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Abstract— A simple procedure to include state inequality
constraints in the Unscented Kalman Filter is proposed. With
this procedure, the information of active state constraints
influences the state covariance matrix, resulting in better esti-
mates. In a numerical example, the approach outperforms the
Extended Kalman Filter implemented with constraint handling
via “clipping”.

I. INTRODUCTION

In the process industries one of the main goals is to

make the end product at the lowest possible cost while

satisfying product quality constraints. State estimation often

play an important role in accomplishing this goal in process

control and performance monitoring applications. There are

many uncertainties to deal with in process control; model

uncertainties, measurement uncertainties and uncertainties in

terms of different noise sources acting on the system. In

this kind of environment, representing the model state by an

(approximated) probability density function (pdf) has distinct

advantages. State estimation is a means to propagate the pdf

of the system states over time in some optimal way. It is most

common to use the Gaussian pdf to represent the model state,

process and measurement noises. The Gaussian pdf can be

characterized by its mean and covariance. The Kalman Filter

(KF) propagates the mean and covariance of the pdf of the

model state in an optimal (minimum mean square error) way

in case of linear dynamic systems [5].

All practical systems possess some degree of nonlinearity.

Depending on the type of process and the operating region

of the process, some processes can be approximated with a

linear model and the KF can be used for state estimation.

In some cases the linear approximation may not be accurate

enough, and state estimator designs using nonlinear process

models are necessary. The most common way of applying

the KF to a nonlinear system is in the form of the Extended

Kalman Filter (EKF). In the EKF, the pdf is propagated

through a linear approximation of the system around the

operating point at each time instant. In doing so, the EKF

needs the Jacobian matrices which may be difficult to obtain

for higher order systems, especially in the case of time-

critical applications. Further, the linear approximation of the

system at a given time instant may introduce errors in the

state which may lead the state to diverge over time. In other

words, the linear approximation may not be appropriate for

some systems. In order to overcome the drawbacks of the
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EKF, other nonlinear state estimators have been developed

such as the Unscented Kalman Filter (UKF) [1], the En-

semble Kalman Filter (EnKF)[4] and high order EKFs. The

UKF seems to be a promising alternative for process control

applications [7], [8], [12]. The UKF propagates the pdf in

a simple and effective way and it is accurate up to second

order in estimating mean and covariance [1].

In process control, state constraint issues are often im-

portant in connection with estimation. In this context, state

constraints typically refer to the boundaries of the physical

domain of estimated states (e.g., estimated concentrations

should remain positive). The only approach that naturally

incorporates such constraints, moving horizon estimation

(MHE), has drawbacks related to online computational load

since it relies on solving a nonlinear programming problem at

each sample step. There are some approaches in the literature

extending the EKF in this direction (e.g. [10], [11]), but as

far as we are aware, there have been no such attempts for

the UKF except the work reported in [13]. The aim of this

paper is to demonstrate how a simple projection of the sigma

points can give good constraint handling in the UKF, while

applying the same projection to the EKF estimate does not

give good performance.

II. UKF ALGORITHM

To illustrate the principle behind the UKF, consider the

following example. Let x ∈ R
n be a random vector and

y = g(x) (1)

be a nonlinear function, g : R
n → R

m. The question is how

the UKF compute pdf of y given the pdf of x, in other words,

how to calculate the mean
(
yUKF

)
and covariance

(
PUKF

y

)

of y, in the case of being Gaussian? Consider a set of points

x(i), i ∈ {1, ..., p}, p = 2n + 1

(similar to the random samples of a specific distribution

function in Monte Carlo simulations) with each point being

associated with a weight w(i). These sample points are

termed as sigma points. Then the following steps are involved

in approximating the mean and covariance: Propagate each

sigma point through the nonlinear function,

y(i) = g(x(i))

• the mean is approximated by the weighted average of

the transformed points,

yUKF =

p∑

i=0

w(i)y(i),
p

Σ
i=0

w(i) = 1
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Fig. 1. Conceptual difference between EKF and UKF

• and the covariance is computed by the weighted outer

product of the transformed points,

PUKF
y =

p∑

i=0

w(i)
(
y(i) − yUKF

)(
y(i) − yUKF

)T

.

