints, making this a starting point for our subsequent
study.

5.1 Randomized Response

We prove the following result in the Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2019.2912179:

Theorem 3. In the one bit (binary) case, Randomized Response is
the unique optimal non-trivial a-differentially private mecha-
nism under any objective function Ot;

P when a � w1=w0 �
1=a.

Fact 1. For p 	 1
2, Randomized Response satisfies all proper-

ties listed in Section 4.

The fact follows immediately by inspection: in the 2� 2
case, the mechanism is symmetric (Equation (2)). This
entails fairness. All other properties reduce to the condition
that p 	 1� p, i.e., p 	 1

2.

5.2 Exponential Mechanism

Theorem 4. In the one bit (binary) case, the Exponential Mecha-
nism results in an instance of Randomized Response with
p ¼ expð�=2Þ

1þexpð�=2Þ.

Proof. In the binary case, we have D ¼ R ¼ f0; 1g. Without
loss of generality, we can assume that Qð0; 0Þ ¼ Qð1; 1Þ :¼
c; Qð1; 0Þ ¼ Qð0; 1Þ :¼ w (if not, this makes the privacy
guarantee loose in one case). We also assume that c 	 w,
since we should make the true response more likely than

the incorrect response. Then, by definition, s ¼ c� w. The
resulting mechanism has

Pr½0j0� ¼ expð�c=2sÞ
expð�w=2sÞ þ expð�c=2sÞ

¼ expð�w�=2sÞ
expð�w�=2sÞ

expð�c=2sÞ
expð�w=2sÞ þ expð�c=2sÞ

¼ expð�=2Þ
1þ expð�=2Þ :

Meanwhile, Pr½1j0� ¼ 1� Pr½0j0� ¼ 1=ð1þ expð�=2ÞÞ,
Pr½1j1� ¼ Pr½0j0� and Pr½0j1� ¼ Pr½1j0�. Consequently, the
mechanism is equivalent to R from (2), and the privacy
guarantee is given by Pr½0j0�=Pr½1j0� ¼ expð��=2Þ. tu
Note that this direct application of the exponential mech-

anism construction actually yields expð��=2Þ privacy, stron-
ger than specified, since it does not take full advantage of
the additional simple structure of this scenario.

5.3 Geometric Mechanism

Lemma 2. In the binary case, the Geometric mechanism results
in an instance of Randomized Response with p ¼ 1

1þa
.

Proof. When n ¼ 1, we can consider each input separately.
On input 0, the output is 0 if d � 0. From properties of the
geometric distribution, we obtain

Pr½0j0� ¼ Pr½X � 0� ¼ 1� a

1þ a
:ð1þ aþ a2 þ a3 þ . . .Þ ¼ 1

1þ a
:

Then, Pr½1j0� ¼ Pr½X > 0� ¼ a
1þa

.
The case for input 1 is symmetric. Hence the claim

follows. tu

6 CONSTRAINED MECHANISMS: n > 1

For n > 1, it is not the case that all mechanisms automati-
cally achieve all our enumerated properties. In this section,
we consider mechanisms achieving various combinations of
the structural properties.

6.1 The Geometric Mechanism

Next, we revisit the (range restricted) Geometric Mecha-
nism, GM (Definition 4). In Fig. 3, we show the structure of
the mechanism, which can be derived by simple calculation
from Definition 4. Below, we show that it enjoys a number
of special properties. In prior work, Ghosh et al. showed
that GM plays an important role, as it can be transformed
into an optimal mechanism for different objectives. Here,
we argue (proof in the Appendix, available in the online
supplemental material) a more direct result: that GM is
directly optimal for a uniform objective function.1

Theorem 5. GM is the (unique) optimal mechanism satisfying
BASICDP under the L0 objective function.

Limitations of GM. Since GM is ‘optimal’ for L0, should we
conclude our study here? The answer is no, since GM fails to
satisfy many of the desirable properties we identified in

1. Note that, compared to [3], we define mechanisms to enforce dif-
ferential privacy along rows of P rather than columns.
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Section 4, and as illustrated in Example 1. We have already
observed that GM is not fair, and does not in general satisfy
column honesty (or column monotonicity) or weak honesty.
Next, we identify parameter settings for when they do hold.

Lemma 3. GM obeys weak honesty iff n 	 2a
1�a

.

