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Abstract. We explicitly compute the constrained quasiconvexification of the inte-

grand associated with the square of the gradient of the state in a typical optimal design

problem in which a volume constraint is enforced.

1. Introduction. We want to consider the following optimal design problem in con-

ductivity. Given a design domain fl C R", fixed amounts of two different conducting

materials, the charge density on 3Q, and the current density over fi, decide on the best

way to mix them in f2 in order to minimize the cost functional consisting in the mean

square deviation of the gradient of the underlying electric potential from a given tar-

get vector field. Similar optimal design problems have been addressed in a number of

papers, especially when the cost functional does not depend on derivatives of the state.

T-convergence, G-convergence, and ^-convergence ideas in the context of homogeniza-

tion theory (see for example [11], [12], [13], [18], [19], [21], although an exhaustive list

would have to be much longer) or variational treatments ([8]) are among the techniques

utilized to analyze such problems. When cost functionals depend on derivatives of the

state, more elaborate tools and ideas (always within the context of homogenization and

effective properties) have also been applied ([7], [9], [20]) to the analysis and under-

standing of such situations. See the last section for more specific comments on these

works. Recently, a purely variational format has also been proposed to examine these

problems ([14]), although it had been previously indicated in [17]. In particular, when

the volume constraint is not present, the fully explicit quasiconvexification of the re-

sulting integrand when the situation is formulated as a vector variational problem has

been obtained ([15]). This quasiconvex hull somehow encodes optimal microstructures

or microgeometries much in the same way as is typical in non-convex vector variational

problems ([5]). If we would like to keep the volume constraint, an appropriate convex

hull has been defined and examined in [14], This involves the concept of constrained qua-

siconvexity and constrained quasiconvexification. The aim of these pages is to explicitly
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compute in closed form the underlying constrained quasiconvexification when the opti-

mal design problem is described as a vector variational problem depending on a vector

gradient and a volume fraction. This constrained quasiconvexification enjoys a jointly

convexity property in the gradient and volume fraction which is the key assumption for

a relaxation theorem under constraints ([6]).

Given a regular, simply-connected domain Q C R2, conductivities a, 8, 0 < a < /3, a

fixed volume fraction A £ (0,1), / £ uq £ and F € L2(f]), we want to

Minimize I(X) = / |Vu(a;) — F(x)\2 dx,
Jn

where x is the characteristic function of a subset of Q with mean value equal to A, and

u £ H (fl) is the unique solution of

div((a\(;r) > ,V(1 - x(x)))Vu(x)) = f in Q.

U = Uq oil dfl.

We know that typically the answer to the existence of optimal solution is negative ([10]),

so that something must be done about the analysis and approximation of optimal (or

quasi optimal) solutions. Our approach is based on a variational reformulation of the

situation as a vector variational problem as in the references cited above.

Before briefly describing the reformulation of the problem, and for the sake of sim-

plicity, we notice that

|Vw(x) - F{x)|2 = | Vu(x)|2 - 2Vu(x) ■ F(x) + \F(x)\2

implies that it suffices to restrict attention to F = 0 since our final result for a non-

vanishing vector field F is a direct extension. On the other hand, we can also assume that

/ = 0, since the case where / is not identically zero amounts to performing a translation

on the resulting integrand for the variational reformulation, and the invariance of convex

hulls with respect to translations enables us to restrict attention to the case / = 0 (see

[15]). Hence we assume that F and / identically vanish.

Under the hypothesis of simple connectedness of Q, there exists a potential v £ //1(f2)

such that

div((ax(®) -1-/3(1 — x(^)))Vu(x)) = 0 in O

is equivalent to

(ax{x) + /3(1 - x{x)))Vu(x) + TVv{x) = 0,

where T is the counterclockwise 7r/2-rotation in the plane. If we collect both u and v in

a single vector field U = (w, t>), it is not hard to realize that our initial optimal design

problem is equivalent to

Minimize I(U) = / W(\7U(x))dx
Jn

subject to

ueH\n), u{1) = f on dn,

I Viyu(x))dx = A,
Jn
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where the densities

W,V: M2x2-+R* = R U {+00}

are defined by

W(A)
if Ae AaUAp,

otherwise,

ii Ae Aq,

if A e Ap,

otherwise.