Both the sigma points and the weights are computed

deterministically through a set of conditions given in

[1].

The conceptual difference between the principle behind

the familiar EKF and the UKF is illustrated in Figure 1.

Algorithm

The UKF algorithm is presented below; for background

theory, refer to [2], [1] and [3]. Let a general nonlinear

system be represented by the following standard discrete time

equations:

xk = f(xk−1, vk−1, uk−1) (2)

yk = h (xk, nk, uk) . (3)

An augmented state at time instant k,

xa
k ,




xk

vk

nk



 (4)

is defined. The augmented state dimension is

N = nx + nv + nn. (5)

Similarly, the augmented state covariance matrix is built from

the covariance matrices of x, v and n,

P a ,




Px 0 0
0 Pv 0
0 0 Pn



 (6)

where Pv and Pn are the process and observation noise

covariance matrices.

• Initialization at k = 0 :

x̂0 = E [x0] , Px0
= E

[
(x0 − x̂0) (x0 − x̂0)

T
]

x̂a
0 = E [xa] = E [x̂0 0 0]

T

P a
0 = E

[
(xa

0 − x̂a
0) (xa

0 − x̂a
0)

T
]

=




Px 0 0
0 Pv 0
0 0 Pn





• For k = 1, 2, ...∞ :

1) Calculate 2N + 1 sigma-points based on the

present state covariance:

X
a
i,k−1 ,






x̂a
k−1, i = 0

x̂a
k−1 + γSi, i = 1, ..., N

x̂a
k−1 − γSi, i = N+1, ..., 2N

(7)

where Si is the ith column of the matrix

S =
√

P a
k−1.

In (7) γ is a scaling parameter [2],

γ =
√

N + λ, λ = α2(N + κ) − N

where α and κ are tuning parameters. We must

choose κ ≥ 0 to guarantee the semi-positive def-

initeness of the covariance matrix, a good default

choice is κ = 0. The parameter α, 0 ≤ α ≤ 1,

controls the size of the sigma-point distribution

and it should ideally be a small number [2].

The ith sigma point (augmented) is the ith column

of the sigma point matrix,

X
a
i,k−1 =




X

x
i,k−1

X
v
i,k−1

X
n
i,k−1
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where the superscripts x, v and n refer to a

partition conformal to the dimensions of the state,

process noise and measurement noise respectively.

2) Time-update equations:

Transform the sigma points through the state-

update function,

X
x
i,k|k−1 = f

(
X

x
i,k−1,X

v
i,k−1, uk−1

)
, (8)

i = 0, 1, ..., 2N

Calculate the apriori state estimate and apriori

covariance,

x̂−
k =

2N∑

i=0

(
w(i)

m X
x
i,k|k−1

)
, (9)

P−
xk

=
2N∑

i=0

w(i)
c

(
X

x
i,k|k−1−x̂−

k

)(
X

x
i,k|k−1−x̂−

k

)T

(10)

The weights w
(i)
m and w

(i)
c are defined as,

w(0)
m =

λ

N + λ
, i = 0,

w(0)
c =

λ

N + λ
+ (1 − α2 + β), i = 0,

w(i)
m = w(i)

c =
1

2(N + λ)
, i = 1, ..., 2N

where β is a non-negative weighting parameter

introduced to affect the weighting of the zeroth

sigma-point for the calculation of the covariance.

This parameter (β) can be used to incorporate

knowledge of the higher order moments of the

distribution. For a Gaussian prior the optimal

choice is β = 2 [2].