Proof. Weak honesty requires the diagonal elements to all
exceed 1

nþ1. Since y < x, we focus on y. We require
y 	 1

nþ1 i.e 1�a
1þa

	 1
nþ1 : This reduces to nþ 1 	 1þa

1�a
, giving

the requirement n 	 2a
1�a

. tu
GM satisfies the column monotonicity condition for

many i; j pairs. The critical place in the matrix where it can
be violated is between the first and second rows (symmetri-
cally, between penultimate and final rows). This corre-
sponds to the problematic behavior of GM to report extreme
outputs (0 or n) overly often in the increased privacy regime
(a > 1

2).

Lemma 4. GM achieves column monotonicity iff a � 1
2 :

Proof. We require Pr½1j1� � Pr½0j1�, i.e., y � ax or 1�a
1þa

� a
1þa

.
This gives the condition a � 1

2. It is straightforward to check
that this ensuresmonotonicity in all other columns. tu
By inspection, GM is always symmetric, and row mono-

tone. The (L0) objective function value achieved by GM is

nþ 1

n
1� ðn� 1Þyþ 2x

nþ 1

� �

¼ nþ 1

n
1� n� 1

nþ 1

1� a

1þ a
� 2

ð1þ aÞðnþ 1Þ
� �

¼ 2a

1þ a
:

We next design a different explicit mechanism which
achieves more of the desired properties.

6.2 Explicit Fair Mechanism

Although we can achieve any desired combination of prop-
erties by solving an appropriate linear program, it is natural
to ask whether there is any non-trivial explicit mechanism
that achieves properties such as fairness with an objective
function score comparable to that of GM. We answer this
question in the positive. First, we consider the limits of
what can be achieved under fairness. In the case of GM, all
DP inequalities are tight. This is not possible when fairness
is demanded. A fair mechanism M with all DP inequalities
tight would be completely determined: Mi;j ¼ yaji�jj for
some y. It is easy to calculate for any such mechanism that
there is no setting of y which ensures that all columns sum
to 1, a contradiction. Hence, we cannot have a fair mecha-
nism with all DP inequalities tight. Nevertheless, trying to

achieve tightness provides us with a bound on what can be
achieved.

Lemma 5. Let F be a fair mechanism of size ðnþ 1Þ � ðnþ 1Þ
with y as the diagonal element. Then y � 1�a

1þa�2a
n
2
þ1.

Proof. There are some slight differences depending on
whether we consider odd or even values of n. Without
loss of generality, take n even. We will consider a fixed
column j. For all i, we are required to have Pr½iji� ¼ y for
some y. Repeatedly applying the DP inequality, we obtain
an upper bound involving y as Pr½ijj� 	 yai�j when j < i
and Pr½ijj� 	 yaj�i when i > j. Summing these for any
given column j and equating to 1 provides an upper
bound on y. We get the tightest bound by picking column

j ¼ n
2. Then yþ 2y

Pn
2
j¼1 a

j � 1, so

y � 1

1þ 2
Pn

2
j¼1 a

j
¼ 1� a

1þ a� 2a
n
2þ1

: (16)

For n large enough, we can neglect the an=2þ1 term, and
approximate this quantity by 1�a

1þa
. tu

Note that for optimality under an objective function
Ot;

P, we should make y as large as possible. Hence, any

optimal mechanism will have y as close to this value as pos-
sible. Indeed, the above proof helps us to design an explicit
mechanism EM that achieves fairness. The proof argues that
in column n=2, the smallest values we can obtain above and
below the y entry are ay, a2y and so on up to an=2y. Then the
sum of these terms is set to 1. All other columns must also
sum to 1; a simple way to achieve this is to ensure all col-
umns contain a permutation of the same set of terms. To
ensure DP is satisfied, we should arrange these so that row-
adjacent entries differ in their power of a by at most one.

Our explicit fair mechanism EM is then defined as fol-
lows:

Pr½ijj� ¼ yaji�jj if ji� jj < minðj; n� jÞ
yadji�jjþminðj;n�jÞ

2 e otherwise:

(

(17)

Here, y is set to 1�a

1þa�2an=2þ1, i.e., the value determined in
Equation (16). From the proof of Lemmas 1 and (1), we have
that the L0 score of this mechanism is nþ1

n ð1� yÞ, as it maxi-
mizes y subject to the bound of Lemma 1.

