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Abstract—Target detection in remotely sensed images can be
conducted spatially, spectrally or both. The difficulty of detecting
targets in remotely sensed images with spatial image analysis
arises from the fact that the ground sampling distance is generally
larger than the size of targets of interest in which case targets are
embedded in a single pixel and cannot be detected spatially. Under
this circumstance target detection must be carried out at subpixel
level and spectral analysis offers a valuable alternative. In this
paper, the problem of subpixel spectral detection of targets in
remote sensing images is considered, where two constrained target
detection approaches are studied and compared. One is a target
abundance-constrained approach, referred to as nonnegatively
constrained least squares (NCLS) method. It is a constrained least
squares spectral mixture analysis method which implements a
nonnegativity constraint on the abundance fractions of targets
of interest. Another is a target signature-constrained approach,
called constrained energy minimization (CEM) method. It con-
strains the desired target signature with a specific gain while
minimizing effects caused by other unknown signatures. A
quantitative study is conducted to analyze the advantages and
disadvantages of both methods. Some suggestions are further
proposed to mitigate their disadvantages.

Index Terms—Constrained energy minimization (CEM), non-
negatively constrained least squares (NCLS), orthogonal subspace
projection (OSP).

ACRONYMS

ANC Abundance nonnegativity constraint.

ASC Abundance sum-to-one constraint.

AVIRIS Airborne visible/infrared imaging spectrometer.

CEM Constrained energy minimization.

FCLS Fully constrained least squares.

FIR Finite impulse response.

FNNLS Fast NNLS.

FNNLSb Second version of FNNLS.

HYDICE Hyperspectral digital imagery collection experi-

ment.

LSE Least equares error.

LSMA Linear spectral mixture analysis.

MVDR Minimum variance distortionless response.

NCLS Nonnegatively constrained least squares.

NNLS Nonnegative least squares.

OSP Orthogonal subspace projection.

SCLS Sum-to-one constrained least squares.

UCEM Unsupervised constrained energy minimization.
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UNCLS Unsupervised nonnegatively constrained least

squares.

UOSP Unsupervised orthogonal subspace projection.

I. INTRODUCTION

S
UBPIXEL target detection has received considerable in-

terest in remote sensing image processing due to the sig-

nificantly improved spectral resolution by recent advances of

remote sensing instruments such as the AVIRIS and HYDICE

sensor. The need for subpixel spectral detection in remotely

sensed imagery arises from the fact that the ground sampling

distance is generally larger than the size of targets of interest. In

this case targets are embedded in a single pixel and cannot be

detected spatially. As a result, traditional spatial analysis-based

image processing techniques are not applicable. One must rely

on and take advantage of the targets’ spectral properties such as

spectral contrast, variability, similarity and discriminability to

be able to detect targets effectively at subpixel level. One general

approach studied in the past [1], [2] was based on spectral mix-

ture analysis [3]–[11]. In this paper, this problem is investigated

and two different approaches are proposed for subpixel spectral

detection of targets. One is a target abundance-constrained ap-

proach, referred to as NCLS method. It is a constrained least

squares spectral mixture analysis method, which implements a

nonnegativity constraint on the abundance fractions of targets

of interest. The second approach is different from the NCLS

method and can be derived from linear adaptive beamforming

in sensor array processing. It is a target signature-constrained

approach, called the CEM method, which was first proposed in

[12]. It constrains the desired target signature using a specific

gain while minimizing effects resulting from other unknown

signatures.

In LSMA, a linear mixture model is used. Suppose that

are target spectral signatures resident

in a multispectral/hyperspectral image pixel vector , and

are their associated abundance fractions within

. A linear mixture model of makes use of a mixing equation

to model the spectral signature of as a linear combination

of with appropriate abundance fractions

specified by . In general, two constraints must

be imposed on this model to yield an optimal solution. These

are the ASC, and the ANC, for all

. An LSMA-based FCLS method was studied in

[9], [13], [14], with the goal aiming at quantifying materials

present in a pixel vector . In this case, the abundance fractions

must be estimated accurately to reflect the

true abundance fractions of different materials, a task that

many unconstrained or partially constrained LSMA methods
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cannot accomplish. However, from a target detection’s point

of view, whether or not the estimated amount of the target

abundance is accurate may not be essential. As long as the es-

timated abundance fractions of desired target pixel vectors can

distinguish themselves from their surrounding pixel vectors,

the targets can be detected effectively even if the abundance

fractions of LSMA do not satisfy ASC or ANC. Such target

detectability was demonstrated by the unconstrained OSP

methods in [15], [16]. Accordingly, for target detection pur-

poses, an LSMA-based fully constrained least squares method

sometimes may not be as effective as partially constrained or

unconstrained LSMA-based methods. This is because a fully

constrained method requires both ASC and ANC, and the

corresponding abundance fraction estimates are confined to the

range of , which may limit its target detection capability.

Two LSMA-based partially constrained least squares

methods have been considered in the past: the SCLS [8], [13]

method and the NCLS method [17], [18]. The SCLS imposes

the ASC, while ignoring the ANC. On the contrary, the NCLS

implements the ANC on targets of interest while discarding the

ASC. As a result, both methods generally do not estimate target

abundance fractions accurately. Nevertheless, their estimated

abundance fractions can be used for target detection purposes.

