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Constrained State Estimation for Nonlinear
Discrete-Time Systems: Stability and

Moving Horizon Approximations
Christopher V. Rao, James B. Rawlings, and David Q. Mayne

Abstract—State estimator design for a nonlinear discrete-time
system is a challenging problem, further complicated when addi-
tional physical insight is available in the form of inequality con-
straints on the state variables and disturbances. One strategy for
constrained state estimation is to employ online optimization using
a moving horizon approximation. In this article we propose a gen-
eral theory for constrained moving horizon estimation. Sufficient
conditions for asymptotic and bounded stability are established.
We apply these results to develop a practical algorithm for con-
strained linear and nonlinear state estimation. Examples are used
to illustrate the benefits of constrained state estimation. Our frame-
work is deterministic.

Index Terms—Constraints, model predictive control (MPC),
moving horizon estimation (MHE), optimization, state estimation.

I. INTRODUCTION

OUR problem concerns the design of constrained state es-
timators for nonlinear discrete-time systems, where one

possesses additional insights in the form of general inequality
constraints on the state variables and disturbances. Constraints
are typically used to model bounded disturbances, though they
are also used to correct for model error by bounding the state.
While many powerful strategies exist for estimating the state of
nonlinear discrete-time systems, these strategies do not address
the issue of constraints.

The constrained state estimation problem can be reformu-
lated as a series of optimal control problems (cf. [1] and [2]).
Solving the optimal control problems, however, is computa-
tionally demanding, because the problem dimension grows
with time as more data are processed. One method to reduce
the computational burden is to bound the size of the estimation
problem by employing a moving horizon approximation.
Moving horizon approximations have been used successfully
to develop stabilizing control laws for constrained nonlinear
systems (cf. [3]). In moving horizon estimation (MHE), the
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state estimate is determined online by solving a finite horizon
state estimation problem. As new measurements become avail-
able, the old measurements are discarded from the estimation
window, and the finite horizon state estimation problem is
resolved to determine the new estimate of the state. The method
is optimization based, so MHE can handle explicitly nonlinear
systems and inequality constraints on the decision variables.

In this paper, we investigate online optimization strategies for
estimating the state of systems modeled by a nonlinear differ-
ence equation of the form

(1)

where it is known that the states and disturbances satisfy the
following constraints:

We assume, for all , the functions
and and the sets , , and

are closed with and .
Let denote the solution of the system (1)

at time when the initial state is at time and the input
disturbance sequences is . When we consider the
disturbance free response of the system, i.e., ,
we use the following notational simplification Let

denote the output
response of the system (1) at timewhen the initial state is at
time and the input disturbance sequences is . We use
the notational simplification for the
disturbance free output response of the system. Note the dif-
ference between and . The vector denotes
the observed output at time and the vector
denotes the predicted output at timewhen the initial condition
at time is and the disturbance sequence is .

One may interpret the constraints and as a strategy
for modeling bounded disturbances or random variables with
truncated densities. However, the interpretation of the state con-
straints is not so simple. If the state is subject to physical con-
straints such as concentrations are positive, then the constraints
should be satisfied implicitly by the model (1). However, if the
physical constraints are not implicitly enforced by the model,
then state constraints may be used to account for model inac-
curacies. In particular, state constraints may be used to simplify
the model. Thus, state constraints are nonstandard; one usually
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chooses an exact model of the plant and, separately, the charac-
teristics of the disturbances, such as boundedness, or that the
disturbances are independent and identically distributed with
known mean and variance. The properties of the model and dis-
turbances are distinct. State constraints, on the other hand, cor-
relate the disturbances with the state and may lead to acausality.
While not always theoretically satisfying, state constraints may
be appealing to the engineer. The issues regarding state con-
straints have not been resolved completely. For further discus-
sion, the reader is directed to [4].