Fig. 4 shows the instantiation of this mechanism for the
case n ¼ 7. Comparing to GM, we see that the diagonal ele-
ments are slightly increased, with the exception of the two
corner diagonals, which are decreased. It is tempting to try
to obtain the mechanism via the Exponential Mechanism,

Fig. 3. Structure of GM, where x ¼ 1
1þa

and y ¼ 1�a
1þa

.
Fig. 4. Explicit fair mechanism for n ¼ 7.
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by using a quality function applied to ji� jj similar in form
to (17). Note however, that the constant factors of 2 in its
definition (3) leads to a considerably weaker result than this
explicit construction, equivalent to halving the privacy
parameter �. It is easy to check that in the n ¼ 7 example,
the mechanism is symmetric, and meets all of the properties
defined in Section 4. In fact, this is the case for all values of
n. The proof (presented in the Appendix, available in the
online supplemental material) is rather lengthy and pro-
ceeds by considering a number of cases.

Theorem 6. EM is an optimal mechanism under L0 that satisfies
all properties listed in Section 4.

6.3 Comparing Mechanisms

In Section 4, we define 7 different properties, denoted as
RH, RM, CH, CM, WH, F, and S. We can seek a mechanism
that satisfies any subset of these, suggesting that there are
128 combinations to explore. However, we are able to dra-
matically reduce this design space with the following analy-
sis based on the L0 score function.

First, we have shown by Theorem 6 that EM has the opti-
mal L0 score of any fair mechanism and has all other possi-
ble properties “for free”. Therefore, for any desired set of
properties that include F, we can just use EM.

Second, we have shown by Theorem 5 that GM achieves
symmetry and row monotonicity (and hence row honesty)
at a cost which is optimal for any mechanism (i.e., BASICDP).
Hence for any subset of fS, RM, RHg, it suffices to use GM.

In our experiments (Section 7.1), we show that there are
only two remaining behaviors: either we solve the LP for
the WH property alone, or we solve the LP for WH and CM
properties. Both solutions come with symmetry (S) and row
properties RH, RM at no additional cost. However, as noted
in Lemma 3, GM satisfies WH when n 	 2a

1�a
, so in this case,

we can use GM. Last, from observations in Section 4, we
have that CM ) CH ) WH, so any demand that requires
any of these properties (and not F) can be satisfied by WM
also. But in the weak privacy case that a � 1

2, GM has these
properties, and so subsumesWM.

To summarize this reasoning, in the case that a � 1
2, there

are only two competitive mechanisms: EM if fairness is
required, and GM for all other cases. When a > 1

2, things
are a little more complicated, so we show a flowchart in
Fig. 5: from 128 possibilities, there are only four distinct
approaches to consider (two explicit mechanisms, and two
solutions to an LP with different constraints), and the choice
is determined primarily by whether the mechanism is
required to satisfy fairness, column properties, weak hon-
esty, or none. We also consider the baseline method UM for
comparison. We present a summary of these four named
mechanisms in Fig. 6: the explicit GM, UM and EM, and WM
which is found by solving an LP. We write ‘—’ for a prop-
erty when this depends on the setting of the parameters
(discussed in the relevant section). We see that EM has a
very similar objective function value L0 (recalling that we
are trying to minimize this value), and all the properties
considered so far. We do not have a closed form for the L0

score of WM, as it is found by solving the LP; however it is
no less than that for GM (since GM satisfies a subset of the
required properties of WM), and no more than that of EM
(since EM satisfies all properties).

At this point, we might ask how different are these mech-
anisms in practice—perhaps they are all rather similar?
Fig. 7 shows this is not the case for a small group size
(n ¼ 4). For a moderate value of the privacy parameter
a ¼ 0:9, it presents the three non-trivial mechanisms using a
heatmap to highlight where the large entries are. We imme-
diately see that EM concentrates probability mass along a
uniform diagonal (as required by fairness). Both GM and
WM tend to favor extreme outputs (0 or 4 in this example)
whatever the input, although GM is very skewed in this
regard while WM is more uniform in allowing non-extreme
outputs.

