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Constrained Subspace Method for the Identification

of Structured State-Space Models (COSMOS)
Chengpu Yu, Lennart Ljung, Adrian Wills, and Michel Verhaegen

Abstract—In this paper, a unified identification framework
called constrained subspace method for structured state-space
models (COSMOS) is presented, where the structure is defined
by a user specified linear or polynomial parametrization. The
new approach operates directly from the input and output
data, which differs from the traditional two-step method that
first obtains a state-space realization followed by the system-
parameter estimation. The new identification framework relies
on a subspace inspired linear regression problem which may
not yield a consistent estimate in the presence of process noise.
To alleviate this problem, the linear regression formulation is
imposed by structured and low-rank constraints in terms of a
finite set of system Markov parameters and the user specified
model parameters. The non-convex nature of the constrained
optimization problem is dealt with by transforming the problem
into a difference-of-convex optimization problem, which is then
handled by the sequential convex programming strategy. Numer-
ical simulation examples show that the proposed identification
method is more robust than the classical prediction-error method
(PEM) initialized by random initial values in converging to local
minima, but at the cost of heavier computational burden.

Index Terms—Subspace identification, Markov-parameter es-
timation, Hankel matrix factorization

I. INTRODUCTION

Structured state-space (or gray-box) models are popular for

describing practical physical models in terms of system pa-

rameters having physical interpretation or in terms of network

structures [1]–[3]. The identification of structured state-space

models using observed input and output data is a fundamental

identification problem which has been intensively investigated

in the literature [4]–[6].

In the literature, there are two classes of methods for the

identification of structured state-space models. The first class

is to identify the parameterized state-space model directly

from observed input and output data using the traditional

prediction-error method (PEM) [1]. The PEM has the best

possible asymptotic accuracy; however, when the associated

optimization problem has many minima, the PEM is sensitive

to the selection of the initial parameter estimate. Different
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from the black-box model, the gray-box usually starts from

some physical insight. However when that insight is only

restricted to a particular model parametrization with no or

limited a priori initial estimates of these parameters, the

chances for ending up into local minima increases rapidly.

The second class is a two-step estimation framework, where

the system matrices of a state-space model are identified (up

to a similarity transformation) using the input and output

data through the subspace identification method, followed by

the estimation of system parameters from estimated system

matrices [7]. Since the system-parameter estimation problem

in the second step does not involve any input and output

data, the associated optimization problem has a smaller scale

than that of the PEM. Recently, many identification methods

[8]–[10] have been developed under this two-step estimation

framework.

For the system-parameter estimation in the two-step esti-

mation framework, there are generally two kinds of estimation

methods. One is to simultaneously estimate the system param-

eters and the similarity transformation provided the estimated

system matrices (up to a similarity transformation) [8], [11].

This turns out to be a bilinear estimation problem with a

nonsingularity constraint on the similarity transformation, for

which the nonsingularity constraint is difficult to handle in

practice [8]. To avoid estimating the similarity transformation,

the system parameters embedded in a structured state-space

model can be estimated by the model-matching principle

[9], [10], where the difference-of-convex programming (DCP)

scheme [10] turns out to be an effective way to handle the

non-convex parameter-estimation problem. It is noted that

non-convex optimization problems originated from the system

identification subject are usually difficult to tackle, and many

convexification schemes have been provided for approximating

the global solution, in response to the recent special issue of

the IEEE Transactions on Automatic Control on ”relaxation

methods in identification and estimation problem” [12].

Analogous to the PEM, this paper investigates the iden-

tification of structured (parameterized) state-space models

directly from the input and output data. A unified identification

framework is developed for structured state-space models that

inherits the features of both the PEM and the subspace method,

which is called constrained subspace method for structured

state-space models (COSMOS). The COSMOS is developed

based on the fact that the output prediction error obtained by a

k-step-ahead predictor can be represented as the convolution of

a sequence of finite-length Markov parameters and the system

input, which enables the accurate identification of finite-length

Markov parameters directly from the input and output data.
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This idea enables to incorporate the model-matching technique

of our previous work [10] to estimate the parameters embedded

in structured system matrices and the Markov parameters

directly from the input and output data. The novelties of the

proposed COSMOS framework against the relevant works are

summarized below.

First, the least-squares estimation framework [13] is adopted

for estimating the Markov parameters directly from the input

and output data, and sufficient conditions for the consistent

estimation have been provided. However, when the system

input is not a white noise or there exists the process noise,

the obtained least-squares solution of the finite-length Markov

parameters may not be consistent (see Remark 2). To alleviate

this problem, in addition to the lower-triangular block Toeplitz

structure of the convolution matrix constructed by Markov

parameters adopted in [14], [15], the low-rank property of

the Hankel matrix constructed by Markov parameters is also

exploited for the Markov-parameter estimation, which result-

s in a rank-constrained least-squares optimization problem.

Analogous to the Ho-Kalman realization of a state-space

model, the low-rank factorization of the block Hankel matrix

involved in the rank-constrained optimization problem pro-

vides a foundation for the identification of structured system

matrices.

Second, different from DCP-based identification method

[10], [16] that is developed under the two-step estimation

framework, the COSMOS provides a novel identification

framework that estimates the system parameters directly from

the observed input and output data. A rank constrained opti-

mization solution is provided for the identification of parame-

terized state-space models directly from the input and output

data [17], which requires to estimate the system parameters as

well as the state sequence simultaneously, resulting in a large

number of variables to be determined when the data length

is very long. In contrast, the system-parameter estimation in

the COSMOS is inherently based on the factorization of a

Hankel matrix constructed from a finite number of Markov

parameters, so that the number of variables to be estimated in

the proposed method is independent of the data length, leading

to a more tractable identification framework. In addition,

different from [10], [16], [17], the COSMOS framework in this

paper is applicable for handling polynomially parameterized

state-space models such as the system matrices in Kronecker-

product forms.

The paper is organized as follows. Section II formulates

the identification problem of linearly or polynomially pa-

rameterized state-space models. Section III presents a rank-

constrained optimization method for the estimation of finite-

length Markov parameters and analyzes the estimation consis-

tency. Section IV reviews the estimation of structured matrices

using the structured and low-rank matrix factorization method,

and its effectiveness is illustrated through a low-rank matrix

completion example. Section V provides three simulation

examples to show the effectiveness of the proposed method

for the identification of finite-length Markov parameters and

system parameters, and conclusions are made in Section VI.

For the sake of brevity, the following notations are defined.

Vectors and matrices are respectively represented by the lower-

case letter a and the upper-case letter A. The trace, transpose

and Moore-Penrose pseudo inverse of the matrix A are denoted

as tr[A], AT and A†, respectively. The Frobenius norm of

matrix A is represented as ∥A∥F . The singular values of matrix

A are denoted by σi(A), and the nuclear norm of matrix A ∈
R

n×n is defined as ∥A∥∗ =
∑n

i=1
σi(A). The rank operator

for the matrix A is denoted as rank(A). The identity matrix

of appropriate size is denoted as I . For the time sequence

x(k), a collection of samples from the time k to k + l is

denoted as x(k : k + l) = [xT (k) xT (k + 1) · · ·xT (k + l)]T .