3) Measurement-update equations:

Transform the sigma points through the measure-

ment update function,

Yi,k|k−1 = h
(
X

x
i,k|k−1,X

n
k−1, uk

)
, (11)

i = 0, 1, ..., 2N

and the mean and covariance of the measurement

vector is calculated,

ŷ−
k =

2N∑

i=0

w(i)
m Yi,k|k−1,

Py
k

=

2N∑

i=0

w(i)
c

(
Yi,k|k−1 − ŷ−

k

) (
Yi,k|k−1 − ŷ−

k

)T
.

The cross covariance is calculated according to

Pxkyk
=

2N∑

i=0

w(i)
c

(
X

x
i,k|k−1 − x̂−

k

) (
Yi,k|k−1 − ŷ−

k

)T
.

The Kalman gain is given by,

Kk = Pxkyk
P−1

y
k

and the UKF estimate and its covariance are com-

puted from the standard Kalman update equations,

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
, (12)

Pxk
= P−

xk
− KkPy

k
KT

k . (13)

III. STATE ESTIMATION WITH CONSTRAINTS

Constraints on states to be estimated are important model

information that is often not used in state estimation. Typi-

cally, such constraints are due to physical limitations on the

states; for instance, estimated concentrations should remain

positive. In Kalman filter theory, there is no general way of

incorporating these constraints into the estimation problem.

However, the constraints can be incorporated in the KF by

projecting the unconstrained KF estimates onto the boundary

of the feasible region at each time step [10], [11]. An other

way of nonlinear state estimation with constraints is Moving

Horizon Estimation (MHE), in which the constraints can

be included in the estimation problem in a natural way

[9]. In MHE, the state trajectory is computed taking state

constraints into account at the expense of solving a nonlinear

programming problem at each time step. The numerical

optimization at each time step may be a challenge in time-

critical applications. In this section, a new and simple method

is introduced to handle state constraints in the UKF and it is

compared to the standard way of constraint handling in the

EKF, known as ’clipping’ [6].

Fig. 2. Illustration of estimation with state constraints
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Assume that the state constraints are represented by box

constraints,

xL ≤ x ≤ xH .

We will illustrate the method for x ∈ R
2. In case of a second

order system, the feasible region by the box constraints can

be represented by a rectangle as in Figure 2. The figure

shows the illustration of the steps of constraint handling

in case of the EKF and UKF from one time step to the

next. At t = k − 1, the true state (xk), its estimate (x̂k)

and state covariance are selected as shown in the figure. At

t = k, the unconstrained EKF estimate (x̂EKF
k ) is outside

the feasible region and is projected to the boundary of the

feasible region to get the constrained EKF estimate (x
EKF,C
k )

as shown in the figure. While projecting the EKF estimate,

the covariance of the EKF estimate is not changed and thus

the constraints have no effect on the covariance. Hence, the

covariance does not include any constraint information. This

way of the handling constraints in the EKF is termed as

’clipping’ in literature [6].

The constraints information can be incorporated in the

UKF algorithm in a simple way during the time-update step.

After the propagation of the sigma points from (8), the

(unconstrained) transformed sigma points which are outside

the feasible region can be projected onto the boundary

of the feasible region and continue the further steps. In

Figure 2, at t = k three sigma points which are outside

the feasible region are projected onto the boundary (lower

right plot in the figure). The mean and covariance with the

constrained sigma points now represents the apriori UKF

estimate (xUKF−

k ) and covariance, and they are further

updated in the measurement-update step. The advantage

here is that the new apriori covariance includes information

on the constraints, which should make the UKF estimate

more efficient (accurate) compared to the EKF estimate. An

example (reversible reaction) is considered in the next section

to illustrate the state estimation with constraints with the

proposed method.

Extension of the proposed method to higher dimension is

straightforward. Alternative linear constraints. e.g.,

Cx ≤ d

are easily included by projecting the sigma points violating

the inequality normally onto the boundary of the feasible

region. It is observed that the new covariance obtained at a

time step in the general case will be lower in size compared

to the covariance obtained without projection. If the estimate

after the measurement-update (refer to (12)) is outside the

feasible region, the same projection technique can be applied.

For more detailed description, refer [14].