Last, we check that what we are doing is not a trivial
modification of known mechanisms. Prior work [3], [11]
showed how optimal unconstrained mechanisms can be
derived from GM by transformations. Gupte and Sundaraj-
rajan give a simple test: a mechanism P can be derived from
GM iff every set of three adjacent entries in the mechanism
satisfy

ðPr½ijj� � aPr½ijj� 1�Þ 	 aðPr½ijjþ 1� � aPr½ijj�Þ:
We applied this test to mechanisms WM and verified that
this condition is indeed violated for n > 1. For EM, this
condition is automatically broken for all n > 1: we have
Pr½2j0� ¼Pr½2j1� ¼ ya, whilePr½2j2� ¼ y. Then the condition is

yað1� aÞ 	 yað1� a2Þ � 1 	 ð1þ aÞ;
which is always false for a > 0. Hence, these mechanisms
are not derivable from GM.

Fig. 6. Properties of named mechanisms.

Fig. 5. Flowchart of properties for L0 objective (a > 1
2).
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7 EXPERIMENTAL STUDY

The purpose of our experimental study is two-fold. In
Section 7.1, we substantiate our earlier claims about pro-
perties of mechanisms satisfying weak honesty (but not
fairness). In what follows, we look at other measures of
utility of thesemechanisms, to understand their robustness.

Default Experimental Settings. All experiments in this
work were implemented in Python, making use of the stan-
dard library NumPy to handle the linear algebraic calcula-
tions, and PyLPSolve [18] to solve the generated LPs.
Evaluation was made on a commodity machine running
Linux. We omit detailed timing measurements, as the time
to solve the LPs generated was negligible (sub-second).

Experimental Setting. We considered a variety of settings
of parameter a (typical values chosen are f12 ; 23 ; 1011 ; 99

100g and
group size n (ranging from 2 up to hundreds).

7.1 L0 Objective Function

Our first experiment analyzes the effect of weak honesty
combined with other properties drawn from fCH, CM, RH,
RMg, including the empty set. There are 9 meaningful com-
binations of properties to ask for, which we write as f;; RH,
RM, CH, CM, RH+CH, RH+CM, RM+CH, RM+CMg—
other combinations reduce to these, since RM implies RH,
and CM implies CH.

As discussed in Section 6.3, there are cases when the
solution found by solving the LP has cost 2a

1þa
and is identical

to GM: these are when n 	 2a
1�a

and only row-wise properties
are requested, consistent with Fig. 5. This is borne out in

Fig. 8: we see that whenWH alone is requested, or in combi-
nation with only row properties (RH or RM) we get a lower
L0 value than when any column properties (CH or CM) are
requested. Fig. 8a shows the case for different values of n.
When n > 2a

1�a
, which is 6.33 in this example (where

a ¼ 0:76), the cost of WH alone is 2a
1þa

¼ 0:864, the cost of
GM. For large a (Fig. 8b), the cost of all combinations of WH
are the same, and identical to the cost of EM; as a is
decreased, we see two behaviors, where the lower L0 cost is
that of GM. We confirmed this behavior for a wide range of
n and a values. From now on, we use WM to refer to the
mechanism with WH, RM and CM properties.

The relationship between the L0 scores for the three
mechanisms is further clarified in Fig. 9. The plots show the
L0 scores of GM, WM, EM and UM for different values of a.
In Fig. 9a, a ¼ 2

3 so the threshold 2a
1�a

¼ 4. Then GM satisfies
WH for the whole range of n values shown, so WM con-
verges on GM, while EM has a higher (but decreasing) cost.
For Fig. 9b, a ¼ 10=11 so the threshold is 20. Indeed, we see
that the cost of WM converges with GM at n ¼ 20. Last, in
Fig. 9c, the threshold of 198 is far above the range of n val-
ues shown, so WM does not converge on GM here. Rather,
for this high value of a, the y value for EM is above 1

nþ1 for
all n: so in this case EM has weak honesty, and the cost of
WM remains the same as that of the optimal fair EM.

7.2 Experiments on Real Data

We make use of the UCI Adult dataset, a workhorse for pri-
vacy experiments [19]. Our instance of the dataset contains
demographic information on 32 K adults with 15 columns

Fig. 7. Heatmaps for GM, EM, and WM with n ¼ 4.

Fig. 8. Combinations of properties with weak honesty.
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listing age, job type, education, relationship status, gender,
and (binary) income level. We created three binary targets,
treated as sensitive: income level (high/low), gender
(male/female), and young (age over/under 30). To form
small groups, we gathered the rows (corresponding to indi-
viduals) arbitrarily into groups of a desired size.