The expectation of the stochastic vector x(k) is denoted as

E[x(k)], and the operator Ē{x(k)} is defined as Ē[x(k)] =
limN→∞

1

N

∑N
k=1

E[x(k)] with an implied assumption that

the limit exists with probability one. The block Hankel matrix

of the sequence x(k) (or a sequence of matrices) is defined as

Hs,h[x(k : k + h+ s)] =








x(k) x(k + 1) · · · x(k + h)

x(k + 1) x(k + 2)
. . . x(k + h+ 1)

...
...

. . .
...

x(k + s) x(k + s+ 1) · · · x(k + s+ h)









.

Given a positive integer s, the extended observability matrix

of (A,C) is defined as

Os[A,C] =








C

CA
...

CAs







,

and the extended controllability matrix of (A,B) is defined as

Cs[A,B] =
[
B AB · · · AsB

]
.

The lower-triangular convolution matrix for the state-space

model (A,B,C,D) is defined as

Ts[CA
s−1

B, · · · , CB,D] =













D 0 · · · 0

CB D
.. .

...
...

. . .
. . . 0

CAs−1B · · · CB D













.

II. PROBLEM FORMULATION

The identification of discrete-time state-space models with

structured system matrices is considered. Let the discrete-time

state-space model be given as

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) +Du(k) + v(k)
(1)

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p are respectively the

system state, input and output; w(k) ∈ R
n and v(k) ∈ R

p are

respectively the process and measurement noises.

When the system matrices (A,B,C,D) have no specific

structures, the identification problem becomes a black-box

model identification problem for which the system matrices

(A,B,C,D) can only be identified up to a similarity trans-

formation using the subspace identification method [2], [18].

However, when the system matrices have structural constraints,

the standard subspace method cannot handle the identification
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problem. As a matter of fact, the structured state-space system

identification problem is inherently a challenging non-convex

optimization problem [7], [8], [10].

The structural constraints of the system matrices usually

originate from the physical mechanisms of practical systems

or the topologies of networked systems. Denote by S the

parameterized matrix set that can be obtained from prior

knowledge of the gray-box model to be identified. It follows

that the true system matrices (A∗, B∗, C∗, D∗) belong to this

set:

(A∗, B∗, C∗, D∗) ∈ S. (2)

Remark 1. An example of the set S is the affinely parame-

terized structure considered in [10], [17]:

S =

{

A(θ), B(θ), C(θ), D(θ) : A(θ) = A0 +
l∑

i=1

Aiθi,

B(θ) = B0 +
l∑

i=1

Biθi, C(θ) = C0 +
l∑

i=1

Ciθi,

D(θ) = D0 +
l∑

i=1

Diθi, θ ∈ R
l

}

.

(3)

where {Ai, Bi, Ci, Di}
l
i=1 are known matrix bases. The above

affinely parameterized structure can be used to represent

various interconnection patterns of networked systems, such as

1D line pattern [19], [20], circular pattern [21] and general

topologies [22].

In addition, for the two-dimensional state-space model

considered in [23], the system matrices of its equivalent

one-dimensional model are of Kronecker product forms. The

corresponding structured matrix set can be represented as:

S = {A,B,C,D : A = A1 ⊗A2, B = B1 ⊗B2,

C = C1 ⊗ C2, D = Dl ⊗D2}
(4)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , Ci ∈ R
pi×ni , Di ∈

R
pi×mi for i = 1, 2 such that n1n2 = n,m1m2 = m, p1p2 =

p. In this example, the system parameters includes all the

entries of {A1, A2, B1, B2, C1, C2, D1, D2}.

Given the prior knowledge of the system structure, i.e.,

(A,B,C,D) ∈ S , the problem of interest is to identify

the structured state-space model (1) using the observed input

and output data pairs {u(k), y(k)}. It is remarked that there

might exist many state-space models of the same structure

that can exactly depict the input-output mapping, and we aim

to find one such structured state-space model in this paper.

Although the problem formulation above is similar to that in

our previous work [10], the contributions of this paper differs

in the following two aspects:

1) In [10], the structured system matrices are identified by

two successive steps: Markov-parameter estimation and

structured Hankel matrix factorization, whereas in the

proposed method these two steps are integrated in a

single optimization framework so that the influence of

Markov-parameter estimation error to the Hankel matrix

factorization can be alleviated.

2) The developed identification approach allows more gen-

eral matrix structures, not only affinely parameterized

matrices as concerned in [10].

The following standard assumptions are made throughout

the paper.

A1. The process noise w(k) and the measurement noise v(k)
are zero-mean white Gaussian noises with the covariance

matrix

E

[
w(k1)
v(k1)

] [
w(k2)
v(k2)

]T

=

[
Q S

ST R

]

δk1,k2

where δk1,k2
is the Kronecker delta function. In addition,

the noises w(k) and v(k) are uncorrelated with the input

signal u(k).
A2. The state-space model (1) is minimal in the sense that

(A,C) is observable and (A, [B,Q1/2]) is controllable.

A3. The input signal u(k) is quasi-stationary and persistently

exciting [1].

By Assumptions A1-A2, the state-space model (1) has an

innovation form [24]:

x̂(k + 1) = Ax̂(k) +Bu(k) +Ke(k)

y(k) = Cx̂(k) +Du(k) + e(k)
(5)

where K ∈ R
n×p is the Kalman gain, e(k) ∈ R

p is a zero-

mean innovation signal, and x̂(k) is the one-step forward

predictor of the state x(k). The innovation signal e(k) is a

white noise that is uncorrelated with all the inputs and the

past states, i.e.,

Ē{e(k)x̂T (k0)} = 0 for all k0 ≤ k

Ē{e(k)uT (k0)} = 0 for all k0 ∈ N.
(6)

Since the original state-space model and its innovation form

have the same system matrices (A,B,C,D), the identification

of the system matrices from the innovation model will be

considered in the sequel.

In the following, we start with the Markov-parameter esti-

mation problem. This is then extended by a rank constraint on

the block Hankel matrix constructed by the Markov parameter-

s. Finally, an integrated identification framework (COSMOS)

for the concerned structured state-space model is presented

that operates directly on input and output data.

III. DIRECT ESTIMATION OF MARKOV PARAMETERS FROM

INPUT-OUTPUT DATA

The Markov-parameter sequence of the state-space model

(1) is normally of infinite length, which can be calculated by

expanding transfer functions [25] or state-space realizations

[2]. In this way, the estimation error of the transfer functions

or state-space models will influence the computation of finite-

length Markov parameters. To overcome this problem, it is

essential to estimate the finite-length Markov parameters from

the input and output data directly.

