
ar
X

iv
:2

20
4.

04
96

0v
1

 [
cs

.D
S]

 1
1

A
pr

 2
02

2

Constrained Shortest Path and Hierarchical

Structures⋆

Adil Erzin1,2[0000−0002−2183−523X], Roman Plotnikov1,2[0000−0003−2038−5609],
and Ilya Ladygin3

1 Sobolev Institute of Mathematics, SB RAS, Novosibirsk 630090, Russia
2 St. Petersburg State University, St. Petersburg 199034, Russia

3 Novosibirsk State University, Novosibirsk 630090, Russia
{adilerzin, prv}@math.nsc.ru, ilia.lad@mail.ru

Abstract. The Constraint Shortest Path (CSP) problem is as follows.
An n-vertex graph is given, each edge/arc assigned two weights. Let us
call them “cost” and “length” for definiteness. Finding a min-cost upper-
bounded length path between a given pair of vertices is required. The
problem is NP-hard even when the lengths of all edges are the same.
Therefore, various approximation algorithms have been proposed in the
literature for it. The constraint on path length can be accounted for
by considering one edge weight equals to a linear combination of cost
and length. By varying the multiplier value in a linear combination, a
feasible solution delivers a minimum to the function with new weights.
At the same time, Dijkstra’s algorithm or its modifications are used
to construct the shortest path with the current weights of the edges.
However, with insufficiently large graphs, this approach may turn out to
be time-consuming. In this article, we propose to look for a solution, not
in the original graph but specially constructed hierarchical structures
(HS). We show that the shortest path in the HS is constructed with
O(m)-time complexity, where m is the number of edges/arcs of the graph,
and the approximate solution in the case of integer costs and lengths of
the edges is found with O(m log n)-time complexity. The a priori estimate
of the algorithm’s accuracy turned out to depend on the parameters of
the problem and can be significant. Therefore, to evaluate the algorithm’s
effectiveness, we conducted a numerical experiment on the graphs of
roads of megalopolis and randomly constructed unit-disk graphs (UDGs).
The numerical experiment results show that in the HS, a solution close
to optimal one is built 10–100 times faster than in the methods which use
Dijkstra’s algorithm to build a min-weight path in the original graph.

Keywords: Constrained shortest path · Hierarchical structures · Poly-
nomial algorithms · Complexity · Simulation.

⋆ The Russian Science Foundation supports this research (Grant No. 19-71-10012.
Project “Multi-agent systems development for automatic remote control of traffic
flows in congested urban road networks”)

http://arxiv.org/abs/2204.04960v1

2 A. Erzin et al.

1 Introduction

In the modern communication networks, it is not enough to find an optimal path
using one characteristic of its elements. To meet Quality of Service (QoS) require-
ments, it is often necessary to take into account more than two characteristics
at the same time (cost, length, delay, reliability, etc.) [9]. We set the following
problem. Given a weighted directed graph G = (V,A), where V is the set of
vertices (|V | = n), A is the set of arcs (|A| = m), and each arc a ∈ A has length
l(a) and cost c(a). It is necessary to find a min-cost path between a given pair of
vertices s and t (s− t path) of length at most β. In the literature, this problem
is called the Constrained Shortest Path (CSP) problem. CSP is NP-hard, both
in the general case [4] and in the case of acyclic networks [20]. Both exact expo-
nential [11,13,21] and approximation polynomial algorithms [6,8,12,14,19,20,22]
are proposed to solve it.

The exact Constrained Bellman-Ford (CBF) algorithm proposed in [21] has
exponential complexity, but it is faster than brute force on average. The main
idea behind this algorithm is to systematically search for the least cost paths
while monotonically increasing length. First, the algorithm finds a min-cost s− t
path. Next, for each vertex u, a list of min-length paths from s to u is created.
Then, a vertex is selected that lies on the s−t path with minimum cost, the list of
which contains the path that satisfies the constraint. The algorithm then explores
the neighbors of this vertex using breadth-first search [3], and (if necessary) adds
new paths to the lists of neighbors. This process continues as long as the length
constraint is met and there is a path for further exploration.