The proposed algorithm is outlined below:

Algorithm (outline)

• For k = 1, 2, ...∞ :

1) Calculate 2N+1 sigma points based on the present

state covariance according to (7) and project the

sigma points which are outside the feasible region

to the boundary to obtain the constrained sigma

points,

X
x,C
i,k−1 = P (Xx

i,k−1) i = 0, 1, ..., 2N

where P refers to the projections.

2) Time-update equations:

Transform the sigma points through the state-

update function,

X
x
i,k|k−1 = f

(
X

x,C
i,k−1,X

v
i,k−1, uk−1

)
,

i = 0, 1, ..., 2N.

Again apply the constrains on the transformed

sigma points to obtain the constrained transformed

sigma points,

X
x,C

i,k|k−1 = P (Xx
i,k|k−1) i = 0, 1, ..., 2N.

Calculate the apriori state estimate and apriori

covariance as given in (9) and (10) using the

constrained transformed sigma points X
x,C

i,k|k−1.

3) Measurement-update equations:

Transform the constrained sigma points through

the measurement-update function as in (11) and

obtain the UKF estimate by following the same

steps given in Section 2. If UKF estimate violates

the constraints, the same projection technique can

be used.

A. A reversible reaction example

We will here consider an example to illustrate the con-

straint handling capability of the UKF compared to that of

the EKF. Consider the gas-phase, reversible reaction,

2A
k→ B, k = 0.16,

with stoichiometric matrix

v =
[
−2 1

]

and reaction rate

r = kC2
A.

The state and measurement vectors are defined as

x =

[
CA

CB

]
, y =

[
1 1

]
x

where Cj denotes the concentration of species j. It is

assumed that the ideal gas law holds and that the reaction

occurs in a well-mixed isothermal batch reactor. Then, from

first principles, the model for this system is

·
x = f(x) = vT r.

The system is discretized with sampling interval of 0.1.

The UKF and EKF are used for state estimation, with the

following setup as used in [6]:

x0 =
[

3 1
]T

, x̂0 =
[

0.1 4.5
]T

,

Px0
=

[
36 0
0 36

]
, Rv = 10−6

[
1 0
0 1

]
,

Rn = 10−2

[
1 0
0 1

]
.
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The estimation result for the unconstrained case is shown in

Figure 3. The result shows that the dynamic performance of

the UKF estimates is better compared to that of the EKF.

The EKF performance is very similar to the reported results

in [6].
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Fig. 3. Comparison of estimated states: no constraint handling

However, during the dynamic response, both the UKF and

EKF estimates become negative, (meaning negative concen-

trations) which is not possible physically. State constraints

are incorporated according to the proposed method in Section

3 for the UKF and standard ”clipping” is used for the EKF.

The results are shown in Figure 4. From Figure 4 the UKF

estimates converge to the true states without violating the

constraints. Because of the clipping in the EKF, CA estimate

of EKF did not converge to the true state and the estimate

of CB takes much longer time to converge to the true state.
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Fig. 4. Comparison of state estimates: state constraint handling

Figure 5 shows the phase portraits of the unconstrained

and constrained UKF estimates for the first 4 sec. The figure

also includes the corresponding covariances plotted at t=0,

1 and 3 seconds. From Figure 5, it is clear that it takes

longer time for the unconstrained estimate to converge as

the corresponding covariances do not include the constraint

information. The constrained UKF estimate converges faster

as the covariances decrease faster, which include the con-

straint information. The results from this example confirm

that the proposed constraint handling method is promising.
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Fig. 5. Phase portraits of the UKF unconstrained and constrained estimates
with covariances

IV. CONCLUSIONS

In this paper a constraint handling method is proposed for

the Unscented Kalman Filter (UKF). The proposed method

is much simpler to implement than a Moving Horizon Es-

timator. The computational load for the UKF is comparable

to the Extended Kalman Filter for the typical case where

the Jacobians are computed numerically, and the proposed

constraint handling adds minimally to this.

A natural next step is to analyse the properties of the

proposed algorithm more in detail.
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