There are several Markov-parameter estimation methods us-

ing directly the input and output data. The Markov-parameter

estimation for a Box-Jenkin’s model was recasted as a rank

constrained infinite-dimensional optimization problem [26],

and an approximate solution is then derived by solving a
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nuclear-norm regularized optimization problem. The Kernel-

based regularization methods [27], [28] can yield robust

estimation for the Markov parameter sequence, where the

estimation accuracy relies the Kernel selection. The above two

kinds of methods usually yield biased estimation of the finite-

length Markov parameters.

Based on the data equation of the state-space model, a

structured least-squares solution for the Markov-parameter

estimation was proposed in [13], [15], which can yield ac-

curate estimation of Markov parameters. In the sequel, this

structured least-squares solution will be reviewed and suffi-

cient conditions for the consistent estimation of the Markov

parameters will be given. Furthermore, by exploiting the low-

rank property of the block Hankel matrix constructed by

Markov parameters, a rank-constrained least-squares solution

is provided for the Markov parameter estimation, which lays

a foundation for the development of the identification method

in Section IV.

A. Markov-parameter identification by least-squares optimiza-

tion

For the state-space model in (1), the data equation can be

written as

Yk = OsXk + TuUk + TeEk (7)

where Uk, Yk, Ek are respectively the block Hankel matrices

constructed from u(k), y(k), e(k):

Uk = Hs,h[u(k : k + s+ h)]

Yk = Hs,h[y(k : k + s+ h)]

Ek = Hs,h[e(k : k + s+ h)],

(8)

the extended observability matrix Os and the convolution

matrices {Tu, Te} are respectively defined as

Os = Os[A,C]

Tu = Ts[CAs−1B · · · CB D]

Te = Ts[CAs−1K · · · CK I],

(9)

the state sequence Xk is defined as

Xk = [x̂(k) x̂(k + 1) · · · x̂(k + h)] . (10)

Throughout the paper, it is stipulated that the dimension

parameter h ≫ s such that Yk, Uk are fat matrices.

In the data equation (7), due to the unknown term OsXk, the

Markov parameters in the convolution matrix Tu are difficult to

estimate. By exploiting the low rank property of the unknown

matrix OsXk, the Markov-parameter estimation problem can

be formulated as a low-rank minimization problem [29]. Due

to the NP-hard property of the low-rank minimization, the

nuclear norm was used instead of rank operator which results

in an approximate estimation of Markov parameters.

By regarding the state sequence Xk in (7) as an unknown

input sequence, the corresponding Markov-parameter estima-

tion turns out to be a blind identification problem. Inspired

from the blind subspace identification approach [30], if the

basis of the state sequence Xk is available, the Markov-

parameter estimation can be handled by the least-squares

method. Following this route, the basis (row space) of the state

sequence Xk will be provided, and then the Markov parameter

estimation.

The basis of the state sequence Xk can be derived based on

the N4SID method [18] and the PO-MOESP method [2], i.e.,

the current state can be linearly represented by the past input-

output observations or the future input-output observations.

Consider the following data equation constructed from the past

input and output data that has a similar form with equation (7):

Yk−s−1 = OsXk−s−1 + TuUk−s−1 + TeEk−s−1. (11)

When the extended observability matrix Os has full column

rank, the state sequence Xk can be represented as [13]:

Xk = As+1O†
s

︸ ︷︷ ︸

Γs

Yk−s−1 + [Cu −As+1O†
sTu]

︸ ︷︷ ︸

Υs

Uk−s−1

+ [Ce −As+1O†
sTe]

︸ ︷︷ ︸

Ξs

Ek−s−1

(12)

where Cu = [AsB · · ·AB B] and Ce = [AsK · · ·AK K].
The above equation indicates that the state sequence Xk can

be linearly represented in terms of the past input and output

data. As a consequence, the data equation (7) can be rewritten

as

Yk = OsΓs
︸ ︷︷ ︸

Φs

Yk−s−1 +OsΥs
︸ ︷︷ ︸

Ψs

Uk−s−1 + TuUk

+OsΞs
︸ ︷︷ ︸

Πs

Ek−s−1 + TeEk.
(13)

The least-squares estimation for the convolution matrix Tu that

includes the Markov parameters as its block entries can then

be formulated as [13]:

min
Φs,Ψs,Tu

∥Yk − ΦsYk−s−1 −ΨsUk−s−1 − TuUk∥
2

F (14)

It can be observed from the above optimization problem that

the optimal solution of the convolution matrix Tu can be

obtained by the oblique projection [18] of the row space of Yk

along the row space of
[
UT
k−s−1 Y T

k−s−1

]T
on the row space

of Uk. The least-squares estimate for the matrix Tu in (14)

will be analyzed in the following lemma.

Lemma 1. Suppose that Assumptions A1-A3 are satisfied and

the dimension parameter s is larger than the observability

index of (A,C). Let

Ē











y(k − s− 1 : k − 1)
u(k − s− 1 : k − 1)

u(k : k + s)









y(k − s− 1 : k − 1)
u(k − s− 1 : k − 1)

u(k : k + s)





T






=

[
R11 R12

R21 R22

]

(15)

and

Ē
{
e(k − s− 1 : k − 1)eT (k − s− 1 : k − 1)

}
= Ree.

(16)

Denote by Th
u the least-squares estimate of Tu in (14) that

depends on the dimension parameter h defined in (8). As the
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dimension parameter h (or the data length) tends to infinity,

the following equality holds with probability one:

lim
h→∞

T
h
u = T

∗

u + [Π∗

sReeT
∗,T
e 0]

[

R11 −R12R
−1

22 R21

]−1
R12R

−1

22

(17)

where T ∗
u ,Π

∗
s and T ∗

e represent the true values of Tu,Πs and

Te, respectively.

Proof: First, by Assumptions A1-A3, it can be established

that the following matrix has full rank [31], i.e.,

Ē











y(k − s− 1 : k − 1)
u(k − s− 1 : k − 1)

u(k : k + s)









y(k − s− 1 : k − 1)
u(k − s− 1 : k − 1)

u(k : k + s)





T






=

[
R11 R12

R21 R22

]

> 0.

Because of the white noise property of e(k), we have

Ē
{
e(k : k + s)

[
eT (k − s− 1 : k − 1) yT (k − s− 1 : k − 1)

uT (k − s− 1 : k − 1) uT (k : k + s)
]}

= 0.
(18)

Then, by the first-order optimality condition of the objective

function in (14), it can be obtained that

[

Φh
s Ψh

s T
h
u

]





Yk−s−1

Uk−s−1

Uk









Yk−s−1

Uk−s−1

Uk





T

= Yk





Yk−s−1

Uk−s−1

Uk





T

,

(19)

with Φh
s ,Ψ

h
s and Th

s being respectively the estimates of Φs,Ψs

and Ts. Let T ∗
u ,Φ

∗
s,Ψ

∗
s,Π

∗
s, T

∗
e be respectively the true values

of the matrix variables Tu,Φs,Ψs,Πs, Te satisfying that

Yk = Φ∗
sYk−s−1 +Ψ∗

sUk−s−1 + T ∗
uUk +Π∗

sEk−s−1 + T ∗
e Ek.