Since SCLS-generated abundance fractions must be summed

to one, when an image scene contains many target signatures,

which is the case for hyperspectral imagery, the magnitudes

of the SCLS-detected target abundance fractions will be

spread out. As a result, they will be relatively small in order

to satisfy to the sum-to-one constraint. Therefore, the target

detectability is considerably reduced. The situation become

even worse if the spectra of targets are very similar. On the

other hand, the NCLS-generated abundance fractions do not

have this constraint. With this freedom, they can take whatever

values that are generated by NCLS. Despite the fact that

their estimated abundance fractions may not reflect accurate

abundance fractions, the target detectability of NCLS may

actually benefit from not satisfying the sum-to-one constraint.

As a consequence, the target detection performance of NCLS

is therefore enhanced. This results in better performance of

NCLS than that of SCLS.

Compared to NCLS, which constrains target signature abun-

dance fractions, CEM is a completely different approach, which

constrains the desired target signature rather than its abundance

fraction. It was previously developed in [12], [19], [20] for hy-

perspectral image classification and is not based on LSMA. It

designs an adaptive filter that minimizes the filter output energy

while constraining a desired target signature by a specific gain.

The idea of CEM was derived from the MVDR beamformer in

array processing [21], [22] and was first used in chemical remote

sensing [23]. It a special case of Frost’s linearly constrained

adaptive beamforming approach [24]. The advantage of CEM

over NCLS is that it does not require the complete knowledge of

target signatures as does NCLS, but only re-

quires the target signature to be detected, say a priori. Using

the desired target signature , one can design an adaptive filter

to pass with a specific gain while minimizing the radiance

contributed by undesired signatures , plus

other unknown signal sources. Consequently, minimizing the

filter output energy is equivalent to enhancing the desired target

signature . CEM has been shown to be very effective in target

detection for HYDICE data because it works very well for small

target detection. One disadvantage of CEM is that the perfor-

mance of CEM is completely determined by the signature of

as well as the true dimensionality of the data. Therefore, it is not

robust and is very sensitive to and noise. When the knowl-

edge of the target is not accurate or noise level is high, the

performance of CEM will be significantly degraded and it may

even detect wrong targets.

One common drawback of NCLS and CEM is the require-

ment of the prior knowledge of target signatures. For NCLS,

used in LSMA must be known a priori. For

CEM, knowledge of the desired signature and the intrinsic

dimensionality of the data must also be known a priori. Unfor-

tunately, finding such information in an unknown image scene

is generally difficult. This is particularly true for hyperspectral

imagery. For example, the HYDICE sensor has significantly im-

proved spectral resolution to 10 nm and spatial resolution from

1 to 4 m. With such fine spatial and spectral resolutions, the

HYDICE sensor can extract targets with size as small as several

meters for the purpose of target detection, discrimination, classi-

fication, and identification. On the other hand, many unknown

interfering signatures may also be measured by the HYDICE

sensor [16]. Apparently, the knowledge of such unwanted target

signatures cannot be obtained a priori. In order to resolve this

problem, a least squares error-based unsupervised target gener-

ation process is proposed to extend NCLS, OSP, and CEM to

their unsupervised counterparts (UNCLS, UOSP, and UCEM).

The remainder of this paper is organized as follows. Section II

briefly reviews the linear mixture model and unconstrained OSP

method. Section III proposes a target abundance-constrained

subpixel detection approach, NCLS. Section IV extends NCLS

to unsupervised versions where the knowledge of target signa-

tures is not required a priori. Section V describes a target signa-

ture-constrained subpixel detection approach, the CEM method.

Section VI conducts a series of computer simulations and hyper-

spectral imagery experiments to evaluate detection performance

of NCLS, CEM, and OSP methods. Finally, Section VII con-

cludes with some remarks.

II. PRELIMINARIES: LINEAR MIXTURE MODEL AND OSP

A. Linear Spectral Mixture Model

Linear spectral mixing is a widely used approach for remotely

sensed imagery to determine and quantify multicomponents.

Since every pixel is acquired by spectral channels at different

wavelengths, it can be represented by a column vector of which

each component is a pixel in a particular band. More precisely,

suppose that is the number of spectral bands. Let be an

column pixel vector in a multispectral or hyperspectral image

where boldface is used for vectors. In this case, each multi/hy-

perspectral pixel is viewed as a pixel vector with dimensions.

Assume that is an target spectral signature matrix de-

noted by , where is an column vector

represented by the spectral signature of the th target resident

in the pixel , and is the number of targets in the image scene.

Let be a abundance column vector
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associated with , where denotes the fraction of the th target

signature present in the pixel vector .

A classical approach to solving mixed pixel classification

problem is linear unmixing, which assumes that the spectral sig-

natures of the endmembers in the pixel vector are linearly

mixed. Therefore, the spectral signature of a pixel vector can

be represented by a linear regression model of

as follows:

(1)

where is noise or can be interpreted as a measurement error.

B. Orthogonal Subspace Projection (OSP)

Equation (1) is a general linear mixture model with no con-

straints imposed on the abundance vector .

Recently, an unconstrained linear unmixing method, the OSP

approach, was developed in [15]. It rewrites (1) as

(2)

where is the desired target spectral signature and

is the undesired target spectral

signature matrix made up of the remaining undesired

signatures in . Here, without loss of generality, we assume

that the last signature is the desired signature . The reason for

separating from is that it allows us to design an orthogonal

subspace projector to annihilate from an observed pixel prior

to classification. So based on (2), an OSP operator was derived

in [15] by

(3)

where

(4)

and is the pseudo-inverse of , and the

notation in indicates that the projector maps the ob-

served pixel into the orthogonal complement of , denoted

by .

