
Constrained Spectral Clustering via Exhaustive

and Efficient Constraint Propagation

Zhiwu Lu and Horace H.S. Ip

Department of Computer Science, City University of Hong Kong, Hong Kong
AIMtech Centre, City University of Hong Kong, Hong Kong

lzhiwu2@student.cityu.edu.hk, cship@cityu.edu.hk

Abstract. This paper presents an exhaustive and efficient constraint
propagation approach to exploiting pairwise constraints for spectral clus-
tering. Since traditional label propagation techniques cannot be readily
generalized to propagate pairwise constraints, we tackle the constraint
propagation problem inversely by decomposing it to a set of indepen-
dent label propagation subproblems which are further solved in quadratic
time using semi-supervised learning based on k-nearest neighbors graphs.
Since this time complexity is proportional to the number of all possible
pairwise constraints, our approach gives a computationally efficient so-
lution for exhaustively propagating pairwise constraint throughout the
entire dataset. The resulting exhaustive set of propagated pairwise con-
straints are then used to adjust the weight (or similarity) matrix for
spectral clustering. It is worth noting that this paper first clearly shows
how pairwise constraints are propagated independently and then accu-
mulated into a conciliatory closed-form solution. Experimental results on
real-life datasets demonstrate that our approach to constrained spectral
clustering outperforms the state-of-the-art techniques.

1 Introduction

Cluster analysis is largely driven by the quest for more robust clustering algo-
rithms capable of detecting clusters with diverse shapes and densities. It is worth
noting that data clustering is an ill-posed problem when the associated objective
function is not well defined, which leads to fundamental limitations of generic
clustering algorithms. Multiple clustering solutions may seem to be equally plau-
sible due to an inherent arbitrariness in the notion of a cluster. Therefore, any
additional supervisory information must be exploited in order to reduce this de-
generacy of possible solutions and improve the quality of clustering. The labels
of data are potential sources of such supervisory information which has been
widely used. In this paper, we consider a commonly adopted and weaker type
of supervisory information, called pairwise constraints which specify whether a
pair of data belongs to the same cluster or not.

There exist two types of pairwise constraints, known as must-link constraints
and cannot-link constraints, respectively. We can readily derive such pairwise
constraints from the labels of data, where a pair of data with the same label
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Fig. 1. The must-link and cannot-link constraints derived from the annotations of im-
ages. Since we focus on recognizing the objects of interests in images, these constraints
are formed without considering the backgrounds such as tree, grass, and field.

denotes must-link constraint and cannot-link constraint otherwise. It should be
noted, however, that the inverse may not be true, i.e. in general we cannot infer
the labels of data from pairwise constraints, particularly for multi-class data.
This implies that pairwise constraints are inherently weaker but more general
than the labels of data. Moreover, pairwise constraints can also be automatically
derived from domain knowledge [1,2] or through machine learning. For example,
we can obtain pairwise constraints from the annotations of the images shown
in Fig. 1. Since we focus on recognizing the objects of interests (e.g. horse and
zebra) in images, the pairwise constraints can be formed without considering the
backgrounds such as tree, grass, and field. In practice, the objects of interest can
be roughly distinguished from the backgrounds according to the ranking scores
of annotations learnt automatically by an image search engine.