We formulate the constrained estimation problem, for ,
as the solution to the following optimal control problem:

where the objective function is defined by

the constraint set is defined by the equation shown at the bottom
of the page, and . We assume
the stage cost function for all
and the initial penalty . The initial penalty
summarizes the prior information at time and satisfies

, where is thea priori most likely value of
, and for ; The initial penalty is part of

the data of the state estimation problem. Typically

where the matrix is symmetric positive definite. In this case,
the given data determines . The solution to
at time is the pair

and that optimal pair yields an estimate of the
actual sequence ; the sequence is the solution
of (1) with the initial state at time and disturbance
sequence , i.e.,

To simplify notation , where .
We refer to the formulation as the full information

problem and as the full information estimate of , because
all of the available information is processed. The
problem has stages, so the computational complexity
scales at least linearly with . Unless the process is linear,
unconstrained, and the cost functions are quadratic, in which
case the optimal estimator is the Kalman filter and the solution

is obtained recursively, the online solution of is imprac-
tical because the computational burden increases with time. To
make the problem tractable, we need to bound the problem size.
One strategy to reduce to a fixed-dimension optimal
control problem is to employ a moving horizon approximation.
Unlike the full-information problem, MHE does not estimate
the full-state sequence . Rather, MHE estimates the
truncated sequence . The key to preserving sta-
bility and performance is how one approximately summarizes
the past data.

Consider again the problem . We can arrange the ob-
jective function by breaking the time interval into two pieces as
follows:

Because we use a state-variable description of the system, the
quantity

depends only on the state and the sequences
. Exploiting the relation using forward

dynamic programming, we can establish the equivalence
between a full information problem and an estimation problem
with a fixed-size estimation window.

Consider the reachable set of states at timegenerated by a
feasible initial condition and disturbance sequence

where is defined below. We define thearrival cost1 at time
and for the state as

It follows that . Arrival cost is a fundamental con-
cept in MHE, because we can reformulate , for ,
as the following equivalent optimal control problem:

1Other researchers have used the termcost to come(cf. [5]) or cost to arrive
(cf. [6]).
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where the constraint set is defined the equation shown at the
bottom of the page, and .
When , the optimal control problem is defined
to be . It is relatively straightforward to demonstrate the
equivalence of the solutions to and using forward
dynamic programming (cf. [7]).

Optimality guarantees for all and
. We can view, therefore, the arrival cost

as an equivalent statistic [8] for summarizing the past data
not explicitly accounted for in the objective func-

tion of . The arrival cost serves as an equivalent statistic
by penalizing the deviation of away from . If we
have high (low) confidence in the optimal estimate ,
then the cost of choosing far away from is large
(small).

For the majority of systems, we do not possess algebraic ex-
pressions for the arrival cost. Notable exceptions are uncon-
strained linear systems with quadratic objectives, where the es-
timate is now the standard Kalman estimate of the state.
Assume the functions and are defined by

and the stage penalties are defined by

where the matrices and are symmetric positive definite.
For this case, the initial penalty is defined as

and the arrival cost is given by

(2)

assuming the matrix is invertible. The matrix sequence
is obtained by solving the matrix Riccati equation

(3)

with the initial condition . One obtains this result by
deriving the deterministic Kalman filter using forward dynamic
programming (cf. [1]).

When the system is nonlinear or constrained, an algebraic ex-
pression for the arrival cost rarely exists, yet we require one
to successfully implement the estimator. Ideally, we want the
moving horizon estimate as close as possible to the full infor-
mation estimate. One solution is to formulate MHE as the so-
lution to a numerically tractable though approximate version of

. An approximation of the arrival cost may
be used to account for the data not included in the estimation
window. The past data are accounted for approximately with our

choice of by penalizing deviation away from the past esti-
mate in accordance with our confidence in the estimate. Be-
cause this choice is an approximation, we need to ensure that es-
timator divergence does not result. In examples not shown here
(see [4]), we demonstrate how poor approximations of the ar-
rival cost may lead to estimator divergence. In Section III, we
discuss the stability implications of approximate representations
of the arrival cost.