Fig. 10 shows results for the L0 objective, that is, where
we focus on the fraction of times the mechanism reports an
incorrect answer, as a function of group size. Specifically,
we count the number of groups whose noisy count for each
target attribute is not equal to their true count. We expect
this quantity to be fairly high, as it measures how often our
mechanism is honest, i.e., returns the true input. Other
experiments (not shown) computed the corresponding
probability for returning an answer that is close to the true
one, e.g., off by at most one, and showed similar patterns.
The plot includes error bars from 50 repetitions of this pro-
cess to show 1 standard error.

Observe first that the performance of UM is essentially
independent of the input data: the chance of it picking the
correct answer is always 1=ðnþ 1Þ for a group of size n, and
indeed we see this behavior (up to random variation). We
would hope that our optimized mechanisms can outper-
form this trivial method. Perhaps surprisingly, on this data
GM does appreciably worse. This highlights the limitations
of GM. In this data, the common inputs are around the mid-
dle of the group size (i.e., typically close to n=2). It is on
these inputs that GM does poorly, and only does well for
inputs that are 0 or n, which happen to be rare in this data-
set (in other words, the data distribution does not match the
prior for which GM is optimal). The condition of weak hon-
esty is not sufficient to improve significantly over random
guessing: for this data, we see that WM tracks UM quite
closely. It is only the most constrained mechanism that fares
better on this evaluation metric for this data: EM which
achieves fairness gives the best probability of returning the
unperturbed input. In corresponding experiments with
higher values of a in the range 0.9 to 0.99, corresponding to

the strongest privacy guarantees adopted in prior work on
differential privacy, there is not much to choose between
EM and WM, and it gets even harder to show substantial
improvement over uniform guessing. In order to under-
stand the behaviors of the mechanisms further, we next con-
sider synthetic data, where we can directly control the data
skewness within groups.

7.3 Experiments on Synthetic Data

In our experiments with synthetic data we generate a popu-
lation of 10,000 individuals each with a private bit and
divide them into small groups of the same size, n. Each indi-
vidual has the same probability p of having their bit be one,
so the distribution within each group is Binomial. Hence,
the expected count for each group is pn. Our experiments
vary the parameters p, n and a.

L0;1 Error. Our experiments so far have used the target
objective function L0 to evaluate the quality of the mecha-
nism. This is sufficient to distinguish the different mecha-
nisms, but all mechanisms achieve a score which is still
quite close to 1, obtained by uniform guessing. To better
demonstrate the usefulness of the obtained mechanisms, we
use other functions to evaluate their accuracy. Fig. 11 uses
the related measure of L0;1 i.e., the fraction of groups which
output a value differing from their true answer by more
than 1, as we vary data distribution (determined by p),
group size n, and privacy parameter a. We stress that
though we use L0;1 for evaluation, we continue to use mech-
anisms designed for minimizing the L0 error. Each subplot
in the figure represents a configuration of ha; ni, describing
how L0;1 error changes with input distribution parameter p.
Each experiment is repeated 30 times and we observe that
the results have very small variance.

It is apparent that the shape of the input distribution has a
pronounced effect on the quality of the output. We confirm
thatGM can do well when the input is very biased (p close to
0 or 1), which generates more instances with extreme input
values. However, when the input is more spread across the

Fig. 9. Final groups of mechanisms with distinct behaviors.

Fig. 10. Empirical error probability on adult dataset for a ¼ 0:9.
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input space, the more constrained mechanisms consistently
give better results. For higher a, the constrained methods
have similar behavior, and improve only slightly over UM
(while GM is often worse than uniform). Enforcing fairness
tends to make EM less sensitive to the input distribution,
except when the input is an extreme value (0 or n). When a is
lower (second row), the overall scale of error decreases and
WM andGM converge, as noted previously.

L0;d Error. In the previous experiment, we fixed d ¼ 1 and
evaluated our mechanisms for variety of input distributions.
Next we vary d while holding input size and input distribu-
tions steady, and compute L0;d error. Fig. 12 plots the fraction
of population reporting a value that ismore than d steps away

from the true answer for various d values with n ¼ 8. This
captures the probabilitymass in the tail of eachmechanism.