Another exact algorithm is the Pulse algorithm proposed in [13]. Its essence
is to apply an impulse from vertex s to the neighboring vertices, then from all
neighboring to the next neighbors, etc. Each time, the following characteristics
of the partial path are stored in memory: the vertices passed, the value of the
objective function, and the current length. When the impulse reaches vertex t,
then the constructed path along with all the characteristics is stored. In this way,
all possible paths can be found, including optimal. The difference between this
algorithm and the full enumeration lies in the special strategies for cutting off
partial paths (”pulses”). In the paper, these strategies are dominance, bounds
and infeasibility. The essence of the dominance strategy is to remember the
best paths in terms of cost and length, bounds strategies — in the systematic
pruning of paths with a worse objective function than the paths already found.
Infeasibility allows to cut off pulses that are unpromising in length at an early
stage (this is achieved by calculating the shortest distance from t to each other
vertex).

Hassin in [6] proposed two ε-approximation algorithms for the case of positive

arc weights with costs O((mn
ε

+ 1) log logB) and O(mn2

ε
log n

ε
), where B is an

upper bound on the path cost. The first algorithm uses upper and lower bounds
(UB and LB respectively). At the start of the program, they are given the values
LB = 1, UP is the sum of (n− 1) largest arc costs. Then, using a special testing
procedure, the estimates are systematically improved, and, using the results

obtained, new arc costs are set in the form c′(u, v) = ⌊ c(u,v)(n−1)
εLB

⌋ ∀(u, v) ∈ E,

Constrained Shortest Path and Hierarchical Structures 3

which allows us to obtain the required path. Orda [14] and Lorenz et al. [12]
modified ε-approximation algorithms to scale better in hierarchical networks.

A special place among the approximation algorithms is occupied by backward-
forward heuristic (BFH). First, for each vertex u ∈ V , two u − t paths are
searched — min-cost path and min-length path. This can be done, for exam-
ple, with the Reverse-Dijkstra [2] algorithm. Then, starting from the vertex s, a
modification of Dijkstra’s algorithm is applied, in which an additional condition
is used to relax the arc, using the previously found paths (arc relaxation has the
same meaning as in the usual Dijkstra algorithm). Examples of algorithms using
similar approaches have been given by Reeves and Salama [16], Sun and Langen-
dorfer [17]. A similar algorithm for a multi-constrained problem was proposed
by Ishida [7].

Especially for large road networks, Wang et al. [19] developed the constrained
labeling algorithm COLA. It is based on two special properties that are char-
acteristic for large road networks. First, road networks are usually (roughly)
planar, which makes it possible to effectively divide the graph into several sub-
graphs with special boundary vertices, between which it is required to find a
path inside each subgraph. Secondly, often in the solutions of CSP problems on
road networks there are a small number of landmarks [5] — vertices that are
present in valid paths much more often than others. According to experiments,
an algorithm that takes into account these properties copes with mainland-sized
road networks many times better than other algorithms.

In the generalization of the CSP problem – Multi-Constrained Path (MCP)
problem – each arc a ∈ A has p parameters and it is required to find a path that
satisfies p constraints with respect to each of the parameters. A summary and
comparison of algorithms that solve MCP can be found in [11].

1.1 Our contribution

Our approach to solving the CSP problem is based on the Lagrange Relaxation
Aggregated Cost (LARAC) algorithm developed in [8] and summarized in [22].
In this approach, the Lagrange multiplier α > 0 is introduced, and instead of
the cost aij and the length bij of the arc (i, j), one aggregated weight cij =
aij + αbij is used. For a fixed value of α, a path P (α) of minimum weight c(α)
is constructed, which has cost a(α) and length b(α). If the length of the path
exceeds the allowable value, then the value of α increases. Otherwise, it decreases.

To reduce the complexity, we propose to build special hierarchical struc-
tures (HS) according to a given graph, in which copies of the same vertex can
be located at several neighboring levels, and arcs connect the vertices of only
neighboring levels. However, in the HS, the sink t is incident to the arcs from all
adjacent vertices, regardless of the level of their location. Further, using heuristic
considerations, additional arcs are added to the HS instead of some paths in the
original graph.

We have shown that the shortest path in the HS is constructed with O(m)-
time complexity, where m is the number of arcs/edges in the original graph. If
the graph is sparse, then this is a big gain compared to the Dijksra’s algorithm

4 A. Erzin et al.

and its modifications. Obviously, not all arcs of the original graph are included
in the HS, so the found path may differ from the shortest one. To compare the
running time and the accuracy of our approach, a numerical experiment was
carried out. The simulation shows that the construction of the shortest path in
HS is several times faster than if one use traditional algorithms. At the same
time, in the HS, solutions close to optimal are constructed.