III. TARGET ABUNDANCE-CONSTRAINED SUBPIXEL

DETECTION APPROACH: NONNEGATIVELY CONSTRAINED

LEAST SQUARES (NCLS) METHOD

The target signature matrix and the abundance vector in

(1) are assumed to be known a priori. In reality, is generally

not known and needs to be estimated. In order to estimate

, we use the least squares error as the criterion

for optimality and the optimal least squares estimate of , ,

for model (1) can be obtained by

(5)

As mentioned previously, the OSP classifier specified

by (3) does not necessarily satisfy the sum-to-one constraint

or the nonnegativity constraint, for all

. The NCLS imposes the nonnegativity constraint on

the abundance vector while using (5) to estimate . Since the

nonnegativity constraint is a set of inequalities, no analytic solu-

tion can be derived to arrive at a closed form. Furthermore, since

NCLS does not satisfy the sum-to-one constraint, it is not an op-

timal abundance estimator. So, why is it important to consider

NCLS? The interesting fact is that NCLS may not be as good as

an FCLS approach for endmember quantification developed in

[14], but as a target detector, an NCLS-based detector may be

more effective than an FCLS-based quantifier by not requiring

or forcing ASC, the sum of target signature abundance fractions

to one. This unconstrained disadvantage turns out to be an ad-

vantage in detection of targets for NCLS.

In general, an NCLS problem can be described by the fol-

lowing optimization problem

Minimize LSE subject to

(6)

where LSE is the least squares error used as the criterion for

optimality and represents the nonnegativity constraint

for all . Since is a set of inequalities, the

Lagrange multiplier method is not applicable to solving optimal

solutions. In order to mitigate this dilemma, we introduce an

unknown -dimensional positive constraint constant vector

with for to take care of the

nonnegativity constraint. Through , we can form a Lagrangian

as follows:

(7)

with and

(8)

which results in the following two iterative equations given by

(9)

and

(10)

Equations (9) and (10) can be used to solve the op-

timal solution and the Lagrange multiplier vector

.

The nonnegativity constraint optimization problem given by

(6) was previously explored by Lawson and Hanson in [17] and

was called the NNLS. Based on Lawson and Hanson’s NNLS,

two Fast NNLS algorithms referred to as FNNLS and FNNLSb

were further developed by Bro and Jong in [18] to generate

the desired optimal solutions. Their idea is to first decompose

the components of the estimate into two index sets called

active set and passive set. While the former consists of all in-

dices corresponding to negative (or zero) components in the es-

timate , the latter contains all indices corresponding to pos-

itive components in the estimate . NNLS and FNNLS start

off with an empty passive set and assume the active

set consisting all components of , i.e., .

They then adjust both sets and via iterations using (10). It
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has been shown in [17] that when an optimal solution has been

found, the Lagrange multiplier vector must satisfy the fol-

lowing Kuhn–Tucker conditions:

(11)

The final generated passive set identifies which components are

legitimate to be used in the abundance estimation . The de-

tails of implementing the NCLS algorithm are given below.

NCLS Algorithm

1) Initialization: Set the passive set and

active set . Set .

2) Compute using (5). Let .

3) At the th iteration. If all components in are non-

negative, the algorithm is terminated. Otherwise, continue.

4) Let .

5) Move all indices in that correspond to negative

components of to , and the resulting index

sets are denoted by and , respectively. Create a

new index set and set it equal to

6) Let denote the vector consisting of all components

in .

7) Form a steering matrix by deleting all rows and

columns in the matrix that are specified by

8) Calculate . If all components in

are negative, go to step 13. Otherwise, continue.

9) Calculate and move the index in

that corresponds to to .

10) Form another matrix by deleting every column of

specified by .

11) Set .

12) If any components of in are negative, then move

these components from to . Go to step 6.

13) Form another matrix by deleting every column of

specified by .

14) Set . Go to step 3.

In summary, at the th iteration, the NCLS algorithm begins

by calculating the unconstrained least squares solution . If

all components in are positive, the algorithm terminates.

Otherwise, all negative components are identified, and their cor-

responding indices are moved to the active set . In the mean-

time, a duplicate set of , referred to as , is introduced

for the purpose of keeping track of the current negative com-

ponents of during the th iteration. The steering matrix

is then formed and the Lagrange multiplier vector that

will be used to steer each negative component of back

to zero is calculated. From (11), all components of must

be negative. Therefore, in case there exists at least one positive

component, the index that corresponds to the maximum compo-

nent of is shuffled from to . Since the loop from

step 6 to step 12 may be repeated over and over again during

a single iteration, is used to check if all previously identi-

fied indices of maximum components of should be retained

in or moved back to . Once all the values of are

negative, is recalculated. It should be noted that the two

iterative equations, specified by (9) and (10), are carried out by

step 14 and step 8 respectively.

One comment on NCLS is noteworthy. The reason that people

overlook the potential application of NCLS in subpixel target

detection is because it requires the complete prior knowledge of

targets present in an image where NCLS is primarily used for

unmixing materials rather than detecting a particular target in a

linear mixture. Of course, in this case, NCLS cannot compete

with the FCLS in [14].

IV. UNSUPERVISED NCLS

NCLS requires the complete knowledge of target signatures.

When no prior information is available, it cannot be applied. In

this section, the NCLS is extended to an unsupervised version

where the LSE is used to minimize the goodness of fit between

the linear mixture model and data measurements. The idea can

be briefly described as follows.