Substituting the above expression of Yk into (19) yields that

[
Φh

s Ψh
s Th

u

]





Yk−s−1

Uk−s−1

Uk









Yk−s−1

Uk−s−1

Uk





T

= [Φ∗
s Ψ∗

s T ∗
u ]





Yk−s−1

Uk−s−1

Uk









Yk−s−1

Uk−s−1

Uk





T

+ [Π∗
sEk−s−1 + T ∗

e Ek]





Yk−s−1

Uk−s−1

Uk





T

.

(20)

By dividing both hand sides of the above equation by h + 1
and taking the limits as h → ∞, the following equality holds

with probability one:

[Φ∞
s Ψ∞

s T∞
u ]

[
R11 R12

R21 R22

]

= [Φ∗
s Ψ∗

s T ∗
u ]

[
R11 R12

R21 R22

]

+
[
Π∗

sReeT
∗,T
e 0 0

]
.

It then follows that

[Φ∞
s Ψ∞

s T∞
u ] = [Φ∗

s Ψ∗
s T ∗

u ]

+
[
Π∗

sReeT
∗,T
e 0 0

]
[

R11 R12

R21 R22

]−1

.

(21)

Due to the positive definite property of the matrix[
R11 R12

R21 R22

]

, by the inverse lemma of a 2×2 block matrix

[32], the estimate of Tu can be expressed as

T∞
u = T ∗

u+[Π∗
sReeT

∗,T
e 0]

[
R11 −R12R

−1
22 R21

]−1
R12R

−1
22 .

This completes the proof of the lemma.

Remark 2. The least-squares solution of the convolution

matrix Tu is given in (17), from which several insights can

be obtained.

First, it can be observed from equation (17) that the

estimation error is linearly proportional to Π∗
s which can be

explicitly written as

Π∗
s = OsΞ

∗
s = OsCe −OsA

s+1O†
sTe.

It can be found that the last block of Π∗
s is proportional to

As, which tends to zero with probability one as s → ∞;

therefore, the last block row of Th
u tends to last block row

of T ∗
u . This result is in accord with the consistency of the

Markov-parameter estimation in [13].

Second, it can be seen from equation (17) that the corre-

lation between Uk and [Y T
k−s−1 UT

k−s−1]
T is another factor

that prevents the consistent estimation of Tu. If the input signal

u(k) is a zero-mean white noise, we can obtain that R21 =
Ē{u(k : k+s)[yT (k−s−1 : k−1) uT (k−s−1 : k−1)]} = 0;

thus, the convolution matrix Tu can be consistently estimated.

Third, according to equation (21) in the proof of Lemma 1,

we can see that the existence of the innovation noise prevents

the consistent estimation of the convolution matrix Tu. If we

set the innovation noise e(k) to be zero, it can still be proven

that the matrix Tu can be consistently estimated.

Remark 3. The least-squares solution given in (14) is analo-

gous to the classical prediction-error framework in [1, Chapter

3.2], where the ΦsYk−s−1 +ΨsUk−s−1 can be viewed as the

(s + 1)-step-ahead predictor for the output Yk, and TuUk is

the corresponding prediction error (or residual). Therefore, the

least-squares solution for Tu in (14) can be interpreted as a

combination of the prediction-error method and the subspace

identification method.

B. Low-rank regularized estimation of Markov parameters

The least-squares estimation framework (14) enables the

estimation of finite-length Markov parameters using directly

the input and output data. When only a finite number of data

are available, the estimation accuracy will be influenced by

the noise perturbation; therefore, in order to improve the es-

timation accuracy, the structural properties of the convolution

matrix Tu was exploited and a structured least-squares solution

was provided in [13]–[15]. In fact, the block Hankel matrix

constructed from Markov parameters has a rank equal to the

system order; therefore, this low-rank property will be adopted

in this paper to improve the estimation accuracy of Markov

parameters.

For the identification of the structured state-space model

(1), the system order is assumed to be known. Then, a rank-

constrained least-squares optimization problem is provided for
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the Markov-parameter estimation:

min
Φs,Ψs,Tu,Hu,Mi

∥Yk − ΦsYk−s−1 −ΨsUk−s−1 − TuUk∥
2

F

s.t. Tu = Ts [M0 · · · Ms−1]

Hu = Hl1,l2 [M0 · · · Ms−1]

rank(Hu) = n,

(22)

where the dimension parameters l1, l2 and s are chosen such

that l1 + l2 = s − 1 and l1, l2 ≥ n. Due to the NP-hard

property of the above rank-constrained optimization problem,

the nuclear norm is usually adopted as a convex relaxation of

the rank operator [33]. By solving the associated nuclear-norm

optimization problem, the Markov parameters as well as the

system order can be approximately estimated. In this paper, a

difference-of-convex programming algorithm will be proposed

to deal with the above rank-constrained optimization problem.

Apart from the block Toeplitz structure of the matrix Tu,

the low rank constraint of the block Hankel matrix Hu enables

more accurate estimation of Markov parameters, especially

when only a short batch of noisy output observations are

available. This will be demonstrated by a simulation example

in Section V.

IV. ESTIMATION OF STRUCTURED SYSTEM MATRICES

The objective of the concerned identification problem is

to identify the system parameters rather than the Markov

parameters. To this end, the parameter estimation will be

investigated based on the Markov-parameter estimation frame-

work in (22). The block Hankel matrix Hu in (22) can be

represented as the product of an observability matrix and a

controllability matrix with shifting properties [2]. By adopting

the framework for the structured factorization of a block

Hankel matrix [10], the structural constraints of the system

matrices can be explicitly imposed. In this section, the Hankel-

matrix factorization framework provided in [10] is reviewed

briefly, the structural constraints of the system matrices will

be incorporated to the rank minimization problem in (22),

and an iterative optimization method will be developed for

the estimation of system parameters.

A. Hankel matrix factorization with structural constraints

The block Hankel matrix Hu in the optimization problem

(22) possesses a structured and low-rank factorization.

The low-rank property can be seen from the following

expression:

Hu = Ol1Cl2 (23)

where Ol1 = Ol1 [A,C] and Cl2 = Cl2 [A,B]. It is not difficult

to see that rank (Hu) = n.