In the top row, we use a more proportionate input distri-
bution. Here, EM outperforms all other mechanisms, some-
times by a substantial fraction. Interestingly, the margin
between EM and GM only increases with larger d. Once
again we see that for higher a values, use of GM can yield
accuracy worse than mere random guessing. For lower a’s
GM’s accuracy increases dramatically but still remains
worse than EM’s.

In the bottom row, the input distribution is more skewed,
which tends to favor GM. However, EM does not do sub-
stantially worse than GM even for this biased input

Fig. 11. L0;1 score for Binomial data, for n ¼ f4; 8; 12g and a ¼ f0:91; 0:67g.

Fig. 12. Histograms of L0;d scores for Binomial data.
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distribution. The intermediate mechanism found by WM
tends to fall between GM and EM. We observed similar
behavior for other values of n.

Root Mean Square Error (RMSE). Our next set of experi-
ments compute the RMSE error (a measure of variance and
bias of a mechanism) of estimates from small groups. Note
that none of our mechanisms are designed to optimize this
metric, but we can nevertheless use it as a measure of the
overall spread of error. Fig. 13 shows plots with error bars
showing one standard deviation from 30 repetitions.

As seen in previous experiments, a more symmetric
input distribution (p closer to 0.5) tends to be easier for most
mechanisms—although we see cases where GM finds this
more difficult. Increasing the group size increases the
RMSE, as there is a wider range of possible outputs, and the
constraints ensure that there is some probability of produc-
ing each possible output. Yet again, we see that increasing a

tends to make GM less competitive and find many cases
where GM is worse than random guessing (UM). The inter-
esting case may be for fairly high privacy requirements
(a ¼ 0:91), where we observe that EM tends to give lower
error across all group sizes and input distributions.

Error Histograms. As previously discussed, the measure
of error probability gives some insight into the difference

between mechanisms, but holds them to a high standard.
This probability is high for all mechanisms, as we do not
expect them to give the exact correct answer. To see the
spread of error from another perspective, we plot error his-
tograms for our mechanisms—for a given input distribu-
tion, how often is the response correct, how often is it an
overestimate by one, and so on. For example, when an input
of 1 is reported as 0, the error is �1. Fig. 14 shows the error
histograms for a representative group size f8g with p ¼ 0:1
and p ¼ 0:7 for two extreme a values. For each case, we
show error histograms for the three mechanisms EM, GM,
andWM.

In the p ¼ 0:12 case, the input does not permit significant
underestimation (most true answers are small). All mecha-
nisms are more likely to give zero error. This is enforced by
the fairness (for EM) or weak honesty (WM) properties. For
GM, we see that for a ¼ 0:91, there is a second peak corre-
sponding to an output of n. So it tends to have a larger error
when it does not output the true answer. We observe that
the column monotonicity properties of EM and WM tend to
force a smoother error distribution.

Fig. 13. Root mean square error plots for Binomial data.

Fig. 14. Error histograms on group size 8 for p ¼ 0:1 and p ¼ 0:7, with a ¼ f0:91; 0:67g.

2. p is a parameter for producing synthetic input data introduced in
Section 7.3.
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Some similar behavior is observed for p ¼ 0:7. Here, the
support of the input distribution is broader, and hence so is
the support of the error distribution. We still observe that
GM tends to have a bimodal error distribution for high a,
with a dip around zero error. As a decreases, the mecha-
nisms become more similar, in particular WM tends to look
more like GM (as we have seen, they converge to the same
mechanism for n 	 2a

1�a
). We have observed similar trends

for other n values.

7.4 L1 and L2 Objective Functions

We have already seen that unconstrained mechanisms for
L1 and L2 can have pathological outcomes. In this section,
we return to these objective functions, and study their
behavior under the imposition of conditions. In contrast to
the L0 case, we observed that the number of distinct mecha-
nisms obtained under selection of different subsets of condi-
tions was quite large. In order to constrain the number of
mechanisms under consideration, we restrict our attention
to a small number of options: enforcing Weak Honesty
(denoted WM) or Fairness (denoted FM) only; or requiring

either no properties at all (the unconstrained mechanism,
UCM), or all properties simultaneously (the all properties
mechanism, AM). We also compare to the trivial uniform
mechanism (UM) for calibration. Among these four options,
we expect UCM to obtain the lowest error since it can
directly optimize the target function, with the comensurate
disadvantages discussed previously.