The rest of the paper is organized as follows. In the next section, we present
the mathematical formulation of the CSP problem. In the third section, we
present the rules for constructing different hierarchical structures. Section 4 is
devoted to the description of algorithmAα, which ideologically coincides with the
LARAC [8,22] and builds an approximate solution to the problem. This section
also provides estimates for the running time and accuracy of the Aα. Section 5
describes the numerical experiment, as well as the results of simulation. The last
section concludes the paper.

2 Problem formulation

Let a mixed graph G = (V,A), |V | = n, |A| = m, be given, whose arcs/edges
we will call the arcs for definiteness. Each arc (i, j) ∈ A is assigned two non-
negative numbers: cost aij and length bij . We assume that the graph does not
contain a pair of vertices i, j ∈ V connected by a simple path Pij in which all
internal vertices (that is, not coinciding with i and j) have degree 2. If such a
path exists, then instead of it we add one arc (i, j), the cost of which is equal to
the sum of the costs aij =

∑
(p,q)∈Pij

apq, and the length is equal to the sum of the

lengths bij =
∑

(p,q)∈Pij

bpq of the arcs included in it. It is required to find a path

from vertex s ∈ V to vertex t ∈ V (s − t path) of minimum cost and length no
more than β > 0. If Π is a set of simple s− t paths, then it is required to find
the path P ∈ Π , which is the solution to the following problem.

∑

(i,j)∈P

aij → min
P∈Π

; (1)

∑

(i,j)∈P

bij ≤ β. (2)

As noted above, the problem (1) is polynomially solvable, and the problem
(1)-(2) is NP-hard even if the arc lengths are the same [4].

3 Hierarchical structures

First, consider a directed acyclic graph (Fig. 1a) with one non-negative weight
assigned to each arc. If the vertices s and t are known, then the HS is constructed

Constrained Shortest Path and Hierarchical Structures 5

s

t

1

3 4 8

6 7

a c

b

9
1

3

4

8 6

7

a

c

b

9

s

t level 8

level 7

level 6

level 5

level 4

level 3

level 2

level 1

level 0

a) Oriented acyclic network b) Hierarchical structure

Fig. 1: HS for directed acyclic graph

in this case without loss of arcs as follows. On level 0 we place the vertex s. Next,
on the level l ≥ 1 we place vertices where there is a path consisting of l arcs, but
there is no path with l + 1 or more arcs (Fig. 1b). As a result, the destination
vertex t gets to some last level L. If there was an arc (i, j) in the original graph
G, then the same arc exists in the HS. In this case, it is obvious that the vertex j
is on a level with a higher number compared to the level number of the location
of the vertex i. Moreover, in the process of building a HS, we can simultaneously
build the shortest paths to each vertex (see the red arcs in Fig. 1). To do this,
we consider in turn the vertices of the levels 1, . . . , L. Among the arcs entering
the vertex i, which is at the level l, choose one that belongs to the shortest path
going from s to i. This is easy to implement by storing the length of the shortest
path to every vertex adjacent to i that is on a level less than l. As a result, the
shortest s− t path will be constructed with O(m)-time complexity.

If graph G is arbitrary (not directed acyclic), then the placement of vertices
at the levels of the HS is ambiguous. In this case, we will build k-HS, where k is
a positive integer constant. In the k-HS, k copies of each vertex i are located at
the levels l, l + 1, . . . , l + k − 1, where l is the minimum number of edges in the
path from s to i (see example of 2-HS in Fig. 2). In the k-HS, the arcs link only
the vertices of neighboring levels, except for the vertex t, which is connected
with all adjacent vertices, regardless of their placement level (Fig. 2b).

In the example in Fig. 2b the images of vertex 4 are located at level 2 and
at level 3. Moreover, the arc (1, 4) enters vertex 4 at level 2, and the arc (3, 4)
enters vertex 4 at level 3. Some vertices in HS may turn out to be dead ends –
no arcs go out of them. On Fig. 2b such vertices are 5 at level 3 and 7 at level 5.