The structural property refers to the parametrization of the

system matrices embedded in the Hankel matrix. The matrices

C and B are respectively the first block entries of Ol1 and Cl2 ,

i.e.,

C = Ol1(1 : p, :), B = Cl2(:, 1 : m). (24)

As a consequence, the structural constraints on C and B can be

explicitly imposed. The structural constraint on the matrix A is

less straightforward. It can however be expressed by exploiting

the shifting property of Ol1 or Cl2 . Denote

Ōl1 =






CA
...

CAl1+1




 and C̄l2 =

[
AB · · · Al2+1B

]
.

The shifting property can be represented as

Ōl1 = Ol1A, C̄l2 = ACl2 (25)

where the structural constraint of A can then be imposed.

To sum up, the structured and low-rank factorization of the

Hankel matrix Hu is captured by the equations (23), (24) and

(25). Equation (24) appears to be linear constraints, whereas

equations (23) and (25) are inherently bilinear constraints. The

following lemma shows that the bilinear equations in (23) and

(25) can be compactly represented by a single rank constraint.

Lemma 2. The bilinear equations in (23) and (25) hold if

and only if there exists a matrix variable Ā such that

rank





Hu Ol1 Ōl1

Cl2 I A

C̄l2 A Ā



 = n. (26)

Proof: Sufficiency: The second block column (row) of

the matrix in (26) has column rank n since it contains an

identity block entry. Then, the rank constraint (26) implies

that the first and the third block columns (rows) should be

linearly dependent of the second column (row). As a result,

the bilinear equations in (23) and (25) can be derived.

Necessity: By substituting the expressions of Ōl1 and C̄l2

into (26), when Ā = A2, it is easy to verify that all the block

columns (rows) can be linearly represented by the second

block column (row). Therefore, the rank equation in (26)

holds.

For the identification of a parameterized state-space model,

the system order is known, i.e., rank[Hu] = n. The structural

constraints of the system matrices can be incorporated with

the proposed Markov-parameter estimation framework (22).

By Lemma 2, the structured state-space identification problem

can be addressed by solving the following rank constrained

optimization problem:

min
Θ

∥Yk − ΦsYk−s−1 −ΨsUk−s−1 − TuUk∥
2

F

s.t. Tu = Ts [M0 · · · Ms−1]

Hu = Hl1,l2 [M0 · · · Ms−1]

rank





Hu Ol1 Ōl1

Cl2 I A

C̄l2 A Ā



 = n

C = Ol1(1 : p, :), B = Cl2(:, 1 : m)

{A,B,C} ∈ S

(27)

where Θ = {Φs,Ψs, Tu, Hu,Mi, Ol1 , Ōl1 , Cl2 , C̄l2 , A,B,C, Ā}
denotes the variable set, and S represents the set of structured

system matrices as illustrated in Remark 1. Apart from the

rank constraint and possible polynomial parametrization of

the matrix set S , the above optimization problem is convex.

Its numerical solution will be investigated in the next section.
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Remark 4. The optimization problem provides an approach

to identify structured system matrices directly from the input

and output observations, instead of sequentially estimating the

Markov parameters and then the structured system matrices

as done in [10], [23]; thus, it provides a unified framework

for the identification of structured state-space models.

B. Iterative optimization method

In this section, numerical solutions for the rank-constrained

optimization problem (27) will be investigated. To simplify

the notation, we denote

f(Θ) : = ∥Yk − ΦsYk−s−1 −ΨsUk−s−1 − TuUk∥
2

F

s.t. Tu = Ts [M0 · · · Ms−1]

Hu = Hl1,l2 [M0 · · · Ms−1]

C = Ol1(1 : p, :), B = Cl2(:, 1 : m)

{A,B,C} ∈ S

and

H(Θ) =





Hu Ol1 Ōl1

Cl2 I A

C̄l2 A Ā



 .

The matrix H(Θ) is linearly represented in terms of Θ. When

the structured system matrix set S can be linearly parame-

terized, it is easy to see that f(Θ) is a convex function with

respect to Θ. Otherwise, when the matrix set S is polynomially

parameterized, the structural constraints can be formulated as

rank constraints using the technique in Subsection IV-A. This

is illustrated in the following example.

Example 1. Suppose that the matrix A in the LTI system (1)

has a third-order polynomial parametrization as follows:

A(θ) =

l∑

i=1

l∑

j=1

l∑

k=1

Ai,j,kθiθjθk, (28)

where the matrix coefficients Ai,j,k are known. The above

polynomial parametrization can be equivalently represented

as

A(θ) =
l∑

i=1

l∑

j=1

l∑

k=1

Ai,j,kΩi,j,k

vec(Ω) = θ ⊗ θ ⊗ θ,

(29)

where Ω represents a tensor and vec(Ω) denotes the vec-

torization of Ω. The involved tensor notations and operators

follow those in [32, Chapter 12.4]. The tensor Ω in (29) is

a symmetric and rank-1 tensor, which can be equivalently

represented as

Ωi,j,k = Ωi,k,j = Ωj,i,k = · · · = Ωk,j,i i, j, k ∈ {1, · · · , l}

rank
[
Ω(:, 1, 1) · · · Ω(:, 1, l) · · · Ω(:, l, l)

]
= 1

(30)

where the linear constraints in the first equation represent the

symmetrical structure of Ω, and the second equation is the

rank-one constraint.

From the above example, we can see that a polynomially

parameterized matrix can be equivalently represented as the

combination of symmetrical constraints and rank-1 constraints.

To simplify the notation, we treat only one rank constraint

and the function f(Θ) is assumed to be convex in the

sequel; however, this does not affect the implementation of

the proposed method for the identification of polynomially

parameterized state-space models, like the identification of the

Kronecker structured system matrices in Subsection V-C. The

optimization problem in (27) can be written as

min
Θ

f(Θ)

s.t. rank[H(Θ)] = n.
(31)

To solve the above rank-constrained optimization problem,

the difference-of-convex (DC) programming method proposed

in our previous work [10] is adopted. Define the Ky Fan n-

norm of the matrix H(Θ) as

gn(H(Θ)) =

n∑

i=1

σi(H(Θ)). (32)

Replacing the rank constraint rank[H(Θ)] = n by a difference-

of-convex equality constraint ∥H(Θ)∥∗ − gn(H(Θ)) = 0
yields that

min
Θ

f(Θ)

s.t. ∥H(Θ)∥∗ − gn(H(Θ)) = 0.
(33)

Due to the non-convexity of the above optimization problem,

an approximate solution is obtained by solving the following

penalized optimization problem:

min
Θ

f(Θ) + ρ [∥H(Θ)∥∗ − gn(H(Θ))] , (34)

where ρ is a positive penalty coefficient. The term

ρ [∥H(Θ)∥∗ − gn(H(Θ))] imposes a penalty for violating the

constraint ∥H(Θ)∥∗ − gn(H(Θ)) = 0. Due to the inequality

∥H(Θ)∥∗ − gn(H(Θ)) ≥ 0, the objective function is always

nonnegative. When the penalty parameter ρ tends to infinity,

the global minimum of (34) will approach that of (33).