Pairwise constraints havebeen widely used for constrained clustering [1,2,3,4,5],
and it has been reported that the use of appropriate pairwise constraints can of-
ten lead to the improved quality of clustering. In this paper, we focus on the ex-
ploitation of pairwise constraints for spectral clustering [6,7,8,9] which constructs
a new low-dimensional data representation for clustering using the leading eigen-
vectors of the similaritymatrix. Since pairwise constraints specify whether a pair of
data belongs to the same cluster, they provide a source of information about the
data relationships, which can be readily used to adjust the similarities between
the data for spectral clustering. In fact, the idea of exploiting pairwise constraints
for spectral clustering has been studied previously. For example, [10] trivially ad-
justed the similarities between the data to 1 and 0 for must-link and cannot-link
constraints, respectively. This method only adjusts the similarities between con-
strained data. In contrast, [11] propagated pairwise constraints to other similar-
ities between unconstrained data using Gaussian process. However, as noted in
[11], this method makes certain assumptions for constraint propagation specially
with respect to two-class problems, although the heuristic approach for multi-class
problems is also discussed. Furthermore, such constraint propagation is formulated
as a semi-definite programming (SDP) problem in [12]. Although the method is
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not limited to two-class problems, it incurs extremely large computational cost for
solving the SDP problem. In [13], the constraint propagation is also formulated as
a constrained optimization problem, but only must-link constraints can be used
for optimization.

To overcome these problems, we propose an exhaustive and efficient constraint
propagation approach to exploiting pairwise constraints for spectral clustering,
which is not limited to two-class problems or using only must-link constraints.
Specifically, since traditional label propagation techniques [14,15,16] cannot be
readily generalized to propagate pairwise constraints, we tackle the constraint
propagation problem inversely by decomposing it to a set of independent label
propagation subproblems. Furthermore, we show that through semi-supervised
learning based on k-nearest neighbors graphs, the set of label propagation sub-
problems can be solved in quadratic time O(kN2) with respect to the data size
N (k � N). Since this time complexity is proportional to the total number of
all possible pairwise constraints (i.e. N(N − 1)/2), our constraint propagation
approach can be considered computationally efficient. It is worth noting that our
approach incurs much less computational cost than [12], given that SDP-based
constraint propagation has a time complexity of O(N4).

The resulting exhaustive set of propagated pairwise constraints can be ex-
ploited for spectral clustering through adjusting the similarity matrix with this
information. The experimental results on image and UCI datasets demonstrate
that our approach outperforms the state-of-the-art techniques. It is worth not-
ing that our approach can be seen as a very general constraint propagation
technique, which has the following advantages:

(1) This is the first constraint propagation approach that clearly shows how
pairwise constraints are propagated independently and then accumulated
into a conciliatory closed-form solution.

(2) Our approach is not limited to two-class problems or using only must-link
constraints. More importantly, our approach allows soft constraints, i.e., the
pairwise constraints can be associated with confidence scores like [17,18].

(3) The exhaustive set of pairwise constraints obtained by our approach can also
potentially be used to improve the performance of other machine learning
techniques by adjusting the similarity matrix.

The remainder of this paper is organized as follows. In Section 2, we propose an
exhaustive and efficient constraint propagation approach. In Section 3, we exploit
the exhaustive set of propagated pairwise constraints for spectral clustering.
In Section 4, our approach is evaluated on image and UCI datasets. Finally,
Section 5 gives the conclusions drawn from experimental results.

2 Exhaustive and Efficient Constraint Propagation

Given a dataset X = {x1, ..., xN}, we denote a set of must-link constraints as
M = {(xi, xj) : zi = zj} and a set of cannot-link constraints as C = {(xi, xj) :
zi �= zj}, where zi is the label of data xi. Our goal is to exploit the two types of
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Fig. 2. The vertical and horizontal propagation of pairwise constraints. Each arrow
denotes the direction of constraint propagation. The solid arrow means that the pair-
wise constraint is provided initially, while the dashed arrow means that the pairwise
constraint is newly generated during constraint propagation.

pairwise constraints for spectral clustering on the dataset X . As we have men-
tioned, the pairwise constraints can be used to adjust the similarities between
data so that spectral clustering can be performed with the adjusted similarity
matrix. In previous work [10], only the similarities between the constrained data
are adjusted, and thus the pairwise constraints exert very limited effect on the
subsequent spectral clustering. In the following, we propose an exhaustive and
efficient constraint propagation technique that spreads the effect of pairwise con-
straints throughout the entire dataset, thereby enabling the pairwise constraints
to exert a stronger influence on the subsequent spectral clustering.