Initially, we can select any arbitrary pixel vector as an initial

desired target signature denoted by . However, a good choice

may be the pixel vector, with a maximum length that corre-

sponds to the brightest pixel in the image scene. The NCLS al-

gorithm is then used to estimate the abundance fraction of ,

denoted by for each pixel vector in the scene, and the

LSE is further calculated between the image pixel vector and

its estimate , i.e.

LSE (12)

Here, is included in the abundance fraction estimate to

emphasize that the estimated abundance fraction is a function

of the pixel vector and varies with . The pixel that yields

the maximum LSE is then selected as the next target signature,

denoted by , namely

LSE

LSE

(13)

Because the LSE between and is the maximum, it

can be expected that is most dissimilar to . In order to find

a second target signature, the UNCLS algorithm estimates the

abundance fractions of and contained in each pixel vector

in the image scene, denoted by and . Then the

maximum LSE between all image pixel vectors and the least

squares linear mixture are estimated by

the NCLS algorithm. Once again, the pixel vector that yields

the maximum LSE is selected as a second target signature de-

noted by . The same procedure of using the NCLS algorithm

with is repeated until the resulting LSE is small

enough and less than a prescribed error threshold. It should be

noted that if there is partial knowledge available a priori, it can

be incorporated in the above process. For example, if we know

nothing but the desired target signature , the initial target pixel

vector can be replaced by this . If there is more than one
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known target in the image scene, we can select these targets as

an initial target set and then follow the same procedure described

above until the LSE meets a stopping criterion. The procedure

outlined as above is called the UNCLS algorithm, which can be

summarized as follows.

Unsupervised NCLS (UNCLS) Algorithm

1) Initial condition: Select to be a prescribed error threshold

and let where is run over all image

pixel vectors. Let .

2) Let , and apply the NCLS algorithm with

the signature matrix to estimate

the abundance fractions of , , ,

.

3) Find the LSE defined by

LSE

(14)

and check the error if LSE for all . If it is, the

algorithm stops, otherwise continue.

4) Find LSE . Go to step 2.

One comment on is noteworthy. The superscript

is a counter to indicate the number of iterations. It starts with

. The subscript starting with is the index of the th

target signature , generated by the UNCLS algorithm. The ini-

tial target is represented by with . For example,

is the abundance estimate of in the first iteration, given by

(13). It should also be noted that, as will be demonstrated in the

experiments in Section VI, step 4 implemented in the UNCLS

algorithm tries to locate pure pixel vectors first. If there is no

such pixel vector, it then looks for a mixed pixel vector with

the largest possible abundance fraction of any substance in the

pixel vector. This implies that a mixed pixel vector with uni-

form mixture is less likely to be selected by the UNCLS as a

target signature. Furthermore, using an analogous approach to

UNCLS, OSP and CEM can be also implemented in an unsu-

pervised fashion, referred to as UOSP and UCEM throughout

this paper.

V. TARGET SIGNATURE-CONSTRAINED SUBPIXEL DETECTION

APPROACH: CEM

In order to implement the NCLS algorithm, knowledge of

all target signatures of interest is required. Such knowledge

is generally difficult to obtain in practice. So, a least squares

error-based unsupervised method, as described in Section III,

was proposed for this purpose. As an alternative, the CEM

approach [12], [19], [20] recently proposed in [12] took another

approach. Instead of constraining target signature abundance

fractions, CEM constrains a desired target signature by using

a specific gain. Since CEM does not impose a constraint on

the abundance of the target signature, it cannot be used for

quantification purposes as the FCLS in [14]. However, as a

target detector, CEM has shown success in hyperspectral image

classification [19], [20].

Basically, CEM uses an FIR filter to constrain the desired

target signature by a specific gain while minimizing the filter

output power. The idea of CEM arises from the MVDR in array

processing [21], [22], with the desired target signature inter-

preted as the direction of arrival from a desired signal. It can

be derived as follows.

Assume that we are given a finite set of observations

where for is

a sample pixel vector. Suppose that the desired target signature

is also known a priori. The objective of CEM is to design

an FIR linear filter with filter coefficients

denoted by an -dimensional vector

that minimizes the filter output power subject to the following

constraint

(15)

It is worth noting that the constraint constant 1 in (15) can be

replaced by any scalar [21], [22].

Let denote the output of the designed FIR filter resulting

from the input . Then can be written as

(16)

So the average output power produced by the observation set

and the FIR filter with coefficient vector

specified by (16) is given by

(17)

where turns out to be the

sample autocorrelation matrix of . Minimizing (17) with the

filter response constraint yields

subject to (18)

The solution to (18) was shown in [12] and called the CEM filter

with the weight vector given by

(19)

It should be noted that the in (19) is not necessarily of

full rank. So calculating the in (19) can be a problem. It

has been noted that CEM is very sensitive to the knowledge used

for the desired target as well as the noise. While the problem of

CEM’s sensitivity to the target signature knowledge has been

addressed in [25], the issue of CEM’s noise sensitivity has not
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been studied in depth in open literature. As will also be shown

in the experiments, the noise sensitivity is closely related to

the rank used to calculate the weight vector in (19). This rank

determines the number of eigenvectors to be used to calculate

and is also closely related to the intrinsic dimension-

ality of a hyperspectral image, which is usually less than the

data dimensionality . It is known that finding the intrinsic di-

mensionality of data is very challenging and has been investi-

gated previously in [26], [27]. Nevertheless, if the number of

eigenvectors is known a priori ( , for example), we can use

singular value decomposition so that can be reduced to

, where is an eigenmatrix,

is the -dimensional vector corresponding to the th eigen-

value , and is a diagonal ma-

trix with eigenvalues as diagonal elements. Using this eigen-de-

composition, the inverse of can be found by

[12].