To solve the optimization problem (34), the sequential con-

vex programming approach [34] will be adopted, for which it

is crucial to linearize the concave part of the objective function

in (34). Given the estimate Θ̂j and the SVD decomposition

H
(

Θ̂j
)

=
[

U
j
1 U

j
2

]
[

Σj
1

Σj
2

] [
V

j
1

V
j
2

]

(35)

with U
j
1 and V

j
1 being respectively the left and right sin-

gular vectors associated with the largest n singular values,

the sequential convex programming approach boils down to

iteratively solving the following convex optimization problem

Θj+1 := argmin
Θ

f(Θ)+ρ
(

∥H(Θ)∥∗ − tr
[

U
j,T
1 H(Θ)V j

1

])

.

(36)

Through the above iterative optimization, it can be established

that the objective function decreases as the iteration index k

increases [34]; thus, it is a descent algorithm.

In order to make the optimal solution to (36) better approx-

imate that to (33), the penalty coefficient ρ in (36) needs to be

increased along with the iteration index j. The corresponding

convex-concave procedure is detailed in Algorithm 1, where

the relative error tolerance ϵ is a small value and the maximum
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value of the penalty coefficient ρmax is set for the convergence

sake. In other words, when the maximum value of the penalty

coefficient is reached, it becomes an optimization problem of

the form (34) for which the objective function is guaranteed

to converge.

Algorithm 1 Convex-concave procedure for (33)

1) Set the initial values: U0
1
= 0 and V 0

1
= 0.

2) Repeat

2-1): Obtain the estimate Θ̂j+1 by solving (36).

2-2): Compute U
j+1

1
and V

j+1

1
by the SVD in (35).

2-3): ρ := min{µρ, ρmax} where µ ≥ 1 and ρmax > 0.
3) Until the relative decrease of the objective function is smaller than ϵ.

It is remarked that the estimate Θ̂1 is generated by solv-

ing a nuclear-norm regularized convex optimization problem,

which usually yields a good initial parameter estimate for the

remaining iterations.

C. Attractive convergence property of Algorithm 1

In the proposed convex-concave procedure, the rank con-

straint is to be relaxed sequentially, which enables the pro-

posed method to find a good initial parameter estimate as

well as getting around local minima. In order to show the

capability of the proposed method in avoiding local minima,

the matrix completion problem without noise perturbation will

be simulated. The performance comparison of the proposed

method, the nuclear norm method [35], the log-det method

[36] and the manifold optimization method [37] will be

demonstrated.

In the simulation, a 10×10 matrix with rank 5 is randomly

generated, which is denoted by Ω. The considered matrix com-

pletion problem is to select a number of entries as unknown

parameters that are to be estimated such that the reconstructed

matrix has a low rank (the rank is 5 in this case). The number

of parameters ranges from 1 to 50. The unknown parameters

are randomly selected from the 10× 10 matrix.

Denote by D the index set of the known entries in the matrix

Ω. The nuclear norm method [35] is to solve the following

optimization problem

min
Ψ∈R10×10

∥Ψ∥∗

s.t. Ψ(i, j) = Ω(i, j), (i, j) ∈ D.

The log-det method [36] is to iteratively solve the following

optimization problem

[Xk+1, Zk+1,Ψk+1] =

arg min
X,Z,Ψ

tr

[([
Xk

Zk

]

+ σI

)−1 [
X

Z

]]

s.t.

[
X Ψ
ΨT Z

]

≥ 0

Ψ(i, j) = Ω(i, j), (i, j) ∈ D,

where the parameter σ is set to σ = 10−6 as suggested in

the simulation example of [36]. The initial parameter estimate

is obtained by setting X0 = 0 and Z0 = 0. The stopping

criterion is set to
∥
∥Ψk+1 −Ψk

∥
∥
F

∥Ψk∥F
≤ 10−10,

and the maximum number of iterations is set to 100.

The manifold optimization method [37] is to solve the

following rank-constrained optimization problem

min
Ψ

∥Ψ(D)− Ω(D)∥2F

s.t. rank(Ψ) = 5.

The initial parameter is obtained by setting the unknown

parameters to be zero and computing the best rank-5 approx-

imation of Ω in the sense of Frobenius norm. The stopping

criterion is set to be the same as the log-det method.

For the proposed method - Algorithm 1, the penalty coef-

ficient ρ is set to be a constant ρ = 0.1, and the stopping

threshold is set to ϵ = 10−10. Also, the maximum number of

iterations is set to 100.

For a fixed number of unknown parameters, the above four

different methods individually perform 100 Monte-Carlo trials,

and the success rate is defined as the total number of trials

whose relative estimation errors are smaller than 10−6, i.e.,

∥Ψ̂− Ω∥F
∥Ω∥F

≤ 10−6.

Fig. 1 shows the success rates of the four different methods,

where it can be seen that the success rate of the proposed

method is nearly 100% when the number of parameters is

less than 15, and it is significantly larger than other methods

when the number of parameters is larger than 15. In particular,

when the number of parameters is 24, the success rates of the

proposed method, the manifold optimization method, the log-

det method and the nuclear norm method are respectively 52%,

15%, 0, 0. The comparison results in Fig. 1 can be explained

as follows.

• The performance of the nuclear norm method is not as

good as the log-det method and the proposed method,

since the nuclear norm method provides an initial parame-

ter estimate for both the log-det method and the proposed

method.

• The better performance of the proposed method against

the log-det method might be caused by the fact that the

exact rank information is utilized in the proposed method.

It can be observed from Fig. 1 that, when the number

of unknown parameters is 20, the success rates of the

proposed method and the log-det method are respectively

77% and 0.

• The manifold optimization method is inherently a

gradient-type method on the embedded manifold of fixed-

rank matrices, which is easily getting stuck into local

minima when the number of parameters becomes larger.

This explains the better performance of the proposed

method against the manifold optimization method.

• When the number of parameters is larger than 10, the

manifold optimization method and the proposed method

perform better than the log-det method and the nuclear

norm method, since the manifold optimization method

and the proposed method have made use of the rank

information.

From the above performance analysis, it can be seen that

the proposed method and the manifold optimization method is
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Fig. 1. Success rates for the nuclear norm method, the log-det method, the
manifold optimization method and the proposed method.

TABLE I
COMPARISON OF COMPUTATION TIMES.

Method Times (s) No Iter. Time/Iter. (s)

Nuclear norm method 0.3437 1 0.3437
Log-det method 1.2290 3 0.4097
The proposed method 1.3818 3 0.4606

Manifold optimization method 6× 10−4 12 5× 10−5

more suitable for dealing with rank-constrained optimization

problems, while the nuclear norm method and the log-det

method are more appropriate for handling rank minimization

problems. Since the rank constraint is crucial for the identifica-

tion problem concerned in this paper, the proposed method and

the manifold optimization method (or the gradient-type opti-

mization method on a specific subspace) will be performed and

compared for handling the concerned identification problem in

next section.