Here, XJ^l\ i = 1,2, denote the i-th component of U, A^\ i = 1,2, denote the i-th row of

A, and A7 designates the two-dimensional subspace of matrices defined by

A7 = {A e M2x2: 7^(1) + TA(2) = 0}.

Since it is equivalent to our original optimal design problem, this new vector variational

problem does not admit optimal solutions. In such cases, however, its relaxation ([5])

usually provides all the information to understand and approximate optimal behavior.

Under integral restrictions, this relaxation ought to be somewhat more elaborate. In

fact, it was shown in [14] that the relevant quasiconvexification in such circumstances is

CQW{A,t)

= inf | —!— f W(A + S7ip(x)) dx: <p e Wq'°°(D), [ V(A + Vtp(x)) dx = t\D\
I W\ JD JD

where D is any regular domain. This is the appropriate integrand for a relaxation

theorem. It enjoys the above-mentioned jointly-convex property

CQW(A,t)<— / CQW(A + V^(x),t + 9(x))dx
W\ Jd

whenever ip e Wq'°°(D) and 8 e L°°(D) with vanishing mean value over D. In particular

CQW(A, t) must be quasiconvex for fixed t and convex for fixed A. There are a number

of technical issues concerning the fact that the integrands in our specific situation, W and

V, are not Caratheodory functions. We will address these issues, as well as generalizations

of our computations here and those in [15], specifically in a future work ([4]), but restrict

attention here to the explicit computation of the convex hull CQW(A, t). CQ stands for

constrained quasiconvexification.

For the statement of our main result, we need some piece of notation. All of the

expressions that follow, as well as all questions concerning the correct sets where they

are defined, will be discussed and clarified in the proof. Put

g(A) = a202\A(1)\A + |^1(2)|4 + (a2 + 6a/3 + /32) det A2

- 2a/3|A(1)|2|^(2)|2 - 2aj3(a + P)\A^\2 det A - 2(a + (3)\A{2)\2 det A,
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and

^ + 20? - ») det .4

= 5 + 2(fa-I)det^'^-4'"'2 " l'4<2,l2 + «

Take the matrices

^-(«?«)• l = \jh,^Am+ta^

A'■<= (bt'w)- w< = i _+r-4'2))'

where j and A^ stands for the fc-th row of A. Finally, put

= (1 - rj(A))[t{l - rj(A)) - (1 - t)rj(A)\

*(1 ~ rj(A)) — (1 — ri(A))rj(A)

The aim of this paper is to prove the following theorem.

Theorem 1.1. The constrained quasiconvexification of W is given by

CQW(A, t) = —^  (02\A™I2 + \A{2)\2 - (at + 0(2 - t)) det A)
t0(0 — a)

if (A, t) is such that

a0(0(l — t) + a£)|yl(1,|2 + (a(l — t) + 0t)\A^2)\2 < (t(l — t)(0 — a)2 4- 2a0) det A,

and

CQW(A,t) = +oo

otherwise.

Moreover there are two second-order laminates supported in three matrices (except

when t = ri(A) for i = 1 or i = 2 that the laminate collapses to a first-order laminate)

which are optimal microstructures. Namely, bearing in mind the notation before the

statement of the theorem, the two laminates

c / , ( t 1 Si -j t
Vi,j = SijdA/3 i + (1 - Sij) I ——- 0Aa t H —— 

\ i-ij

for i j, where

det(AQjt - A0Jtt) = 0,

d6t iA,%l l-s,,/"'4 A'3j,t)
= 0,

',3

are optimal, and so are any convex combination of these two.

Notice the polyconvex dependence of CQW(A,t) on A and the convex dependence

on t. The joint convexity property in (A, t) is, however, more than these two separate

convexities. As is usual with non-convex variational problems, optimal microstructure

are encoded in such relaxation results where effective energies are computed. We hope
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to exploit this result from the horizon of numerical simulation of optimal solutions in the

near future ([1]).