VI. COMPUTER SIMULATIONS AND EXPERIMENTS

In this section, a series of computer simulations and real hy-

perspectral data experiments are conducted to evaluate the com-

parative performance among the three subpixel target detection

techniques, unconstrained OSP, target abundance-constrained

NCLS, and target signature-constrained CEM methods along

with their unsupervised counterparts. In particular, a compre-

hensive analysis on the issues of noise sensitivity and target

knowledge is studied by simulating various scenarios to see the

effects of different numbers of eigenvectors used in computa-

tion of on the performance of CEM, as well as the im-

pacts of different levels of prior target signature knowledge used

in NCLS, OSP, and CEM

A. Computer Simulations

Three examples are designed to demonstrate two important

issues of subpixel detection: noise sensitivity and sensitivity to

prior target knowledge.

1) Noise Sensitivity to Number of Eigenvectors Used in Com-

putation of : Determining the number of eigenvectors

is always challenging because it is closely related to the unpre-

dictable noise level incurred in the data. However, except for

Gaussian noise, it is generally difficult to simulate non-Gaussian

random noise. So in the following experiments, instead of di-

rectly considering such random noise, we deal with the issue of

the effects caused by since the selection of is determined by

the noise sensitivity.

Example 1: Target Signatures with Relatively Large

Abundance Fractions: A laboratory data set of an AVIRIS

scene considered in [15] was used to evaluate the performance

of NCLS and CEM against OSP. The data set contained five

field reflectance spectra, dry grass, red soil, creosote leaves,

blackbrush, and sagebrush shown in Fig. 1(a) with spectral

range from 0.4–2.5 m. There were 158 bands after water

bands, and bands with low SNR were removed. In this case,

the signature matrix was consisting

of these five spectral signatures with abundance fractions given

by . The simulation consisted of 400

mixed pixel vectors and was divided into four groups, each

of which contained a hundred pixel vectors with the same

mixture. The first group consisted of the first hundred pixel

vectors with the mixture made up of 50% sagebrush and 50%

dry grass. The second group consisted of the second hundred

pixel vectors with the mixture made up of 50% sagebrush and

50% red soil. The third group consisted of the third hundred

pixel vectors with the mixture made up of 50% sagebrush

and 50% creosote leaves. The fourth group consisted of the

fourth hundred pixel vectors with the mixture made up of 50%

sagebrush and 50% blackbrush. More specifically, each of the

400 simulated pixel vectors is a two-component mixture with

a 50/50 split, and all of the 400 pixel vectors share the same

amount of sagebrush (that is, 50% sagebrush). White Gaussian

noise was added to each pixel vector to achieve a 30 : 1 SNR,

which was defined in [15] as 50% reflectance divided by the

standard deviation of the noise. Fig. 1(b)–(f) shows the results

of NCLS, CEM, and OSP in detection of dry grass, red soil,

creosote leaves, blackbrush, and sagebrush, respectively. From

Fig. 1, both OSP and NCLS were able to detect all of the five

signatures. However, if we examine the amounts of abundance

detected by NCLS and OSP, those detected by OSP did not

reflect true abundance fractions, but those produced by NCLS

did. This is because OSP is unconstrained and NCLS is at least

partially constrained. Surprisingly, CEM, which was shown

to be effective in [12], [19], and [20], performed poorly. As

noted in the concluding remark of Section IV, the number of

eigenvectors (denoted by ) used to calculate in (19) is

crucial. Since there are five signatures in the simulated data,

was chosen to be 5 to produce the results in Fig. 1. In order

to see if was appropriate, 3, 10, 60, and 158 were also

tested for to detect blackbrush, and the results are shown in

Fig. 2. As we can see, at , the mixture of creosote leaves

and sagebrush resulted in a large value above 1 instead of the

mixture of blackbrush and sagebrush. The value yielded

the best result, and as increased past 5, the results became

worse. In the case of this experiment, was the optimal

number of eigenvectors to be used in computation of .

Example 2: Target Signatures with Small Amount of Abun-

dance Fractions: The experiment conducted in this example

provides another extreme for CEM performance. The data to be

used are three field reflectance spectra, dry grass, red soil, and

creosote leaves shown in Fig. 1(a). Again, 400 mixed pixel vec-

tors were also generated, but simulated in a different way from

that in Example 1. We started the first pixel vector with 100%

red soil and 0% dry grass, then began to increase 0.25% dry

grass and decrease 0.25% red soil every pixel vector until the

400th pixel vector, which contained 100% dry grass. We then

added creosote leaves to pixel vector numbers 198–202 at abun-

dance fractions 10%, while reducing the abundance of red soil

and dry grass accordingly. For example, after addition of cre-

osote leaves, the resulting pixel vector 200 contained 10% cre-

osote leaves, 45% red soil, and 45% dry grass. White Gaussian

noise was also added to each pixel vector to achieve a 30 : 1

SNR. Fig. 3 shows the results of OSP, CEM and NCLS in de-

tection of creosote leaves. Unlike Example 1, this time all three

methods NCLS, CEM, and OSP produced comparable detec-

tion results. However, both NCLS and CEM performed better

than OSP in the sense of detecting true abundance fractions of
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Fig. 1. (a) Refectances of five signatures, dry grass, red soil, creosote leaves, blackbrush, and sagebrush. (b)–(f) Results of OSP, CEM, and NCLS in detection
of dry grass, red soil, creosote leaves, blackbrush, and sagebrush.