We formulate, for , the moving horizon approxima-
tion to the full information estimation problem, or MHE, as the
following optimal control problem:

where and for
all . The moving horizon cost approximates by
replacing the (uncomputable) arrival cost with an ap-
proximation and removing the constraint .
We choose . When , the optimal control
problem is defined to be . The solution to
at time is the pair , which, when used
as data in the system (1), yields , i.e.,

For simplicity, , where .
One strategy to approximate the arrival cost is to em-

ploy a first-order Taylor series approximation of the model (1)
around the estimated trajectory . This strategy yields
an extended Kalman filter covariance update formula for con-
structing . Suppose the model functions and
and the cost functions are sufficiently smooth and

Let

denote the linearized dynamics of (1) and
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denote the linearized stage penalties , then, if we assume
for simplicity , we approximate the arrival cost as

assuming the matrix is invertible, where the matrix sequence
is obtained by solving the matrix Riccati (3) subject to

the initial condition This result is equivalent to the
covariance update formula for the extended Kalman filter. See
[2] for further details.

MHE is a practical strategy to handle the computational dif-
ficulties associated with optimization based estimation, and, as
a consequence, many authors have explored different issues in
MHE. The first application of MHE for nonlinear systems was
the work of Janget al. [9]. Their strategy ignores disturbances
and constraints and attempts to estimate only the initial state
of the system. Thomas [10] and Kwonet al. [11] discussed
earlier moving horizon strategies for unconstrained linear sys-
tems. Limited memory and adaptive filters for linear systems
are analogous to MHE, because only a fixed window of data
is considered (see [2] for a discussion of limited memory fil-
ters). Many researchers in the process systems area extended
the work of Janget al.. Bequetteet al. [12], [13] investigated
moving horizon strategies for state estimation as a logical exten-
sion of model predictive control. Edgar and coworkers [14], [15]
investigated moving horizon strategies for nonlinear data rec-
onciliation. Biegleret al. [16]–[18] investigated statistical and
numerical issues related to optimization-based nonlinear data
reconciliation. Marquardtet al. [19], [20] discussed multi-scale
strategies for MHE and the benefits of incorporating constraints
in estimation. Bemporadet al. [21] discussed the application
of MHE to hybrid systems. Gesthuisen and Engell [22] dis-
cussed the application of MHE to a pilot-scale polymerization
reactor and Russo and Young [23] discussed the application
of MHE to an industrial polymerization process at the Exxon
Chemical Company. Because MHE is formulated as an opti-
mization problem, it is possible to handle explicitly inequality
constraints. Robertson and Lee [24]–[26] have investigated the
probabilistic interpretation of constraints in estimation. Muske
and Rawlings [27], [28] derived some preliminary conditions
for the stability of state estimation with inequality constraints.
Tyler and Morari [29], [30] demonstrated how constraints may
result in instability for nonminimum phase systems.

In parallel to the research done in process systems, uncon-
strained MHE was investigated also by researchers in automatic
control. Ling and Lim [31] and Kwonet al. [32], [33] investi-
gated the MHE for linear systems. Zimmer [34] investigated an
unconstrained MHE strategy for nonlinear systems similar to
the approach of Jang and coworkers [9] and derived conditions
for stability using fixed point theorems. Moraal and Grizzle [35]
also derived conditions for stability for nonlinear MHE using
fixed point theorems. However, Moraal and Grizzle [35] for-
mulated the estimation problem as the solution to a set of alge-
braic equations. Michalska and Mayne [36] investigated an un-
constrained MHE strategy for nonlinear systems similar to the
approach of Janget al. [9] and derived conditions for stability
using Lyapunov arguments. Vincent and Khargonekar [37] in-
vestigated unconstrained MHE for a class of systems arising

from drifting sensor gains. Alessandriet al. [38] investigated
MHE for systems with bounded measurement error and devel-
oped error bounds on the resulting estimates. Our results are
novel in that we investigate the stability properties of MHE
under general constraints on the state and disturbances.