The next section focuses on the lower bound for CQW(A,t) while Sec. 3 is devoted

to admissible optimal microstructures for which that lower bound is attained. The final

section includes a comparison of some of our computations with those performed under

homogenization ideas. Since this comparison is somewhat specific, we have decided to

defer it.

2. The lower bound. For the set

A(A,t) = 11/: homogeneous WllOQ--Young measures with first moment A and

[ V(F)dv(F) = t\,
J M J

we will actually focus on the following infimum ([6]):

CQW(A,t) = iniy W(F)dis(F):veA(A,t)J. (2.1)

Technicalities concerning whether this infimum is equal to the infimum in terms of gra-

dients as it has been stated in the Introduction will be addressed in [4].

Step 1. By definition of W, we can restrict attention to these feasible i/s supported

in the union Aa U such that v{Ka) = t. Thus we can decompose

v = tva + (l- t)ufj, supp(i/Q) C AQ,supp(vp) C Ap.

Furthermore if we set

Aa= [ Fdi/a(F), Ap = [ Fdvp(F),
J A.a JA0

we have

Aa 6 A„, Ap € Ap, A = tAa + (1 — t)Ap.

In this way, there are vectors z,w G R2 such that

*-U> (2-2)
If we write the two vector equations enclosed in

A = tAa (1 — t)Ap

row-wise, it is elementary to obtain

'=w^)mm+TA'2'}-
(2.3)

where A^ designates the fc-th row of A. Therefore the matrices Aa and Ap are uniquely

determined by A and t, and are independent of v itself.
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Step 2. Let us exploit the weak continuity of the determinant ([5]). We know that

det A = I det F du(F)
Jm

— t / det Fdva(F) + (1 — t) / det Fdup(F).
JAq JAft

But notice that

detF = a|F(1)|2

if F € Aq, and similarly in A^. Hence

det A = ta f \F^\2 dva(F) + (1 - t)(3 f |F(1)|2 dvp(F). (2.4)
JA„

On the other hand, the cost functional we would like to minimize can be written

[ W(F)dv(F) = tj \F^\2 dva(F) + (1 - t) ( |F<X>|2 dup(F). (2.5)
./M J Aa J A/3

Step 3. We would like to consider a certain linear programming problem (LPP) related

to our situation. Let us consider variables xa and xp by putting

xa= f | F^\2dua(F),
J AQ

xp= [ |F(1)|2 dvp(F).
J An' Aj3

Obviously, by Jensen's inequality, we must respect the constraints

xa > \z\2, xp > H2,

where z and w are given in (2.3), and are independent of v. These inequality constraints

together with (2.4) and the cost functional (2.5), lead us to the LPP (see Fig. 2.1)

Minimize txa + (1 — t)xp

subject to

xa > M2, xg > \w\2,

det A = atxa + /3(1 — t)xp.

Let m(A,t) denote the optimal value of this problem. Clearly

m(A,t) < CQW(A,t).

Step 4. Computation of m(A,t). It is very easy to find that the point

. l9 det A — at\z\2

|2' ' (1 -t)P

is the intersection of the equality constraint with the line xa = \z\2. Therefore, in order

to have a non-empty feasible set for our LPP, we must enforce

det A — at\z\2 2

(1 ~t)0 ~ ' 1
or

det A > at\z\2 + (3(1 — t)\w\2. (2-6)
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Optimal

Fig. 2.1. A LPP yielding lower bound.

Otherwise m(A,t) (and consequently CQW(A, t)) is +00.

Let us assume that A and t are such that (2.6) holds. Then the feasible region for

our LPP is non-empty and the optimal value m(A, t) will be attained at one of the two

extreme points

z\2
det A — at\z\2

(1 -t)0
or

'det A — /?(! — t)\i
\w\

ta

Lender (2.6) it is elementary to check that the minimum is taken on in the first of these

two points and moreover

m(A,t) — ̂ (det A +t(0 - a)\z\2).

More explicitly, using (2.3),

m^ *) = TWW t(^2I^(1)|2 + l^(2)l2 - M + -9(2 - *)) det-4).