A main obstacle of constraint propagation lies in that the cannot-link con-
straints are not transitive. In this paper, however, we succeed in propagating
both must-link and cannot-link constraints. We first represent these two types
of pairwise constraints using a single matrix Z = {Zij}N×N :

Zij =

⎧
⎪⎨

⎪⎩

+1, (xi, xj) ∈ M;
−1, (xi, xj) ∈ C;
0, otherwise.

(1)

Here, we have |Zij | ≤ 1 for soft constraints [17,18]. Since we can directly obtain the
pairwise constraints from the above matrix Z, the pairwise constraints have been
representedusingZ without loss of information.Wemake further observations onZ
columnbycolumn. It canbeobserved that the j-th columnZ.j actuallyprovides the
initial configuration of a two-class semi-supervised learning problem with respect
to xj , where the “positive class” contains the data that must appear together with
xj and the “negative class” contains the data that cannot appear together with xj .
More concretely, xi can be initially regarded as coming from the positive (or nega-
tive) class if Zij > 0 (or < 0), but if xi and xj are not constrained (i.e. Zij = 0) thus
xi is initially unlabeled. This configuration of a two-class semi-supervised learning
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is also suitable for soft constraints. The semi-supervised learning problem with re-
spect to xj can be solved by the label propagation technique [14]. Since the other
columns of Z can be handled similarly, we can decompose the constraint propaga-
tion problem into N independent label propagation subproblems which can then
be solved in parallel. The vertical propagation of pairwise constraints is illustrated
in Fig. 2.

However, it is also possible that a column contains no pairwise constraints (for
example, see the second column in Fig. 2). That is, the entries of this column may
all be zeros, and for such cases, no constraint propagation will occur along this
column. We deal with this problem through horizontal constraint propagation
(see Fig. 2), which is performed after the vertical constraint propagation. The
horizontal propagation can be done similar to the vertical propagation discussed
above. The only difference is that we now consider Z row by row, instead of
column-wise. More significantly, through combining the vertical and horizontal
constraint propagation, we succeed in propagating the pairwise constraints to
any pair of data. That is, the semi-supervised learning for constraint propagation
could not break down if one type of constraints is missing for some data.

The two sets of constraint propagation subproblems can be solved efficiently
through semi-supervised learning based on k-nearest neighbors graphs. Let F =
{F = {Fij}N×N : |Fij | ≤ 1}. In fact, each matrix F ∈ F denotes a set of pairwise
constraints with the associated confidence scores. That is, Fij > 0 is equivalent
to (xi, xj) ∈ M while Fij < 0 is equivalent to (xi, xj) ∈ C, with |Fij | being the
confidence score (i.e. probability) of (xi, xj) ∈ M or (xi, xj) ∈ C. Particularly,
Z ∈ F , where Z collects the initial pairwise constraints. Given the affinity (or
similarity) matrix A for the dataset X , our algorithm for constraint propagation
is summarized as follows:

(1) Form the weight matrix W of a graph by Wij = A(xi,xj)√
A(xi,xi)

√
A(xj,xj)

if xj

(j �= i) is among the k-nearest neighbors (k-NN) of xi and Wij = 0 otherwise.
Set W = (W + WT )/2 to ensure that W is symmetric.

(2) Construct the matrix L̄ = D−1/2WD−1/2, where D is a diagonal matrix
with its (i, i)-element equal to the sum of the i-th row of W .

(3) Iterate Fv(t + 1) = αL̄Fv(t) + (1 − α)Z for vertical constraint propagation
until convergence, where Fv(t) ∈ F and α is a parameter in the range (0, 1).

(4) Iterate Fh(t+1) = αFh(t)L̄+(1−α)F ∗
v for horizontal constraint propagation

until convergence, where Fh(t) ∈ F and F ∗
v is the limit of {Fv(t)}.