The remainder of the paper is organized as follows. Section II
introduces the notation, definitions, and basic assumptions nec-
essary for establishing stability. We establish sufficient condi-
tions for the asymptotic and bounded stability of MHE and pro-
pose a prototype algorithm for MHE in Section III. We conclude
in Section IV by illustrating the effectiveness of MHE for con-
strained estimation with numerical examples. Extensions of the
results presented, including discussions of duality and subopti-
mality, are available in [4].

II. NOTATION, DEFINITIONS, AND BASIC ASSUMPTIONS

The Cartesian product of a set is denoted by .
We use the symbol to denote any vector norm in (where
the dimension follows from context). Let denote the non-
negative real numbers, and denote the space of lower
semi-continuous functions that map from to . For ,

. For notational simplicity, we make that
following definition: .

Definition 2.1: A function is aK-function
if it is continuous, strictly monotone increasing, for

, , and .
Throughout this paper, we use the following elementary prop-

erties of K-functions.
Fact 2.2: Suppose is a K-function. Then, the function

is a K-function [39].
Fact 2.3: The space of K-functions is closed under addition,

composition, and positive scalar multiplication. For example, if
and are K-functions, then , ,

for are K-functions.
To establish existence and stability, we require the following

observability condition.
Definition 2.4: A system isuniformly observable if there

exists a positive integer and a K-function such that for
any two states and

for all .
In order to guarantee the problems and are well

posed, we require that the model (1), stage cost functions,
and initial penalty satisfy the following conditions.

A0) The functions and are Lipschitz continuous
in all of their arguments with constants and respectively
for all .

A1) for all and .
A2) There exist K-functions and such that

for all , , , and .
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AssumptionA0) is satisfied if the functions and
are twice differentiable. AssumptionsA1) andA2) are satisfied
if the stage cost functions and the initial penalty are
positive definite quadratic functions.

We need also to impose similar conditions on the approxi-
mate arrival cost . However, unlike the initial penalty, the
minimal value of the arrival cost is greater than zero (recall

for all with ) and the ap-
proximate arrival may not be bounded below by for
reasons that become apparent in Section III. We require instead

satisfies the following condition.
C1) There exist K-function such that

for all , and .
The following technical lemma follows from the definition of

observability and definitions previously given.
Lemma 2.5:SupposeA0)–A2) are true and (1) is uniformly

observable. If the exists positive constantsand such that
and for all , then, for all , there

exists a K-function such that

for and all .
Proof: The proof is given in Appendix A.

To guarantee that a solution exists to either or ,
we require that the feasible region is nonempty.

A3) There exists an initial condition , disturbance se-
quence such that, for all ,

.
To account for constraints, we have modified slightly the def-

inition of stability in an analogous manner to [40].
Definition 2.6: An estimator is anasymptotically stable ob-

server for the system

(4)

if, for every initial condition such that for
all and every , there corresponds a number
and a positive integer such that if and ,
then for all . Furthermore, for
all , as .

III. STABILITY

In this section we derive sufficient conditions for asymptotic
and bounded stability. We begin by stating conditions on the ap-
proximate arrival cost sufficient to guarantee the stability
of MHE. We proceed to derive conditions for the existence of a
solution to , and we then establish stability. For most non-
linear systems the approximate arrival costs are unable to satisfy
a priori the stability condition. We then present an algorithm for
constrained MHE that relaxes the conditions on the approximate
arrival costs. We conclude the section by establishing bounded
stability in the presence of bounded noise.

Ideally the approximate arrival cost is equal to the ar-
rival cost . With the notable exception of the unconstrained
linear quadratic problem (i.e., the Kalman filter), closed-form
expressions for the arrival cost are generally unavailable. To
guarantee stability, however, we do not need to construct the ar-
rival cost, but rather require instead that the approximate arrival
cost satisfies the following condition.