Although, in principle, we have the lower bound

—±—(P2\aW\2 + |^(2)|2 - (at + 0(2 - t)) det A) < CQW(A,t),
tp(a — 0)

we claim that in fact, equality holds. This is the aim of the next section.

3. Optimal microstructures. To prove that the lower bound shown in the previous

section is in fact attained, we would have to find an optimal microstructure (gradient

Young measure) for which

Aa

\F^\2dua(F) = \z\2 = \A^\2.

By the strict convexity of the square function, this is only possible if

v« = SAa, A<*=(aT\
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and z is given by (2.3). Hence the question is if we can find a gradient Young measure

v such that

v = t^Aa + (1 - t)vp.

We will show that this is so by taking vp a certain convex combination of two Dirac

masses. Indeed, our construction will deliver such a microstructure which is a second-

order laminate with three mass points. To this end we must detect rank-one directions

passing through a given first moment A. Notice that u cannot be supported in two

matrices unless the feasible region for our LPP in the preceding section is a single point.

The analysis that follows is also part of the computations in [15].

Consider a pair (A,t) where m(A,t) is finite; i.e., by (2.6) after an elementary reor-

ganization,

(P — a)2 det At2 + (a/3(a — /3)|/1(1,|2 + (/? — a)|A(2^|2 — (/? — a)2 det A)t
(3.1)

+ (a(32\A(l)\2 + q|A(2)|2 - 2a/3det A) < 0.

Let PA(t) be this second-degree polynomial in t for fixed A. Notice that

PA(0) = a\/L4(1) + 7\4(2)|2 > 0,

PA{ 1) = /?M(1) + TA{2)I2 > 0.

(3.1) forces Pa(£) to be a non-degenerate, upward-parabola so that det^4 > 0, and

moreover the discriminant must be positive (non-negative), and the vertex of the parabola

should lie in the interval (0,1) so that the two (one) real roots are contained in the interval

(0,1). After some careful manipulations, the discriminant turns out to be g(A) in (1.1)

while the condition on the vertex together with g(A) > 0 simplifies to (see [15])

h{A)> 0, h(A) = (a +0)detA-a0\A{l)\2 -\A{2)\2.

Equality signs above correspond to admissible degenerate cases. Therefore g(A) and

h(A) must be non-negative, and then

n(A) < t < r2{A),

where r,(/l) are the two roots of PA(t) = 0, given also in the Introduction. These

computations imply, in particular, that the set where m(A,t) (or CQW(A,t,)) is finite

can also be described by saying

h(A) >0,g(A) >0, t £ [r1(A),r2(A)].

Let A be such that

h(A) > 0, g(A) > 0.

We will try to write

A = sAa + (1 - s)A>3,

?re

s G (0,1), Aa e Aa, A0 G A0, det(>la - A0) = 0.
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Rank-one directions

Fig. 3.1. Optimal laminates.

Taking all these conditions into account, the constraint on the vanishing determinant

becomes, after some algebra,

4 |/M(1) + TA^\2 + —|aA« + TA™ |2
sz (1 — s)z

- + ta(2)) ■ (/L4(1) + ta(2)) = o.
s(l S)

Some additional algebraic manipulation shows this equation to be precisely the same

Pa(s) = 0,

so that its two roots are rl(A), i — 1,2. This means that there are two rank-one directions

going through A with end-points in AQ and A^.

We are now in a situation where we can find that optimal second-order laminate (Fig.

3.1).

Indeed we have a genuine two-dimensional framework determined by A and the two

independent rank-one directions we have just found. If we set

AL = (aTzJ' Zi ri(A)({J-a)(/3Ail)+TA(2)}' * h2'

then having in mind that r\(A) < t < ^(A), it turns out that Aa is a convex combination

of the two A^'s

A« = sA1a + (l-s)A2a, I = s-J^ + (i-s)_i^.

Then it is elementary to realize that

A* = (1 -s)A + s.A*.

The second order laminate will correspond to the decomposition

A = AAp + (1 - A)A* = A A} + (1 - \){tA% + (1 - r)Aa).