(5) Output F ∗ = F ∗
h as the final representation of the pairwise constraints,

where F ∗
h is the limit of {Fh(t)}.

Below we give a convergence analysis of the above constraint propagation al-
gorithm. Since the vertical constraint propagation in Step (3) can be regarded
as label propagation, its convergence has been shown in [14]. More concretely,
similar to [14], we can obtain F ∗

v = (1 − α)(I − αL̄)−1Z as the limit of {Fv(t)}.
As for the horizontal constraint propagation, we have

FT
h (t + 1) = αL̄T FT

h (t) + (1 − α)F ∗
v

T

= αL̄FT
h (t) + (1 − α)F ∗

v
T . (2)
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Fig. 3. The illustration of our constraint propagation: (a) four pairwise constraints and
ideal clustering of the data; (b) final constraints propagated from only two must-link
constraints; (c) final constraints propagated from only two cannot-link constraints; (d)
final constraints propagated from four pairwise constraints. Here, must-link constraints
are denoted by solid red lines, while cannot-link constraints are denoted by dashed blue
lines. Moreover, we only show the propagated constraints with predicted confidence
scores > 0.1 in Figs. 3(b)-3(d).

That is, the horizontal propagation in Step (4) can be transformed to a verti-
cal propagation which converges to F ∗

h
T = (1 − α)(I − αL̄)−1F ∗

v
T . Hence, our

constraint propagation algorithm has the following closed-form solution:

F ∗ = F ∗
h = (1 − α)F ∗

v (I − αL̄T )−1

= (1 − α)2(I − αL̄)−1Z(I − αL̄)−1, (3)

which actually accumulates the evidence to reconcile the contradictory propa-
gated constraints for certain pairs of data. As a toy example, the propagated
constraints given by the above equation are explicitly shown in Fig.3. We can
find that the propagated constraints obtained by our approach are consistent
with the ideal clustering of the data.

Finally, we give a complexity analysis of our constraint propagation algorithm.
Through semi-supervised learning based on k-nearest neighbors graphs (k � N),
both vertical and horizontal constraint propagation can be performed in quadratic
time O(kN2). Since this time complexity is proportional to the total number of all



Exhaustive and Efficient Constraint Propagation 7

possible pairwise constraints (i.e. N(N − 1)/2), our algorithm can be considered
computationally efficient. Moreover, our algorithm incurs significantly less com-
putational cost than [12], given that constraint propagation based on semi-definite
programming has a time complexity of O(N4).

3 Fully Constrained Spectral Clustering

It should be noted that the output F ∗ of our constraint propagation algorithm
represents an exhaustive set of pairwise constraints with the associated confi-
dence scores |F ∗|. Our goal is to obtain a data partition that is fully consistent
with F ∗. Here, we exploit F ∗ for spectral clustering by adjusting the weight
matrix W as follows:

W̃ij =

{
1 − (1 − F ∗

ij)(1 − Wij), F ∗
ij ≥ 0;

(1 + F ∗
ij)Wij , F ∗

ij < 0.
(4)

In the following, W̃ will be used for constrained spectral clustering. Here, we need
to first prove that this matrix can be regarded as a weight matrix by showing
that W̃ has the following nice properties.

Proposition 1. (i) W̃ is nonnegative and symmetric; (ii) W̃ij ≥ Wij (or <
Wij) if F ∗

ij ≥ 0 (or < 0).

Proof. The above proposition is proven as follows:

(i) The symmetry of both W and F ∗ ensures that W̃ is symmetric. Since 0 ≤
Wij ≤ 1 and |F ∗

ij | ≤ 1, we also have: W̃ij = 1 − (1 − F ∗
ij)(1 − Wij) ≥

1− (1−Wij) ≥ 0 if F ∗
ij ≥ 0 and W̃ij = (1 + F ∗

ij)Wij ≥ 0 if F ∗
ij < 0. That is,

we always have W̃ij ≥ 0. Hence, W̃ is nonnegative and symmetric.
(ii) According to (4), we can consider W̃ij as a monotonically increasing function

of F ∗
ij . Since W̃ij = Wij when F ∗

ij = 0, we thus have: W̃ij ≥ Wij (or < Wij)
if F ∗

ij ≥ 0 (or < 0).