C2) Let

where for . For a horizon length , any time
, and any , the approximate arrival cost

satisfies the inequality

(5)

subject to the initial condition . For , the
approximate arrival cost satisfies instead the inequality

.
If one views arrival cost as an equivalent statistic for the data,

then the inequality (5) in conditionC2) states that the approx-
imate arrival cost should not add additional “information” not
specified in the data. Loosely speaking, we say a positive func-
tion contains more information than another positive func-
tion if for all of interest. If the inequality
(5) were strict, then conditionC2) would state there should be
some “forgetting” in the estimator.

Remark 3.1:A simple strategy to satisfy conditionC2) is to
define for time the approximate arrival cost as
The inequality (5) is satisfied by definition: optimality of
guarantees that the optimal cost satisfies the inequality (5)
for all . This construction was employed by Muske
and Rawlings [28] to generate a stable nonlinear MHE. Without
constraints, this choice yields a deadbeat observer.

Remark 3.2: If we choose

where the sequence is obtained by solving the matrix Ric-
cati (3) subject to the initial condition , then condition
C2) is satisfied when we consider linear systems with quadratic
objectives and convex constraints. The proof of this claim is
given in [4].

We begin by providing sufficient conditions for the existence
of a solution to .

Proposition 3.3: If assumptionsA0)–A3) hold, the sequence
satisfies conditionC1), the system (4) is uniformly ob-

servable, and , then a solution exists to for all
and .

Proof: The proof is given in Appendix B.
In the following proposition, we state our stability result

for MHE. Stability is established by demonstrating that the
sequence is nondecreasing and bounded above uniformly
for by the initial estimation error .
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Proposition 3.4: If assumptionsA0)–A3) hold, the sequence
satisfies conditionsC1) and C2), system (1) is uni-

formly observable, and , then, for all , MHE is
an asymptotically stable observer for the system (4).

Proof: We first prove convergence by demonstrating that
, where is defined inA2), is a uniform upper

bound for . Recall denotes the initial condition of (4).
Proposition 3.3 guarantees an optimal solution exists for all

and . AssumptionA2) and conditionC1) guarantee,
for all ,

(6)

We proceed using an induction argument. For , assump-
tion A3), optimality, and conditionC2) imply

Condition C1) guarantees and, therefore,
. Let us now assume

for the induction argument. Utilizing the op-
timality principle, we have, for all

by optimality

by the induction assumption

Condition C1) guarantees for all .
The sequence , therefore, is monotone nondecreasing and
bounded above by . Hence, it is convergent, and
the partial sum

as , because the summation in (6) is nonnegative.
Lemma 2.5 (with , , and ) guarantees
the estimation error as claimed.

To prove stability, let and choose as specified by
Lemma 2.5 (with , , and ) such that
if

then for all . If we choose
such that (the existence of follows

from Fact 2.2 ), then we obtain the following inequality for all
:

Hence, if the initial estimation error , then the
estimation error

for all as claimed.
When the system dynamics are nonlinear, we are unable in

general to construct an approximate arrival cost that satisfies
conditionC2)with the exception of the obvious choice

. As the proof of Proposition 3.4 demonstrates, conditionC2)
is sufficient to guarantee is a uniform upper bound
to the optimal cost for all . While global satisfac-
tion of the inequality (5) inC2) is ideal, we may circumvent the
issue by explicitly ensuring is a uniform bound in nominal
application. Suppose the sequence of approximate arrival costs

satisfies conditionC1). The purpose of condition
C2) is to ensure the sequence is monotone nonin-
creasing [seeA3)]

(7)

Rather than rely on the general structure of the sequence
to satisfy the inequality (7), we may force the sequence

to be monotone nonincreasing explicitly by
scaling the approximate arrival costs

where .
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If we knew the sequence defined inA3), then en-
forcing the inequality (7) is easy. It is sufficient to scale
such that the inequality (7) is satisfied. The problem is that we
rarely know of a sequence satisfyingA3) a priori without first
solving a full information estimation problem. However, to sat-
isfy the inequality (7) at time , we need only to know the last

elements of the sequence . Even this
information is unavailablea priori, though we may obtain it
online. What we need to generate online is a feasible state se-
quence that is bounded by the initial estima-
tion error in nominal application. We can generate this feasible
sequence using . Recall from Remark 3.1
that this choice for the approximate arrival cost yields a stable
constrained observer. Once we have a feasible sequence, we can
scale such that it satisfies (7).