Root Mean Square Error (MSE). Figs. 15 and 16 show plots
for the root mean square error on binomially distributed
input data, similar to Fig. 13. For this measure of accuracy,
UCM provides among the best results. However, for small
groups, we would tend to prefer WM, since it provides a
similar level of accuracy while avoiding the degerate behav-
iors. AM performs well when the input distribution is close
to the symmetric case (p ¼ 0:5), but has weaker results
when the input is more skewed (smaller or larger p values).
FM is observed to do better as the group size increases.

L1;d and L2;d Functions. Figs. 17 and 18 show plots of the
errors for the functions L1;d and L2;d respectively, similar to
Fig. 12 for L0;d. When p ¼ 0:1, most groups have sums close
to 0. For larger a’s and smaller d’s, UCM performs worst.

Fig. 15. Root mean square error plots on Binomial data for L1 objective function mechanisms.

Fig. 16. Root mean square error plots for Binomial data for L2 objective function mechanisms.
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This situation is reversed as d increases. That is, the mecha-
nism reduces the probability mass that is far from the true
answer, at the expense of increasing the mass close to the
true answer but not equal to it. It tends to map most inputs
to outputs close to bn2c. UCM is then the preferred mecha-
nism for more balanced distributions (p ¼ 0:6). AM, FM and
WM all behave quite similarly to each other, and their lines
almost overlap for smaller a. In summary, AM, FM are
slightly preferable for skewed input distributions and
strong privacy requirements, whereas WM is suitable in
general for distributions with less bias.

8 CONCLUDING REMARKS

Further Applications. While materializing basic count statis-
tics directly supports a number of standard queries, it is nat-
ural to consider more complex analyses of data. For
example, we may wish to materialize machine learning
models of the data. The count-based mechanisms we have
described can naturally be used to instantiate simple predic-
tive Bayesian models, such as the Naive Bayes classifier or
low-degree Bayesian networks, via the Chow-Liu tree [20].
In more detail, these models require the creation of mar-
ginal distributions on combinations of attributes in the data.
However, these marginal distributions can be obtained
from counts: the (empirical) probability Pr½Y jX� can be
obtained by estimating the count of individuals in a group
who have the properties of both Y and X, and dividing by
the count who have property X. The confidence in these
estimates can be increased by averaging over a large num-
ber of groups. The procedure meets differential privacy,
since each user locates in exactly one cell of a joint distribu-
tion, and so we can apply the parallel composition theorem

of differential privacy to reason about the overall privacy
guarantee.

Initial experiments indicate that this direction is feasible.
We observed that the results from GM and WM were similar
in terms of quality, while those for EM were much weaker.
This indicates the weak honesty property is a reasonable one
to request, but adding fairness tended to distort the results
too much. The quality of the results were still much weaker
than without privacy, unless the parameter a was set very
low, corresponding to a low level of privacy. This suggests
that for applications like this, novel mechanisms more
directly tuned to the desired application are needed, since
the generic count-based mechanisms we consider do not
give good results under tighter privacy requirements.

Summary and Future Work. We have proposed and stud-
ied several structural properties for privacy preserving
mechanisms for count queries. We show how any combina-
tion of desired properties can be provided optimally under
L0 by one of a few distinct mechanisms. Our experiments
show that the “optimal” GM often displays the undesirable
property of tending to output extreme values (0 or n). In
practice, this means it is often not the mechanism of choice,
particuarly when a is large (above 0.7), but can be accept-
able for smaller privacy parameters. EM and WM are quite
different in structure, but are often similar in performance.

It is natural to consider other possible properties—for
example, one could imagine taking a version of the DP con-
straint applied to columns of the mechanism (in addition to
the rows): this would enforce that the ratio of probabilities
between neighboring outputs is bounded, as well as that of
neighboring inputs. The next logical direction is to provide
a deeper study of mechanisms with various properties
using L1 or L2 as objective function, building on our

Fig. 17. Line plots for L1;d scores for Binomial data (p ¼ 0:1 and p ¼ 0:6).

Fig. 18. Line plots for L2;d scores for Binomial data (p ¼ 0:1 and p ¼ 0:6).
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empirical observations. It will be interesting to study tailor-
made linear programming mechanisms that aim to optimize
other queries such as range queries.
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