This proves that W̃ can be used as a weight matrix for spectral clustering. More
importantly, according to Proposition 1, the new weight matrix W̃ is derived
from the original weight matrix W by increasing Wij for the must-link con-
straints with F ∗

ij > 0 and decreasing Wij for the cannot-link constraints with
F ∗

ij < 0. This is entirely consistent with our original motivation of exploiting
pairwise constraints for spectral clustering.

After we have incorporated the exhaustive set of pairwise constraints ob-
tained by our constraint propagation into a new weight matrix W̃ , we then per-
form spectral clustering with this weight matrix. The corresponding algorithm
is summarized as follows:

(1) Find K largest nontrivial eigenvectors v1, ...,vK of D̃−1/2W̃ D̃−1/2, where
D̃ is a diagonal matrix with its (i, i)-element equal to the sum of the i-th
row of the weight matrix W̃ .
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Fig. 4. The results of constrained clustering on the toy data using four pairwise con-
straints given by Fig. 3(a): (a) spectral learning [10]; (b) our approach. The clustering
obtained by our approach is consistent with the ideal clustering of the data.

(2) Form E = [v1, ...,vK ], and normalize each row of E to have unit length.
Here, the i-th row Ei. is the low-dimensional feature vector for data xi.

(3) Perform k-means clustering on the new feature vectors Ei.(i = 1, ..., N) to
obtain K clusters.

The clustering results on the toy data (see Fig. 3(a)) by the above algorithm are
shown in Fig. 4(b). We can find that the clustering obtained by our approach is
consistent with the ideal clustering of the data, while this is not true for spectral
learning [10] without using constraint propagation (see Fig. 4(a)). In the follow-
ing, since the pairwise constraints used for constrained spectral clustering (CSC)
is obtained by our exhaustive and efficient constraint propagation (E2CP), the
above associated clustering algorithm is denoted as E2CSC (or E2CP directly)
to distinguish it from other CSC algorithms.

4 Experimental Results

In this section, we conduct extensive experiments on real-life data to evaluate
the proposed constrained spectral clustering algorithm. We first describe the
experimental setup, including the clustering evaluation measure and the param-
eter selection. Moreover, we compare our algorithm with other closely related
methods on two image datasets and four UCI datasets, respectively.

4.1 Experimental Setup

For comparison, we present the results of affinity propagation (AP) [11], spectral
learning (SL) [10] and semi-supervised kernel k-means (SSKK) [4], which are
three closely related constrained clustering algorithms. SL and SSKK adjust only
the similarities between the constrained data, while AP and our E2CP propagate
the pairwise constraints throughout the entire dataset. Here, it should be noted
that AP cannot directly address multi-class problems and we have to take into
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Fig. 5. Sample images from 15 categories of the Corel dataset

account the heuristic approach discussed in [11]. We also report the baseline
results of normalized cuts (NCuts) [8], which is effectively a spectral clustering
algorithm but without using pairwise constraints.

We evaluate the clustering resultswith the adjustedRand (AR) index [19,20,21],
which has been widely used for the evaluation of clustering algorithms. The AR
index measures the pairwise agreement between the computed clustering and the
ground truth clustering, and takes a value in the range [-1,1]. A higher AR index
indicates that a higher percentage of data pairs in the obtained clustering have the
same relationship (musk-link or cannot-link) as in the ground truth clustering. In
the following, each experiment is randomly run 25 times, and the averageAR index
is obtained as the final clustering evaluation measure.