Consider the MHE problem where we choose .
We formulate this estimation problem as the following optimal
control problem2

For , is defined to be . The solution to
is the pair

and that optimal pair yields an estimate of the
actual sequence , where

It follows that . We formulate the estimation strategy as
the following algorithm.

Estimation Algorithm
Data .
Initialization: For do:
1. Solve to generate and

.
2. Solve to obtain and .
3. For , set .
Step 1 For do:
1. Solve to obtain and .
2. Set .
3. Construct so that it satisfies
C1.

4. Set

5. Set

2Adding a constant to the objective function does not affect the answer. For
simplicity, we chooseẐ (�) = 0

6. Solve and obtain and .
Step 2 Let . Go to Step 1.

We have constructed stable variants of the proposed estima-
tion algorithm including suboptimal algorithms, where global
solutions to the associated optimal control problem are not nec-
essary. The interested reader is directed to [4].

Remark 3.5: If we choose

where the matrix is symmetric positive semi-def-
inite, then C1) is automatically satisfied; let

.
The stability of the proposed algorithm relies on the stability

of the estimator defined by . We know from Proposition
3.4 that as . More importantly,
we know that the sequence is bounded.

Proposition 3.6: If assumptionsA0)–A3) hold, the system
(1) is uniformly observable, and , then, for all ,
MHE using the estimation algorithm is an asymptotically stable
observer for (4).

Proof: From the preceding arguments (see the proof of
Proposition 3.4), it suffices to show is bounded uniformly
for all by . Let .

Optimality guarantees for all
. Hence, byA3), we have for all .

By construction, for ,

Because , optimality implies

. Hence, the sequence is bounded above by
and, consequently, as .

We now establish that is bounded by . By as-
sumptionA3), and, by Lemma 2.5 (with

, , and )

Hence, we obtain

where results from applying conditionC1) and is a
K-function. The existence of the K-function follows from
Fact 2.3.

We desire when satisfies conditionC2). If we
assume for all , then optimality and the
observability assumption imply
for all and, as a consequence, It follows
by optimality and conditionC2) that for
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Therefore, . When the constraints only satisfyA3) or
when we consider suboptimal algorithms, then the estimation al-
gorithm does not guarantee when the sequence
satisfies conditionC2). To guarantee , one can modify
the estimation algorithm (see [4]).

A. Bounded Disturbances

In this section, we investigate the stability properties of MHE
when the sets , , and are uniformly compact. We
demonstrate under these condition that the estimation error is
bounded. The bounds that we derive are conservative and not
constructive, though they illustrate the performance of MHE in
the presence of noise. Our arguments build on many of the re-
sults discussed in Sections I and II; for brevity, we freely make
use of those results.

D0) There exists scalars , , and such
that , , for all .

Throughout this section, we denote the dynamics of the true
system by the sequences , , and , where by as-
sumption , , , and for all

. In other words, the dynamics of the true system obey the
constraints.

Proposition 3.7: If the assumptionsA0)–A3), the sequence
satisfies conditionsC1) andC2), the system (1) is uni-

formly observable, , and the constraints satisfy con-
dition D0), then the estimation error for MHE is
bounded for all .

Proof: We assume throughout the proof that .
Proposition 3.3 guarantees a solution exists for all . Let

. AssumptionA2) and conditionC1) guarantee,
for all , that

From the proof of Proposition 3.4, we know under the stated
assumptions that

for all . Optimality then implies

as optimality implies . As is feasible for
problem for all sequences ,
optimality implies

Lemma 2.5, consequently, states that the estimation error is
bounded as claimed.