Finding the appropriate weights A and r in terms of t, r\{A) and T2{A) involves some

straightforward but tedious algebra leading to the formulas before Theorem 1.1. Notice
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that in fact there is another different such laminate, associated to a parallel construction.

Any convex combination of the two will also be optimal.

These two second-order laminates supported in three matrices seem the best choice in

the sense that a minimal number of matrices participate. What is clear is that these two

distinguished laminates are the only ones supported in three matrices. For this, keep in

mind the general results on gradient Young measures supported in three matrices ([2],

[16]).
The computations performed in this section also enable us to express CQW(A,t) in

the form

CQW(A,t) = { mhr^2\A(1)\2 + l^(2)l2 " (a< + ^(2 - t))detA), if (A,t) e B,

I+oo, otherwise,

where

B={{A,t) e M2x2 x [0,1]: h(A) > 0,g(A) > 0,ri(A) < t < r2(A)}.

4. Concluding remarks. We would like to comment on some of the consequences

of the preceding computations and on the relationship with the previous work on these

sorts of problems, mainly the references cited in the Introduction.

The pioneering work [20] addressed for the first time this optimal design problem.

One of the main achievements was to conclude that for F in a dense Gg set of L2,

optimal structures are first-order laminates with the gradient of the electric potential

being parallel to the layers (see [15]), and all minimizing sequences of electric fields

converging strongly in L2.

[9] pursued further the analysis started in [20], by looking more closely into first-order

rank-1 laminates. Numerical experiments conducted in this paper apparently supported

the fact that the zero function belongs to the dense Gs set mentioned above.

[7] furnishes a formula for the relaxation of the original optimal design problem in

terms of effective tensors and pointwise volume fractions. When there is no volume

constraint present, first-order rank-one laminates are also shown to be optimal.

Some of our conclusions are:

(1) under no volume constraint, the only optimal structures are first-order laminates

([15]);
(2) when a volume restriction must be enforced, second-order laminates are optimal

in general, although there could possibly be simpler optimal microstructures.

However, since our analysis stays at the level of computing the relaxed integrand, we

can say nothing about the Gs set above. An analysis of the relaxed problem would have

to be performed in order to conclude something about optimal microstructures.

It is also interesting to ask about the relationship between our approach and that

based on //-convergence and homogenization. This issue has been briefly indicated in

[3], although further work is probably needed to fully appreciate this connection. Notice

that we have two descriptions of the same optimization problem: one in terms of designs

a(x) = a\(x) + f3( 1 - x(x))
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and the other one in terms of pairs of gradients

(Vu(x),Vv(x)).

Relaxation for the first formulation involves G-convergence while relaxation for the sec-

ond involves weak convergence. But observe, roughly speaking, that G-convergence of

designs is weak convergence of pairs of associated gradients. Therefore relaxation of both

optimization problems lead to the same underlying relaxed problem. The relaxed func-

tional in terms of gradients turns out to be doable as we have shown in this work. It is

interesting to notice that, even though the original functional did not depend explicitly

on the second component Vv, its quasiconvexification does. In principle, we could recast

the relaxed functional found here and in [15] in terms of effective tensors and underlying

electric potentials, going back to the equilibrium law for effective tensors.

More explicitly, [7] works with the weak limits

V<£o = hm V</?e,
€—+0

a*V</? o = limaeV<^e,
€—►0

a* V</?o • V</?o = hm aeV</3e •
€—►0

These three limits correspond, respectively, in our framework to

Vu = j4(1),

-TVv = -TA{2\

—Vm • TVv = det A.

The lower bound in [7] is

l2 \(/3 — a*)Vipo\2 1
S1 v"-i^ w-„) + T 9°'

With the identifications indicated above, this lower bound is exactly the same as our

lower bound in Sec. 2. Our proof of the attainability of this lower bound differs from the

one in [7] although again the underlying ideas are essentially the same: to construct a

second order rank-one laminate by mixing the phases a and f3 in proportions t and 1 — t

in such a way that there is no oscillation in the a phase. In [7] more elaborate tools from

homogenization are used to show the existence of such a composite (the attainability of

the trace bound). Further analysis may reveal more profound connections between these

two perspectives.
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