The numerical simulations are run on a laptop with a 2.9

GHz processor and a 8.0 GB RAM. One Monte-Carlo trial

is performed by four different methods with 10 unknown

parameters, and the corresponding computation times are

shown in Table I. It can be observed that:

• the computation time of the proposed method per iteration

is slightly higher than the nuclear norm method and the

log-det method, because the log-det method is inherently

a re-weighted nuclear norm method [36] and the proposed

method needs to run an extra SVD decomposition at each

iteration;

• the computation time of the manifold optimization

method is much less than the other three methods that

need to solve a nuclear norm optimization problem in

each iteration.

V. NUMERICAL SIMULATIONS

In this section, three simulation examples are provided to

validate the proposed COSMOS identification method: the

first one is to show the effectiveness of the rank-constrained

optimization approach proposed in Section III on estimating

Markov parameters using a short batch of input and output

data; the second one is to apply the COSMOS on identifying

a linearly parameterized state-space model; the third one is

to show the performance of the COSMOS on identifying a

state-space model with the system matrices having Kronecker-

product forms, as described in Remark 1.

A. Estimation of finite-length Markov parameters

In this simulation example, the proposed rank-constrained

optimization method (22) is simulated to show the identifi-

cation performance for the finite-length Markov parameters,

where the rank-constrained optimization problem is solved

using the convex-concave procedure in Algorithm 1.

The simulated innovation model is described by the follow-

ing matrices:

A =

[
1.5610 −0.6414
1.0000 0

]

, B =

[
1
0

]

,K =

[
0.1477
0.0388

]

C =
[
0.0715 0.0072

]
, D = 0.0201.

The input signal u(k) and the innovation signal e(k) are

generated as white noise sequences. The data length is set to

300. The Markov-parameter sequence of length 15 will be es-

timated. To demonstrate the identification performance against

different noise levels, the signal-to-noise ratio is defined as

SNR = 10 log
var[y(k)− e(k)]

var[e(k)]

and the relative estimation error is defined as

Relative error =

∑14

i=0
∥M̂i −M∗

i ∥F
∑14

i=0
∥M∗

i ∥F
, (37)

where M̂i and M∗
i are respectively the estimated and the true

Markov parameters.

For the comparison purpose, the proposed rank-constrained

least-squares (RCL) method (22), the structured least-squares

(SLS) estimation method [15] and the ”TC” kernel (TCK)

based FIR estimation method [27] will be simulated.

For the rank-constrained optimization in (22), the dimension

parameters are set to s = 6, l = 6. It is handled using the

convex-concave procedure in Algorithm 1, where the involved

parameters are set to

ρ = 0.01, µ = 1.02, ρmax = 10, ϵ = 10−10,

and the maximum number of iterations is set to 100, i.e., the

implementation of Algorithm 1 stops if the stopping criterion

is not reached at the 100-th iteration.

The TCK method is implemented using the Matlab com-

mands as follows [38, Subsection 3.2]:

aropt=arxRegulOptions;

aropt.RegulKernel=’TC’;

[L,R]=arxRegul(data,[0 14 0],aropt);

aopt=arxOptions;

aopt.Regularization.Lambda=L;

aopt.Regularizatoin.R=R;

mest=arx(data,[0 14 0],aopt);

To evaluate the identification performance for three different

identification methods, 30 Monte-Carlo trials are carried out

at each SNR. Fig. 2 shows the mean relative errors at different

SNRs and Fig. 3 provides box plots for the three identification

methods, where we can observe that
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Fig. 2. Example A: mean relative errors of the ”TC” Kernel (TCK) method,
the structured least-squares (SLS) method and the rank-constrained least-
squares (RCL) method at different SNRs.
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Fig. 3. Example 1: box-plots of the TCK method, the SLS method and the
RCL method through 50 Monte-Carlo trials.

1) The TCK method yields an approximate estimate even

if the noise level tends to zero, which is caused by the

improper tuning of the regularization parameters. The

relative error is about 0.02 when the SNR is larger than

40 dB.

2) The relative-error curves of the SLS method and the

RCL method decay along with the increase of SNR,

indicating that the finite-length Markov parameters can

be accurately estimated in the absence of noise.

3) The proposed rank-constrained least-squares method

performs better than the structured least-squares method.

This is because the low-rank property of the Hankel

matrix is exploited in the proposed RCL method.

The above three algorithms are run in the Matlab environ-

ment as described in Subsection IV-C. The computation times

are shown in Table II, where we can see that the SLS and

TCK have similar computation times that are much less than

the proposed RCL method. This is because the proposed RCL

method needs to solve a nuclear norm regularized optimization

problem in each iteration.

TABLE II
COMPUTATION TIMES OF THE TCK, SLS AND RCL METHODS.

Method Times (s) No Iter. Time/Iter. (s)

TCK 0.4672 1 0.4672
SLS 0.5402 1 0.5402
RCL 6.9855 9 0.7762

B. Identification of a linearly parameterized state-space model

This simulation example aims to show the effectiveness of

the COSMOS on identifying linearly parameterized matrices

in the presence of measurement noise. The state-space model

to be identified in this example is a three-compartment model

which is determined by the following structured system ma-

trices

A(θ) =





−θ1 θ2 0
θ1 −(θ2 + θ3) θ4
0 θ3 −θ4



 , B =





0
0
1



 ,

K =
[
0.2 0.1 0.5

]T
, C =

[
0 0 1

]
, D = 0.

Different from the previous example which is to identify

the finite-length Markov parameters, the structured state-space

model identification problem aims to identify the parameter

vector θ embedded in the structured system matrices. It has

been shown in [39] that the parameter vector θ in the above

compartment model is identifiable.

In this simulation example, the parameter vector θ is set

to θ = [0.10 0.32 0.21 0.45] and the identification

performance of the COSMOS against the measurement-noise

level is demonstrated. The input signal u(k) and the innovation

noise e(k) are generated as white noises. The data length is

set to 50. The implementation settings of the COSMOS are

the same as those in Example A. For the comparison purpose,

the classical prediction-error method (PEM) [1] is simulated

as well. Since the PEM is a gradient descent method, its

performance is sensitive to the initial estimate of the parameter

vector. Without any prior knowledge of the system parameters,

the initial estimate of θ is randomly generated. The stopping

criterion for the COSMOS and the PEM is that the relative

parameter-estimation error is smaller than 10−10, and the

maximum number of iterations for the COSMOS and the PEM

is set to 100.

To measure the identification performance, the following

two criteria are defined.

Normalized estimation error (NEE). Denote by θ̂r and θ∗

the estimate of θ at the r−th Monte-Carlo trial and the true

parameter vector, respectively. The NEE criterion is defined

as

NEEr =
∥θ̂r − θ∗∥

∥θ∗∥
.