Corollary 3.8: If the assumptionsA0)–A3), system (1) is
uniformly observable, , and the constraints satisfy con-
dition D0), then the estimation error for the esti-
mation algorithm is bounded for all .

Proof: By construction and
where . Hence

Lemma 2.5 , consequently, states that the estimation error is
bounded as claimed.

IV. EXAMPLES OF INEQUALITY CONSTRAINTSYIELDING

IMPROVED ESTIMATES

In this section, we demonstrate how inequality constraints im-
prove the state estimate when the disturbances are bounded. We
first consider a linear example where we use the Kalman filter,
the unconstrained full information estimator, as a benchmark.
We then consider a nonlinear example and use the extended
Kalman filter (EKF) as a benchmark.

Consider the following discrete-time system

(8)

We assume is sequence of independent, zero mean, nor-
mally distributed random variables with covariance 0.01, and

where is a sequence of independent, zero mean,
normally distributed random variables with unit covariance. We
also assume the initial state is normally distributed with zero
mean and covariance equal to the identity.

We formulate the constrained estimation problem with
, , , and . For the MHE, we choose

and

where the sequence is obtained by solving the matrix Ric-
cati (3). As stated previous, this choice for the approximate
arrival cost satisfies conditionC2). To capture our knowledge
of the random sequence , we add the inequality constraint

. Note, this formulation yields theoptimalBayesian es-
timate. A comparison of the Kalman filter and MHE is shown
in Fig. 1. For a benchmark, we used the sum squre estimation
error

where denotes theth entry of the vector . For , the
average sum square estimation error based on 100 trials was
1194.45 for the Kalman filter and 36.08 for MHE. For ,
the average square estimation error was 131.15 for the Kalman
filter and 81.60 for MHE. As expected, the performance of the
constrained estimators is superior to the Kalman filter, because
the constrained estimators possess, with the addition of the in-
equality constraints, the proper statistics of the disturbance se-
quence . Hence, the constrained estimation problem formu-
lated above accurately models the random variable.
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Fig. 1. Comparison of estimators for model (8).

To compare the performance of MHE and EKF, we consider
the following nonlinear perturbation of the model (8):

(9a)

(9b)

(9c)

The disturbances are modeled as random variables with the
same distributions as the previous example. We formulate MHE
as above with the exception that the sequence is obtained
using an extended Kalman filter update. A comparison of the
EKF, unconstrained MHE (U-MHE), and MHE is shown in
Fig. 2. Once again, the unconstrained EKF estimate diverges
while the MHE estimate is able to track the state. If we compare
constrained versus unconstrained MHE, then the conclusions
are similar: constraints are necessary for an accurate state
estimate. For , the average sum square estimation error
based on 100 trials was 888.97 for the EKF and 66.58 for MHE.
For , the average square estimation error was 97.66 for the
EKF and 76.83 for MHE.

We repeated both examples using bounded noise, where
. The results were similar. For the linear

Fig. 2. Comparison of estimators for model (9).

example, the average sum square estimation error for the
Kalman filter based on 100 trials was 1149.10 for and
126.04 for . The average sum square estimation error for
MHE based on 100 trials was 37.44 for and 74.94 for .
For the nonlinear example, the average sum square estimation
error for the extended Kalman filter based on 100 trials was
852.25 for and 93.63 for . The average sum square
estimation error for MHE based on 100 trials was 50.07 for

and 69.99 for .
At each time step, the solution of the quadratic program took

approximately a tenth of a second and the solution of the non-
linear program took approximately 3 s on a desktop computer. A
single realization involve 80 data points took approximately 10
s for the linear example and 3 min for the nonlinear examples.
The time required for either the Kalman filter or the extended
Kalman filter was negligible. All computations were performed
in GNU Octave on a 500-MHz processor. No effort was made
to improve the efficiency of either computation.