creosote leaves, whereas OSP did not. Compared to ,

used to produce Fig. 1(d), the number of eigenvectors used

to calculate in Fig. 3 was set to the full dimensionality

of pixel vector 158. Fig. 4 shows the results of CEM using the

number of eigenvectors . Interestingly, when

, CEM picked up a wrong target signature: dry grass which

was supposed to be creosote leaves [see Fig. 4(a)]. For CEM,

yielded the best result, shown in Fig. 4(d), where the es-

timated abundance of creosote leaves was nearly accurate. But

even in this case, the result was still not as good as that produced

by NCLS in Fig. 3(c), because of the performance in detecting

abundance fractions of other pixels.

While Example 1 shows one extreme case for CEM perfor-

mance, Example 2 provides another extreme case for CEM. Both
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Fig. 2. Results of CEM using the number of eigenvectors q = 3, 10, 60, and 158 with blackbrush as the desired signature.

Fig. 3. Results of OSP, CEM, and NCLS in detection of creosote leaves.

examples further demonstrate the crucial role the number of

eigenvectors plays in CEM performance. If each eigenvector

is interpreted as a piece of information, the larger the eigenvalue

is, the more significant information it represents. So these two

examples suggest that when the desired target is small or occurs

with low probability, the number of eigenvectors to be used for

is generally very high because targets with small abundance

fractions may correspond to small eigenvalues and can be then

viewed as insignificant targets. Under this circumstance, they

may not be able to be detected by using only a few eigenvectors.

Therefore, it requires a large set of eigenvectors to find these

targets. This explains why CEM can be used to detect small

targets so effectively by letting be equal to the full number of

full bands. Conversely, if the desired targets are relatively large
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Fig. 4. Results of CEM using the number of eigenvectors q = 2; 3; 10; 60 in the detection of creosote leaves.

Fig. 5. Results of NCLS, CEM, and OSP in detection of creosote leaves with blackbrush and sagebrush acted as interferers.

and widespread, like the one studied in Example 1, a smaller

may be more appropriate to make CEM effective because the

information provided by these targets can be well-represented

by a few largest eigenvectors. In this case, a small set of large

eigenvectors may be sufficient to detect these targets.

Example 3: Target Signatures Used as Interferers: The

same simulated data used in Example 2 were also used in this

example, except that two more additional signatures, blackbrush

and sagebrush, were assumed to be present in the data even

though they were actually not present. In this case, the signature

matrix contained the five signatures:

dry grass, red soil, creosote leaves, blackbrush, and sagebrush

in Fig. 1. With this scenario, the blackbrush and sagebrush acted

as interferers rather than target signatures. Fig. 5 shows the re-
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Fig. 6. (a)–(c) Comparative results of UNCLS, CEM, and OSP, with targets
generated by UNCLS and the inital target TTT , given by the desired creosote
leaves signature.

sults of NCLS, CEM and OSP in detection of creosote leaves.

Unlike Fig. 3, the performances of three methods are quite dif-

ferent. OSP produced the worst performance because the dimen-

sionality of orthogonal subspace used for detection of creosote

leaves had been reduced by two due to an addition of the black-

Fig. 7. (a)–(c) Comparative results of UNCLS, UCEM, and UOSP with no
prior target knowledge.

brush and sagebrush signatures. As a result, its detection capa-

bility was considerably deteriorated by the undesired signature

annihilator , since the spectra of the interferers blackbrush

and sagebrush are very similar to that of creosote leaves. Sim-

ilarly, NCLS also suffered from the same problem, which re-

sulted in slight degradation in detection of creosote leaves at
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Fig. 8. AVIRIS image scene.

pixel 200, but it actually did better than it did for Fig. 3(c) at

other pixels in terms of nulling the abundance of creosote leaves.

For CEM, the result was identical to that in Fig. 3, because the

addition of blackbrush and sagebrush with zero abundance did

not affect the output energy of the CEM filter. This example also

demonstrates a major difference between NCLS and CEM.

2) Sensitivity to Target Knowledge: In Section VI-A, the

complete knowledge of target signatures described was as-

sumed in Examples 1–3 to demonstrate how crucial the number

of eigenvectors used in computation of are. In this

section, the sensitivity issue of the precise knowledge of target

signatures used in NCLS, CEM, and OSP will be investigated.
Example 4: Partial Knowledge of Target Signature: Once

again, the same simulated data used in Example 2 were con-
sidered to demonstrate how partial target knowledge is utilized
in UNCLS. Here, the only knowledge available to us was that
there was a signature of creosote leaves present in the data.
Following the UNCLS algorithm, the creosote leaves signature
was set to the initial target signature . The NCLS algorithm
was used to estimate the abundance fraction of , denoted by

, in each of 400 simulated pixel vectors, where the is

dropped from the notation of to simplify notations, i.e.,

. Using , we calculated the LSE between

all simulated pixel vectors and . Since the resulting max-
imum LSE was not below a prescribed threshold, the UNCLS
was continued to find a pixel vector that yielded the maximum
LSE. In this example, the seventh pixel vector with 98.5% red
soil was selected as the first target, denoted by . The UNCLS
algorithm was then used to estimate the abundance fractions

of and , denoted by and . Using the estimated
abundance fractions, we calculated LSE of all simulated pixels

between the least squares linear mixture . Be-
cause the resulting maximum LSE was still not below the pre-
scribed threshold, the UNCLS algorithm was continued and the
400th pixel with 100% dry grass was selected as a second target