6 A. Erzin et al.

s

t

1

2

3 4 8

6 7

a c

b d

9

5 s

t

1 2

5 3 4 9

5 3 4 9 8 6

8 6 7 a b

7 a b c d

c d

level 7

level 6

level 5

level 4

level 3

level 2

level 1

level 0

a) Network b) 2-HS

Fig. 2: 2-HS for the mixed graph

If it is required to build paths of minimum weight to all HS vertices, then this
can be done during the construction of k-HS, similarly to the method described
above. For this, the vertices of levels 1, . . . , L are considered in turn. For an
arbitrary vertex i of the l-th level, an incoming arc (p, i) is chosen such that
cpi + dp = min

q
(cqi + dq), where the vertex q is at level l − 1, and dq is the

minimum weight of the path from s to q (it was found earlier when looking at
the vertices of level l − 1). In the example in Fig. 2b arcs included in shortest
paths are red. Since k = const, the time complexity of finding such paths is still
O(m).

In 1-HS, each vertex goes to one level, the number of which is equal to the
minimum number of arcs in the path from s. As a result, all s− t paths in the
1-HS consist of the minimum number of arcs. In the k-HS, k > 1, the number of
arcs in the s− t paths, as well as the paths themselves, is greater, which makes
it possible to find a path better than in the 1-HS. On Fig. 2 the best path (for
example, the shortest one) is indicated by bold red edges.

Since not all promising paths fall into the k-HS, then when the nodes are
the points in the plane, we add some arcs to the k-HS that connect vertices
of non-adjacent levels based on the following heuristic. For each vertex v ∈ V ,
we choose a perspective arc a(v) outgoing from v in the direction of the sink t,
defined by equation a(v) = argmax(ij)∈A |~ij| cos(6 (~ij, ~it)/cij if it is greater than
0. For each vertex v ∈ V and any value p ∈ [1, n−1] a path (if it exists) outgoing
from v and consisting of p perspective arcs can be uniquely defined. For a fixed

Constrained Shortest Path and Hierarchical Structures 7

pmax, we connect the vertices in the k-HS that are the ends of the perspective
paths of length p = 2, . . . , pmax. Thus, in the k-HSpmax no more than npmax

additional arcs are added.

4 Algorithm Aα

The algorithm presented below essentially coincides with LARAC [8,22], but we
will describe it in the following interpretation convenient for us. Instead of two
characteristics of each arc (i, j) ∈ A: cost aij and length bij , we introduce one
aggregated characteristic equal to cij(α) = aij + αbij , α ≥ 0, which we call the
weight of the arc. Denote by P (α) min-weight s − t path when the weights of
the arcs are equal to cij(α), (i, j) ∈ A. Its cost is a(α) and its length is b(α). If
the path P (0) is feasible, i.e. the inequality (2) b(0) ≤ β is satisfied, then this
is the optimal path. Otherwise, the value of α should be increased until we find
the minimum α = α∗ for which the constructed s − t path P (α∗) is feasible.
To find α∗ one can apply a dichotomy algorithm. The authors in [8,22] use an
alternative way to change α values.

a*

y eba= +
y

2 2
y b aa= +

a1

P*

e

a2

2
y aba= +

1 1
y b aa= +

a

y

3 3
y b aa= +

a1

a3

1 1
y b aa= +

a

a2

2 2
y b aa= +

al a r

a) Searching for a* b) Lower estimate per step in a

Fig. 3: Representation of s− t paths as straight lines on the plane (α, 0, y)

Of course, P (α∗) will not always be the optimal solution to the problem (1)-
(2) (see Fig. 3a). However, in the case of integer costs and arc lengths, one can
estimate the accuracy of the resulting solution, as well as the number of steps
to search for α∗. Indeed, an arbitrary s − t path on a plane with a horizontal
coordinate axis α and a vertical axis y is characterized by a straight line of the
form y = bα+ a. The length of the path b determines the slope of the straight
line, and the cost of the path determines the point of intersection of the straight
line with the vertical axis. The entire family of s− t paths forms a minorant of
straight lines whose slope angle decreases with increasing α. It is required to find
the minimal α = α∗ for which the minorant is determined by the straight line
y = bα∗ + a with b ≤ β. The path P (α∗) corresponding to this line will be an

8 A. Erzin et al.

approximate solution to the problem (1)-(2). Let us assume that α∗ is determined
by the intersection of the lines y = b1α + a1 and y = b2α + a2, b2 < β, b1 > β.
From the equality b1α

∗ + a1 = b2α
∗ + a2, we get that α∗ = a2−a1

b1−b2
. If aij ≤ A

and bij ≤ B, then α∗ ≤ An.
Assume that the line corresponding to the optimal path passes above the

minorant at the point α∗ (green line in Fig. 3a). Then the parameter e of the
line y = βα+e passing through the point of intersection of the lines y = b1α+a1
and y = b2α + a2 (dashed green line in Fig. 3a), is the lower bound for the
optimum. We have βα∗ + e = b2α

∗ + a2, whence e = a2 − (β− b2)α
∗. Therefore,

taking into account the integer parameters, the ratio

ε ≤
a2
e

=
a2

a2 − (β − b2)
a2−a1

b1−b2

≤
1

1− β−a2

b1−b2

≤
1

1− β−1
β

≤ β.