V. CONCLUSION

In this paper, we investigated MHE as an online optimization
strategy for estimating the state of constrained discrete-time
systems. The practical significance of MHE is the ability to
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incorporate constraints explicitly. This feature distinguishes
MHE from other strategies such as extended Kalman filtering
and output error linearization. Furthermore, if the estimation
problem translates into a problem of the form , then we
believe MHE is a natural engineering approximation to the
full information problem, because the structure of MHE is not
dictated by stability, but rather by performance and practicality.
Stability results if one judiciously approximates the past data.

One limitation of MHE is the need for global solutions to
the optimization problems and . This computa-
tional requirement presents a barrier to online implementation.
Aside from the computational burden, optimization may not
yield global solutions unless the problem is convex. Strategies
exist for finding a global solution, though they are currently im-
practical for online implementation. The difficulty in global op-
timization is not finding a solution, but rather verifying whether
a particular solution is global. Unless global information such as
lower bounds or Lipschitz constants are available, one needs to
sample a dense subset of the decision space in order to guarantee
a particular solution is global [41]. In results not discussed here
[4], we propose a stable suboptimal version of MHE that does
not require a global solution. This algorithm is similar to the
suboptimal version of receding horizon control first proposed
by Michalska and Mayne [42] and further developed in discrete
time by Scokaert, Mayne, and Rawlings [43].

The strength and weakness of MHE is the use of constrained
optimization. For many systems, the optimization problems can
be solved in a few seconds on a desktop computer using standard
software such as Matlab. However, for some estimation prob-
lems, MHE is too slow. With the increasing power of computers
and improved algorithms (i.e algorithms now solve quadratic
programs in polynomial time), MHE will become an alternative
for an expanding class of constrained state estimation problems
in the near future.

APPENDIX I

A. Proof of Lemma 2.5

Proof: Recall denotes the true state of (1). We now
make make the following definitions:

Employing the triangle inequality, we obtain the bound

(10)

By the Lipschitz continuity of , we have the inequalities

(11a)

(11b)

for all . Likewise, assumption
A2) implies

(12a)

(12b)

where the existence of K-function follows from Fact 2.2.
Hence

In the remaining steps of the proof, we demonstrate that the
quantity is bounded.

By definition

By repeated application of the inverse triangle inequality and
utilizing the observability condition, we obtain the inequality

By the Lipschitz continuity of , we obtain the inequality

(13)

where the existence of the K-function follows from Fact
2.2. By the Lipschitz continuity of , (11a), and (12a), we
obtain the inequality
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Likewise, By the Lipschitz continuity of , (11b), and (12b),
we obtain the inequality

Substituting into (13), we obtain the inequality

Substituting the aforementioned expressions in (10), we obtain
the inequality

Collectively defining the terms on the right hand side of the
inequality as a function , we obtain the following bound of
the estimation error:

Facts 2.2 and 2.3 guarantee is K-function as it is a positive
linear combination and composition of the K-functions
and .

APPENDIX II

A. Proof of Proposition 3.3

Proof: For , existence is established by routine
application of the Weierstrass Maximum Theorem (see [4] for
the specific details). Now consider and let

denote the finite cost, by assumptionA2) and property
C1), associated with the feasible sequence and

specified in assumptionA3). Consider the set

A solution exists under the stated assumption by application of
the Weierstrass Maximum Theorem if the setis bounded.
AssumptionA2) guarantees the sequence is
bounded: . We conclude by demon-
strating is bounded. If we employ the inverse triangle in-
equality, we obtain

where and
. Rearranging the inequality, we

obtain

If we employ again the inverse triangle inequality, we obtain
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Rearranging the inequality and applying the observability as-
sumption, we obtain the inequality

The first quantity is bounded, using the triangle in-
equality, by and, consequently, by .
To show the last two quantities are bounded, we employ assump-
tion A0) to obtain the following inequality:

Likewise, we have the inequality

Consequently, the quantity is bounded, and ex-
istence follows as claimed.
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