. After finding , the resulting maximum LSE was below
the prescribed threshold, and the UNCLS algorithm was termi-
nated. At this point, we had generated two more target signa-
tures, red soil and dry grass, which were not known
a priori. Using these three target signatures , , and as the
signature matrix for NCLS algorithm and OSP, the results are
shown in Fig. 6(a)–(c), where creosote leaves, red soil, and dry
grass were used as the desired signatures and detected, respec-
tively. As we can see from Fig. 6, CEM performed very well by
extracting all the three target signatures but did not detect correct
amounts of target signatures. In addition, the fractions of abun-

Fig. 9. Results of NCLS, OSP, and CEM, using q = 158, where figures
labeled by (a), (b), (c) (d), and (e) are detection results of cinders, playa, rhyolite,
vegetation, and shade, respectively.

dance detected by CEM for these three desired signatures were
very different. Except for creosote leaves, the CEM-detected
abundance fractions for red soil and dry grass were negative,
where their accurate amounts were supposed to be 45%. This
implies that CEM can detect anomalies even though it failed to
detect the desired target signatures such as red soil and dry grass.
Compared to CEM, UOSP and UNCLS detected more accurate
abundance fractions for these three desired signatures. In par-
ticular, UNCLS produced almost correct amounts of abundance
for all the three signatures. This example demonstrates two in-
teresting facts. From a target detection’s point of view, CEM
performed better than OSP and UNCLS in terms of weak or
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Fig. 10. Comparative results of CEM for cinders, playa, rhyolite, vegetation, and shade using: (a) q = 5, (b) q = 10, (c) q = 20, and (d) q = 40, and q = 80.

small targets even though it may fail to detect right targets. On
the other hand, from an abundance detection’s point of view,
UNCLS performed substantially better than UOSP and CEM. It
is not only capable of detecting right target signatures but also
estimating correct amounts of target abundance. UOSP seems
right in between in either case.

Example 5: No Target Knowledge Available A Priori: The

only difference between this example and Example 4 was that

no initial target signature was given a priori. Target must

be generated from the data set. In this case, we selected the pixel

vector with maximum length, which turned out to be the 400th

pixel vector with 100% dry grass. Using this pixel vector to

initialize the UNCLS algorithm, and following the same pro-

cedure in Example 4, we found the fourth pixel vector to be

with 99.25%, and the 200th pixel vector

creosote leaves with 10% and the UNCLS was terminated. The
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Fig. 11. Results of UNCLS for cinders, playa, rhyolite, vegetation, and shade with partial target knowledge, where for each image only the target of interest was
known a priori.

Fig. 12. Results of UNCLS with no target knowledge.

Fig. 13. Results of UOSP using targets generated by UNCLS.

procedure used to generate these three signatures was also used

to extend CEM and OSP to UCEM and UOSP. It should be noted

that targets generated by UNCLS in this example were different

from those generated in Example 4. Fig. 7(a)–(c) show the de-

tection results produced by UNCLS, UCEM, and UOSP, respec-

tively. Interestingly, the detection result of red soil in Fig. 7(b)

produced by UCEM looked exactly upside down compared to

that in Fig. 6(b), produced by UCEM with slightly different

magnitudes. For detection of creosote leaves, the results pro-

duced by UCEM in Figs. 6(a) and 7(c) looked similar, but the de-

tected abundance fractions were different. For detection of dry

grass, UCEM produced nearly the same results in both cases.

Like Example 4, UCEM can be only used for target detection

purpose. Comparing the results in Fig. 7 generated by UOSP

and UNCLS against those in Fig. 6, UNCLS, and UOSP did

Fig. 14. Results of UCEM using targets generated by UNCLS with q = 158.

not perform as well as they did in Fig. 6 in terms of estimating

abundance fractions due to the lack of prior information about

target signatures. Under this circumstance, UOSP and UNCLS

behaved more like a target detector rather than a target abun-

dance estimator, as shown in Fig. 6.

B. Hyperspectral Images

The hyperspectral data used in the following experiments are

AVIRIS data, which were the same data in [15]. It is a sub-

scene of 200 200 pixels extracted from the upper left corner

of the Lunar Crater Volcanic Field, Northern Nye County, NV,

shown in Fig. 8, where five target signatures of interest are cin-

ders, rhyolite, playa (dry lakebed), vegetation, and shade. Fig. 9

shows the results of NCLS, OSP, and CEM using the number

of eigenvectors , where figures labeled by (a), (b), (c),

and (d) show cinders, playa, rhyolite, and vegetation as targets

respectively, and figures labeled by (e) are results of the shade.

From these images, we see that NCLS performed the best in all

cases. In order to see how the number of eigenvectors used

in CEM affects its performance, five more different numbers

were also used in CEM implementation,

and the results are shown in Fig. 10. As we can see, CEM per-

formed well in detection of cinders, rhyolite, and shade when

the value of was small. On the contrary, CEM did a better job

in the detection of vegetation if a large value of was used. This

phenomenon coincides with the conclusion made in Example 2

of Section VI-A.

In the above experiment, we assumed that the complete

knowledge of all five target signatures was known a priori.