As mentioned above, the dichotomy method can be used to find α∗. Let us
estimate the number of iterations of the method for integer parameters of the
problem. An upper estimate for the value of α∗ was obtained above. Let us find
a lower estimate per step in α when all parameters of the problem are integers.
To do this, take three lines y = b1α+a1, y = b2α+a2, y = b3α+a3, b1 > b2 > b3,
a1 < a2 < a3, which form two neighboring break points αl and αr, αl < αr,
of the minorant. We have b1αl + a1 = b2αl + a2 and b3αr + a3 = b2αr + a2.
Consequently,

αr − αl =
a3 − a2
b2 − b3

−
a2 − a1
b1 − b2

≥
1

(b2 − b3)(b1 − b2)
>

1

b1b2
≥

1

B2n2
.

If K denotes the maximum number of iterations in the dichotomy method, then
An/2K ≤ 1/B2n2. Hence K = O(log n).

If, for each value of α, Dijkstra’s algorithm is used to find the min-weight
path, then the complexity of constructing an approximate solution to the prob-
lem (1)-(2) is O(n2 logn) . If we look for the min-weight path in the HS, then
the complexity of obtaining an approximate solution is O(m log n).

The resulting guaranteed accuracy is rough. Therefore, we conducted a nu-
merical experiment in which we compared both the running time of the algorithm
and the accuracy of the solution being constructed. The results of the numerical
experiment are presented in the next section.

5 Simulation

We implemented the proposed algorithm using the programming language C++.
We also constructed the ILP model described in [10] and use GUROBI software
for its solving. As test instances we used the road map of New York taken from
[1] and randomly generated unit disk graphs (UDG). The experiment was carried
out on the AMD Ryzen 5 3550H 2.1 GHz 8 Gb RAM, Windows 10x64.

There are two weights defined for each arc in the data set of the New York
road map. The first weight is the distance between nodes, and the second weight

Constrained Shortest Path and Hierarchical Structures 9

is the average traveling time. To avoid large values we divided all parameters by
100 and left only the integer parts.

UDGs were constructed in a following way. At first, a set of nodes were
randomly uniformly spread over a squared region. Then, each two nodes were
connected by two oppositely directed arcs iff the distance between them is less
than predefined value r. After that, two weights were defined for each arc. The
first weight equals to the distance, and the second weight equals to the distance
multiplied by noise factor – a random real value uniquely generated for each arc
and uniformly distributed in the interval [1, 3].

Practically, actual running time spent to find one-weight shortest path (SP)
depends on the proximity between source and target. That is why we consider
separately instances when the distance between source and target is small (25
% of graph diameter), medium (50%), and large (75%). For each graph instance
and each variant of distance between source and target, we generated 10 random
problem instances.

We tested different variants of HS based heuristic in order to find better com-
bination of its parameters. To be precise, for each k = 1, 2, 3 and pmax = 1, 2, 3
we run k-HSpmax on each test instance and compared their performance with
Dijkstra’s algorithm (to be short, it is called Dij below). Also, we used each
heuristic that solves SP problem in the LARAC based algorithm that approxi-
mately solves CSP. Note that for the LARAC based approach we used the rules
of updating α from [8]. To denote these algorithms the prefix A is used.

In Fig. 4 the results on the New York map are presented. Here and in the
next figures, the average values among launching the algorithms on 10 random
instances are presented, and the vertical intervals stand for the standard devia-
tions. On the one hand, as it is seen in Fig. 4a, the HS based algorithms bring
significant performance error, but, on the other hand, it noticeably decreases
with growth of k and pmax, and, according to Fig. 4b, these heuristics spend less
time than Dijkstra’s algorithm. Of course, time cost also increases with growth
of k and pmax, so the moderate values of these parameters may be chosen to
achieve less quality degradation with significant speedup.