We set α = 0.8 and k = 20 for our E2CP algorithm. The k-NN graph con-
structed for our constraint propagation is also used for the subsequent spectral
clustering. To ensure a fair comparison, we adopt the same k-NN graph for the
other algorithms. Here, we construct the graph with different kernels for image
and UCI datasets. That is, the spatial Markov kernel [15] is defined on the im-
age datasets to exploit the spatial information, while the Gaussian kernel is used
for the UCI datasets as in [11]. For each dataset, different numbers of pairwise
constraints are randomly generated using the ground-truth cluster labels.

4.2 Results on Image Datasets

We select two different image datasets. The first one contains 8 scene categories
from MIT [22], including four man-made scenes and four natural scenes. The
total number of images is 2,688. The size of each image in this Scene dataset is
256×256 pixels. The second dataset contains images from a Corel collection. We
select 15 categories (see Fig. 5), and each of the categories contains 100 images.
In total, this selected set has 1,500 images. The size of each image in this dataset
is 384 × 256 or 256 × 384 pixels.
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Fig. 6. The clustering results on the two image datasets by different clustering algo-
rithms with a varying number of pairwise constraints

For these two image datasets, we choose two different feature sets which are in-
troduced in [23] and [15], respectively. That is, as in [23], the SIFT descriptors are
used for the Scene dataset, while, similar to [15], the joint color and Gabor features
are used for the Corel dataset. These features are chosen to ensure a fair compari-
son with the state-of-the-art techniques. More concretely, for the Scene dataset, we
extract SIFT descriptors of 16×16 pixel blocks computed over a regular grid with
spacing of 8 pixels. As for the Corel dataset, we divide each image into blocks of
16×16pixels and then extract a joint color/texture feature vector from each block.
Here, the texture features are represented as the means and standard deviations
of the coefficients of a bank of Gabor filters (with 3 scales and 4 orientations), and
the color features are the mean values of HSV color components. Finally, for each
image dataset, we perform k-means clustering on the extracted feature vectors to
form a vocabulary of 400 visual keywords.Based on this visual vocabulary,we then
define a spatial Markov kernel [15] as the weight matrix for graph construction.

In the experiments, we provide the clustering algorithms with a varying num-
ber of pairwise constraints. The clustering results are shown in Fig. 6. We can find
that our E2CP generally performs the best among the five clustering methods.
The effectiveness of our exhaustive constraint propagation approach to exploit-
ing pairwise constraints for spectral clustering is verified by the fact that our
E2CP consistently obtains better results. In contrast, SL and SSKK perform un-
satisfactorily, and, in some cases, their performance has been degraded to those
of NCuts. This may be due to that by merely adjusting the similarities only
between the constrained images, these approaches have not fully utilized the
additional supervisory or prior information inherent in the constrained images,
and hence can not discover the complex manifolds hidden in the challenging im-
age datasets. Although AP can also propagate pairwise constraints throughout
the entire dataset like our E2CP, the heuristic approach discussed in [11] may
not address multi-class problems for the challenging image datasets, which leads
to unsatisfactory results. Moreover, another important observation is that the
improvement in the clustering performance by our E2CP with respect to NCuts
becomes more obvious when more pairwise constraints are provided, while this
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Fig. 7. Distance matrices of the low-dimensional data representations for the two image
datasets obtained by NCuts, SL, AP, and E2CP, respectively. For illustration purpose,
the data are arranged such that images within a cluster appear consecutively. The
darker is a pixel, the smaller is the distance.

is not the case for AP, SL or SSKK. In other words, the pairwise constraints has
been exploited more exhaustively and effectively by our E2CP.

To make it clearer how our E2CP exploits the pairwise constraints for spectral
clustering, we show the distance matrices of the low-dimensional data representa-
tions obtained by NCuts, SL, AP, and E2CP in Fig. 7. We can find that the block
structure of the distance matrices of the data representations obtained by our
E2CP on the two image datasets is significantly more obvious, as compared to
those of the data representations obtained by NCuts, SL, and AP. This means
that after being adjusted by our E2CP, each cluster associated with the new
data representation becomes more compact and different clusters become more
separated. Hence, we can conclude that our E2CP does lead to better spectral
clustering through our exhaustive constraint propagation.