In the following experiment, we assume that partial target

knowledge is available. In this case, only one of five signatures
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Fig. 15. Comparative results of UCEM for cinders, playa, rhyolite, vegetation, and shade, using (a) q = 5, (b) q = 10, (c) q = 20, and (d) q = 40, and q = 80.

is known a priori. UNCLS is used for target detection. The

results are shown in Fig. 11 and are comparable to those in

Fig. 9. Finally, we conclude the experiment by assuming that

no prior target knowledge is given. In this situation, UNCLS

generated six targets from the scene in Fig. 8, and they were

detected and classified in Fig. 12. The results are also very sim-

ilar to those in Figs. 9 and 11, where playa, cinders,

anomalous target, vegetation, shade, and

rhyolite. Interestingly, the third generated target was

an edge pixel of the dry lakebed. This pixel vector can be

thought of as an anomalous target and was not picked up in

previous experiments. This experiment further demonstrates

the potential usefulness of UNCLS, which can be used for

detection of anomalies, a task that supervised NCLS and
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CEM cannot achieve. Figs. 13 and 14 were also generated by

UOSP and UCEM with 158 using the targets generated

by UNCLS. As we can see from Fig. 14, without precise target

signature knowledge, UCEM performed very poorly except

at detecting vegetation. Fig. 15 shows the results of UCEM

using , as was done in Fig. 10, produced

by CEM. Obviously, UCEM performed much worse than its

counterparts produced by CEM in Fig. 10. This example shows

that the success of CEM was completely determined by the

knowledge of the desired target signature and the number of

eigenvectors used in CEM.

VII. CONCLUSION

In this paper, a target abundance-constrained subpixel target

detection approach, NCLS, is introduced. It is a least squares

method based on a nonnegativity abundance-constrained linear

spectral mixture model. Since there is no closed form that can

be derived for optimal solutions, a fast, efficient numerical al-

gorithm is developed to generate a desired optimal subpixel de-

tector. The NCLS-based detector is then further extended to an

unsupervised version where no prior information is required.

Despite the success of CEM in hyperspectral image classifica-

tion, the strengths and weaknesses of CEM have not been inves-

tigated in depth previously in the literature. This paper presents

a comprehensive study of CEM and also conducts a compar-

ative analysis among the target abundance-constrained NCLS,

the target signature-constrained CEM, and the unconstrained

OSP. As shown in the experiments, NCLS generally performs

subpixel detection significantly better than the unconstrained

OSP. Both NCLS and CEM have been shown to have their ad-

vantages and disadvantages (see Appendix). If there are small

targets in an image scene, CEM generally performs better than

NCLS and OSP. This may explain why CEM has achieved much

success in HYDICE data analysis due to their significantly im-

proved spatial resolution. On the other hand, NCLS performs

much better when no precise target knowledge is available or

when targets are relatively large or ubiquitous in the scene, such

as background signatures. Since CEM uses the sample corre-

lation matrix to calculate the optimal weight vector in (17), it

is actually a spatial filter and can be viewed as a spatial anal-

ysis technique. This is the reason the rank of the sample corre-

lation matrix plays a significant role in performance. In contrast

to CEM, NCLS does not deal with spatial correlation but only

spectral correlation among target signatures. Therefore, NCLS

is a spectral analysis technique. From this point of view, both

techniques are completely different. Nevertheless, NCLS seems

to be more robust and less sensitive to noise and target knowl-

edge than CEM.

As a concluding remark, the NCLS algorithm has been shown

to be converge in all the experiments conducted in this paper.

However, it should be noted that on some occasions, the NCLS

algorithm could oscillate between two passive sets since it steers

back to a zero passive set, which usually contains more than one

negative component during each iteration. Should it occur, the

NCLS algorithm would adjust only one component at a time

during each iteration. More details about the analysis of the

NCLS algorithm can be found in [28].

APPENDIX

In this appendix, we list possible advantages and disadvan-

tages of three methods studied in this paper: OSP, CEM, and

NCLS. It is by no means a comprehensive list. All advantages

and disadvantages described below are based on experiments

conducted in our lab and reflect only our lab’s opinions.

OSP

• Advantages

1) It is simple, efficient, and effective when target sig-

natures are distinct.

2) It is only based on second-order statistics and does

not make Gaussian noise assumption.

• Disadvantages

1) It is unconstrained and does not yield optimal solu-

tions.

2) It requires the knowledge of target signatures and a

linear spectral mixture model.

3) It can only be used for target detection and cannot

detect similar targets effectively.

4) It cannot be used for material quantification.

CEM

• Advantages

1) It improves unconstrained linear unmixing methods

and can be implemented in real time processing.

2) No a priori knowledge except the desired target sig-

nature is required.

3) No linear mixture model is assumed.

4) It is very efficient and can detect small targets very

effectively.

• Disadvantages

1) It is very sensitive to noise and the desired target

signature knowledge.

2) It can only detect one target at a time and cannot

detect similar targets effectively.

3) It requires the rank of the sample correlation matrix

to achieve the best results and separate images to

classify multiple targets.

4) It cannot be used for material quantification.

NCLS

• Advantages

1) It improves unconstrained linear unmixing methods

and can be implemented in an unsupervised manner.

2) It can detect similar targets as well as multiple tar-

gets.

3) It is not as sensitive as CEM to target signature

knowledge.

4) It can be extended to an unsupervised version,

UNCLS.

• Disadvantages

1) It requires a linear spectral mixture model.

2) It is not as effective as CEM if targets are small and

the target knowledge is accurate.

3) It cannot be used for material quantification.
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