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1-HS1 2-HS1 3-HS1 1-HS2 2-HS2 3-HS2 1-HS3 2-HS3 3-HS3

25% 50% 75%

(a) Ratio

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Dij 1-HS1 2-HS1 3-HS1 1-HS2 2-HS2 3-HS2 1-HS3 2-HS3 3-HS3

25% 50% 75%

(b) Time in seconds

Fig. 4: Algorithms results for the SP problem on the New York map. Average
values and standard deviations.

10 A. Erzin et al.

The results of application of these algorithms to the LARAC based approach
for CSP are presented in Fig. 5. The average path lengths are presented in Fig.
5a, the average ratio values that was obtained on the cases when GUROBI found
optimal solution are presented in Fig. 5b, and Fig. 5c shows the average run-
ning time. Note that GUROBI failed to find solution to the large-size instances,
when the distance between s and t is 75% of the graph metric diameter. Here,
again, one can observe that using Dijkstra’s algorithm allows to get more precise
solution on average but HS based heuristics allow to find approximate solution
10–100 times faster.

0

2000

4000

6000

8000

10000

12000

14000

16000

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50% 75%

(a) Path length

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50%

(b) Ratio

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50% 75%

(c) Time in seconds

Fig. 5: Algorithms results for the CSP problem on the New York map. Average
values and standard deviations.

We also tested all the algorithms on the UDGs that were constructed as
described above. Each time the points for the graph generation were randomly
spread on the square with a side of the length 1. Graph density depends on
two parameters: n – the number of vertices, and r – the disk radius that defines
connectivity between each pair of vertices. There were three UDG variants tested:
(1) n = 10000 and r = 0.1, (2) n = 10000 and r = 0.2, and (3) n = 100000 and
r = 0.025. As for SP so for CSP, all tested heuristics constructed almost optimal
solution: the value of ratio of each algorithm never exceeded 1.002. Therefore, it
is worth comparing only the running time. Fig. 6 presents the average running
time for solving SP problem, and in Fig. 7 the average running time for solving
CSP problem are shown. It can be noticed that for the both problems in the

Constrained Shortest Path and Hierarchical Structures 11

UDG usage of HS based heuristics instead of Dijkstra’s algorithm is justified
since they construct almost optimal solution an order of magnitude faster.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Dij 1-HS1 2-HS1 3-HS1 1-HS2 2-HS2 3-HS2 1-HS3 2-HS3 3-HS3

25% 50% 75%

(a) n = 10000, r = 0.1

0

1

2

3

4

5

6

7

8

9

10

Dij 1-HS1 2-HS1 3-HS1 1-HS2 2-HS2 3-HS2 1-HS3 2-HS3 3-HS3

25% 50% 75%

(b) n = 10000, r = 0.2

0

5

10

15

20

25

Dij 1-HS1 2-HS1 3-HS1 1-HS2 2-HS2 3-HS2 1-HS3 2-HS3 3-HS3

25% 50% 75%

(c) n = 100000, r = 0.025

Fig. 6: Time in seconds for the SP problem on the UDG. Average values and
standard deviations.

6 Conclusion

This paper considers NP-hard Constraint Shortest Path (CSP) problem, when
to each arc of the given n-nodes graph two characteristics are assigned: cost and
length, and it is required to find a min-cost length-bounded s− t path between
the given pair of nodes s and t. The constraint on path length is accounted
for by considering one edge weight equals to a linear combination of cost and
length using a Lagrange multiplier as in [8]. By varying the multiplier value,
a feasible solution delivers a minimum to the function with new weights. Then
we are looking for a solution, not in the original graph but in the specially
constructed hierarchical structures (HS). We show that the shortest path in
the HS is constructed with O(m)-time complexity, where m is the number of
edges/arcs of the graph, and the approximate solution in the case of integer costs
and lengths of the edges is found with O(m logn)-time complexity. The a priori
estimate of the algorithm’s accuracy turned out to depend on the parameters
of the problem and can be significant. Therefore, to evaluate the algorithm’s
effectiveness, we conducted a numerical experiment on the graphs of roads of

12 A. Erzin et al.

0

1

2

3

4

5

6

7

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50% 75%

(a) n = 10000, r = 0.1

0

5

10

15

20

25

30

35

40

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50% 75%

(b) n = 10000, r = 0.2

0

20

40

60

80

100

120

A_Dij A_1-HS1 A_2-HS1 A_3-HS1 A_1-HS2 A_2-HS2 A_3-HS2 A_1-HS3 A_2-HS3 A_3-HS3

25% 50% 75%

(c) n = 100000, r = 0.025

Fig. 7: Time in seconds for the CSP problem on the UDG. Average values and
standard deviations.

megalopolis and randomly constructed unit-disk graphs (UDGs). The simulation
shows that in the HS, a solution close to optimal one is built 10–100 times faster
than in the methods using Dijkstra like algorithms to build a min-weight path
in the original graph.