This criterion is directly used to show the identification

accuracy of the system parameters.

Output relative error (ORE). According to equation (27), we

denote by Φr
s,Ψ

r
s, T

r
s respectively the estimates of Φs,Ψs, Ts

at the r-th Monte-Carlo trial. The OLE criterion is defined as

OREr =
∥Yk − Φr

sYk−s−1 −Ψr
sUk−s−1 − T r

sUk∥F
∥Yk∥F

.
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Fig. 4. Example B: performance of identifying the linearly parameterized
state-space model in terms of the NEE criterion. The blue crosses represent
the NEE values obtained by the PEM, while the black crosses are provided by
the COSMOS. The blue curve denotes the mean NEE values of the COSMOS
at different SNRs, while the black curve corresponds to mean NEE values of
the PEM. Note that the NEE values of these two methods are computed at
the same SNRs; however, they are slightly separated for better comparison.

Different from the NEE criterion, the ORE is used to show

the estimation accuracy of system dynamics rather than system

parameters, and it works well even if the system parameters

are unidentifiable.

Fig. 4 and Fig. 5 show the performance of the COSMOS

and the PEM, respectively, in terms of the NEE and the ORE

criteria. At each SNR, the NEE and ORE values are computed

by running 30 Monte-Carlo trials. It can be observed that the

NEE and ORE values of the COSMOS are closely distributed

around their corresponding mean values. The mean NEE and

ORE values of the COSMOS decay along with the increase

of the SNR, indicating that the COSMOS can obtain accurate

parameter estimation in the absence of measurement noise.

However, for the PEM, there are two separate clusters of NEE

and ORE values at each SNR, indicating that the PEM with

random initialization sometimes gets stuck into local minima.

In the simulation, the PEM takes about 5.26s for 100

iterations, while the COSMOS takes about 94.53s for 100

iterations. This is caused by the fact that the COSMOS needs

to solve a nuclear norm regularized optimization problem in

each iteration.

C. Identification of a state-space model with Kronecker struc-

tured system matrices

Different from the simulation example in Subsection V-B

that concerns the identification of linearly parameterized state-

space models, this simulation example aims to deal with the

identification of a state-space model with its system matrices

having Kronecker-product forms [23]. The PEM is simulated

for comparison where the Kronecker structured state-space

model is defined using the command idgrey in the Matlab

environment.

The structured state-space model to be identified is deter-
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Fig. 5. Example B: performance of identifying the linearly parameterized
state-space model in terms of the ORE criterion. The blue crosses represent
the ORE values obtained by the PEM, while the black crosses are provided by
the COSMOS. The blue curve denotes the mean ORE values of the COSMOS
at different SNRs, while the black curve corresponds to mean ORE values of
the PEM. Note that the ORE values of these two methods are computed at
the same SNRs; however, they are slightly separated for better comparison.

mined by the following system matrices:

A(θ) =

[
θ1 θ2
θ3 θ4

]

⊗

[
θ5 θ6
θ7 θ8

]

,

B =
[
−1.35 −0.32

]T
⊗
[
−0.12 −0.81

]T

C =
[
1.55 0.62

]
⊗
[
0.28 −1.13

]
.

(38)

The system matrices K and D are set to be zero. In the

simulation, the vector θ is set to

θ =
[
−0.49 −0.13 0.72 −0.33 −0.47

0.40 −0.09 0.72
]T

.

The input signal u(k) and the innovation noise e(k) are

generated as white noises. The data length is set to 50. For

the implementation of the COSMOS, there are two penalty

coefficients which are set to ρ1 = 0.1 and ρ2 = 0.1: one

corresponds to the rank constraint of the matrix H(Θ) and the

other corresponds to the rank-one constraint of the reshuffled

matrix of the Kronecker product form. The other simulation

settings are set to be the same as those in Example A. The

stopping criterion for the COSMOS and the PEM is that the

relative parameter-estimation error is smaller than 10−10, and

the maximum number of iterations for the COSMOS and the

PEM is set to 100.

Due to the fact that the Kronecker-structured state-space

model cannot be uniquely determined from the input and

output data, only the output relative error (ORE) criterion is

adopted to evaluate the identification performance here.

Fig. 6 provides a scatter plot for the identification per-

formance of the PEM and the COSMOS in terms of the

ORE criterion. At each SNR value, 30 Monte-Carlo trials

are performed and the ORE values are computed. It can be

observed that the COSMOS performs much better than the

PEM in terms of ORE values when the SNR is larger than 20

dB. The averaging ORE values of the COSMOS decay along

with the increase of the SNR, indicating that the COSMOS can

yield accurate output prediction in the absence of measurement
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Fig. 6. Example C: performance of identifying the Kronecker-structured
state-space model in terms of the ORE criterion. The blue crosses represent
the ORE values obtained by the PEM, while the black crosses are provided by
the COSMOS. The blue curve denotes the mean ORE values of the COSMOS
at different SNRs, while the black curve corresponds to mean ORE values of
the PEM. Note that the ORE values of these two methods are computed at
the same SNRs; however, they are slightly separated for better comparison.
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Fig. 7. Example C: predicted output data of a Monte-Carlo trial at SNR=20
dB.

noise. In addition, the ORE values of the COSMOS are more

concentrated around their corresponding mean values than the

PEM, implying that the COSMOS can yield more reliable

identification results than the PEM with random initializations.

For a Monte-Carlo trial at SNR=20dB, the predicted output

data against the true output observation is plotted in Fig.

7. In the simulation, the PEM takes about 5.72s for 100

iterations, while the COSMOS takes about 103.70s for 100

iterations. This is caused by the fact that the COSMOS needs

to solve a nuclear norm regularized optimization problem in

each iteration.

VI. CONCLUSIONS

In this paper, the identification of structured state-space

models using directly the input and output data has been

considered, and a new framework called COSMOS has been

developed by combining the spirits of the PEM and the

subspace method. The proposed COSMOS can simultane-

ously estimate the finite-length Markov parameters and the

embedded system parameters. This qualifies the COSMOS as a

complement to the PEM and the subspace method. In addition,

the COSMOS can provide accurate estimation of linearly or

polynomially parameterized system matrices, turning out to be

more robust than the PEM initialized at random initial values

in converging to local minima.

Since the proposed COSMOS framework relies only on

finite-length of Markov parameters, it can be used for dealing

with large-scale gray-box system models, such the identi-

fication work of QUARKS [40]. In addition, the proposed

COSMOS framework allows the system matrices to be poly-

nomially parameterized, it can be extended for dealing with

high-dimensional system identification problems [23]. How-

ever, the COSMOS needs to solve a nuclear-norm regularized

optimization problem in each iteration, resulting in heavier

computational burden than the PEM. Therefore, investigation

will be made on improving the computational efficiency.
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