The pairwise constraints used here are actually very sparse. For example, the
largest number of pairwise constraints (i.e. 2,400) used for constrained clustering
are generated with only 2.6% of the images in the Scene dataset. Here, images
from the same cluster form the must-link constraints while images from different
clusters form the cannot-link constraints. Through our exhaustive constraint
propagation, we obtain 3,611,328 pairwise constraints with nonzero confidence
scores from this sparse set of pairwise constraints. That is, we have successfully
propagated 2,400 pairwise constraints throughout the entire dataset.

It is noteworthy that the running time of our E2CP is comparable to that of
the constrained clustering algorithms without using constraint propagation (e.g.
SL and NCuts). Moreover, as for the two constraint propagation approaches, our
E2CP runs faster than AP, particularly for multi-class problems. For example,
the time taken by E2CP, AP, SL, SSKK, and NCuts on the Scene dataset is 20,
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42, 15, 17, and 12 seconds, respectively. We run all the five algorithms (Matlab
code) on a PC with 2.33 GHz CPU and 2GB RAM.

4.3 Results on UCI Datasets

We further conduct experiments on four UCI datasets, which are described in
Table 1. The UCI data are widely used to evaluate clustering and classification
algorithms in machine learning. Here, as in [11], the Gaussian kernel is defined on
each UCI dataset for computing the weight matrix during graph construction.
The experimental setup on the UCI datasets is similar to that for the image
datasets. The clustering results are shown in Fig. 8.
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Fig. 8. The clustering results on the four UCI datasets by different clustering algo-
rithms with a varying number of pairwise constraints

Table 1. Four UCI datasets used in the experiment. The features are first normalized
to the range [-1, 1] for all the datasets.

Datasets Wine Ionosphere Soybean WDBC

# samples 178 351 47 569
# features 13 34 35 30
# clusters 3 2 4 2
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Again, we can find that our E2CP performs the best in most cases. Moreover,
the other three constrained clustering approaches (i.e. AP, SL, and SSKK) are
shown to have generally benefited from the pairwise constraints as compared
to NCuts. This observation is different from that on the image datasets. As
we have mentioned, this may be due to that, considering the complexity of the
image datasets, a more exhaustive propagation (like our E2CP) of the pairwise
constraints is needed in order to fully utilize the inherent supervisory information
provided by the constraints. Our experimental results also demonstrated that an
exhaustive propagation of the pairwise constraints in the UCI data through our
E2CP leads to improved clustering performance over the other three constrained
clustering approaches (i.e. AP, SL, and SSKK).

5 Conclusions

We have proposed an exhaustive and efficient constraint propagation approach
to exploiting pairwise constraints for spectral clustering. The challenging con-
straint propagation problem for both the must-link and cannot-link constraints
is decomposed into a set of independent label propagation subproblems, which
can then be solved efficiently and in parallel through semi-supervised learning
based on k-nearest neighbors graphs. The resulting exhaustive set of propagated
pairwise constraints with associated confidence scores are further used to ad-
just the weight matrix for spectral clustering. It is worth noting that this paper
first clearly shows how pairwise constraints are propagated independently and
then accumulated into a conciliatory closed-form solution. Experimental results
on image and UCI datasets demonstrate clearly that by exhaustively propagat-
ing the pairwise constraints throughout the entire dataset, our approach is able
to fully utilize the additional supervisory or prior information inherent in the
constrained data for spectral clustering and then achieve superior performance
compared to the state-of-the-art techniques. For future work, our approach will
also be used to improve the performance of other graph-based methods by ex-
haustively exploiting the pairwise constraints.
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