References

1. 9th DIMACS Implementation Challenge. http://www.dis.uniroma1.it/challenge9/
download.shtml

2. Ahuja R.K. et al.: Network Flows: Theory, Algorithms, and Applications. Prentice
Hall, Inc., 1993

3. Cormen T.H. et al.: Introduction to Algorithms. The MIT Press, Cambridge 2000
4. Garey M.S. and Johnson D.S.: Computers and Intractability: Guide to the Theory

of NP-Completeness. (eds.) W.H. Freeman (eds.), New York, 1979
5. Goldberg A.V. and Chris H.: Computing the shortest path: A search meets graph

theory. SODA ’05 (2005).
6. Hassin R.: Approximation schemes for the restricted shortest path problem. Math-

ematics of Operations Research 17(1), 36–42 (1992)
7. Ishida K. et al.: A delay-constrained least-cost path routing protocol and the syn-

thesis method. In Proceedings of the 5th Int. Conf. on Real-Time Computing
Systems and Applications. IEEE, 58–65 (1998)

8. Jüttner A. et al.: Lagrange Relaxation Based Method for the QoS Routing Prob-
lem. IEEE INFOCOM 2001, 859–868 (2001)

http://www.dis.uniroma1.it/challenge9/

Constrained Shortest Path and Hierarchical Structures 13

9. Graphs and Algorithms in Communication Networks. Koster A.M.C., Muñoz X.
(eds.), Springer-Verlag Berlin Heidelberg, 2014

10. Handler, G. and I. Zang, I.:A dual algorithm for the constrained shortest path
problem. Networks 10, 293–310 (1980)

11. Kuipers F.A. et al.: An overview of constraint-based path selection algorithms for
QoS routing. IEEE Communications Magazine. 40(12), 50 – 55 (2002)

12. Lorenz D.H. et al.: Efficient QoS Partition and Routing of Unicast and Multicast.
Proceedings of IWQoS 2000, 75–83 (2000)

13. Lozano L.,and Medaglia A.L.: On an exact method for the constrained shortest
path problem. Computers & Operations Research. 40, 378—384 (2013)

14. Orda A.: Routing with End-to-End QoS Guarantees in Broadband Networks.
IEEE/ACM Transactions on Networking. 7(3), 365–374 (1999)

15. Pugliese L.D.P. et al.: The Resource Constrained Shortest Path Problem with
uncertain data: A robust formulation and optimal solution approach. Computers
and Operations Research. 107, 140-–155 (2019)

16. Reeves D.S. and Salama H.F.: A distributed algorithm for delay-constrained uni-
cast routing. IEEE/ACM Transactions on Networking. 8(2), 239–250 (2000)

17. Sun Q. and Langendorfer H.: A new distributed routing algorithm for supporting
delay-sensitive applications. Computer Communications. 21, 572–578 (1998)

18. Wang H. et al.: A Bio-Inspired Method for the Constrained Shortest Path Problem.
The Scientific World Journal. V. 2014, Article ID 271280 (2014)

19. Wang S. et al.: Effective Indexing for Approximate Constrained Shortest Path
Queries on Large Road Networks. Proceedings of the VLDB Endowment 10(2),
61–72 (2016)

20. Wang Z. and Crowcroft J.: Quality-of-Service Routing for Supporting Multimedia
Applications. IEEE on Selected Areas in Communications. 14(7), 1228–1234 (1996)

21. Widyono R.: The design and evaluation of routing algorithms for real-time chan-
nels. Technical Report TR-94-024, University of California at Berkeley & Interna-
tional Computer Science Institute (1994).

22. Xiao Y. et al.: The Constrained Shortest Path Problem: Algorithmic Approaches
and an Algebraic Study with Generalization. AKCE J. Graphs. Combin. 2(2),
63–86 (2005)

	Constrained Shortest Path and Hierarchical Structures

