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1 Introduction

De Sitter vacua are at the heart of any cosmological model as both the early and late

universe are well-approximated by a de Sitter phase. It is therefore of great importance to

understand the construction of de Sitter vacua in string theory and supergravity. However,

such constructions have proven to be a tremendous challenge. Kachru, Kallosh, Linde and

Trivedi (KKLT) provided a generic mechanism of moduli stabilization in Anti-de Sitter

and an uplift to de Sitter vacua in ten-dimensional string theory already in 2003 [1] and

by now, many different approaches for de Sitter compactifications have been uncovered.

In contrast, the equivalent mechanism for de Sitter vacua in an effective four-

dimensional N = 1 supergravity theory was only developed recently, using constrained

superfields [2–6]. By imposing constraints on superfields it is not only possible to describe

fields transforming non-linearly under the broken supersymmetry, but also to eliminate un-

wanted degrees of freedom. General prescriptions for constrained superfields from linearly

transforming ones in a supergravity context were given in [7, 8]. For some recent reviews

of constrained superfields and their applications to cosmology, see [9, 10].
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Constrained superfields are often effective descriptions of the low-energy excitations.

For example, in the context of four-dimensional spontaneous supersymmetry breaking the

massless goldstino can be packaged in a chiral superfield that satisfies a nilpotency con-

straint. This constraint arises after the bosonic superpartner of the goldstino (the sgold-

stino) becomes heavy enough to be integrated out [11–13]. As argued in [11] this can be

extended to multiple fields. In general, integrating out additional heavy degrees of freedom

results in extra constraints which describe the universal low-energy dynamics of the theory,

see also [7, 13].

It is of crucial importance to understand the embedding of constrained superfields in

a putative UV-complete description. Can we indeed realize large mass splittings such that

the constrained superfields correspond to a good approximation of the relevant low-energy

physics? This question is especially important when considering cosmological inflation.

As one typically accesses high energy scales during inflation it is necessary to ensure that

the fields eliminated by the constraints have large enough masses to be integrated out.

Otherwise, a constrained superfield description will be invalid.

An important condition for obtaining universal (UV insensitive) couplings to the gold-

stino, and standard constrained superfield descriptions, is that the masses of the heavy

superpartners should be large compared to the supersymmetry breaking scale. If that con-

dition is not fulfilled, the constraints are higher-order and depend on the masses of the

heavy fields [14]. This issue was recently reconsidered featuring global supersymmetry [15]

and supergravity [16]. Those authors studied the emergence of the constraints by integrat-

ing out massive fields, instead of imposing the constraints by hand. In [16] the corrections

to an inflationary model with two superfields were analyzed. One superfield was used to

describe spontaneous supersymmetry breaking and a second one contained the inflaton

and its superpartner. The UV physics is described by a supergravity model with addi-

tional heavy superfields and supersymmetry is broken by an O’Raifeartaigh-mechanism.

This particular UV model did not allow for an exact nilpotent superfield description, be-

cause the strict infinite mass limit of the sgoldstino that would decouple its fluctuations as

in [12] does not exist. Instead, corrections due to the finite sgoldstino mass during infla-

tion significantly limit the range of parameters for which an effective nilpotent description

is available. It is not clear whether more generic UV models have similar restrictions on

taking the large sgoldstino mass limit.

In this paper we take a step back from inflation and study how universal the description

of de Sitter vacua with a nilpotent superfield is, in the context of string theory. We build on

the recent connection between constrained superfields in four-dimensional effective N = 1

supergravity and string theory. The uplift term of the KKLT mechanism is generated by

anti-D3 branes in a Giddings-Kachru-Polchinski (GKP) background [17]. This uplift is

an example of the generic string theory mechanism of supersymmetry breaking by branes

in backgrounds with fluxes. If the anti-D3-brane indeed breaks supersymmetry sponta-

neously [18–20] it should be possible to package a worldvolume fermion into a nilpotent

superfield describing the goldstino. This expectation was confirmed explicitly by putting

the anti-brane on top of an orientifold 3-plane in an N = 1 flux background [21–23].

The effective description for the first constrained superfield models in the context

of KKLT arises by explicitly putting the anti-D3-brane on top of the orientifold plane.

– 2 –
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To answer the question if a constrained superfield description of de Sitter vacua is still

appropriate in a more general background, we remove the orientifold projection. One of

us initiated this study with Kallosh and Wrase for a ten-dimensional flat background [24]:

the non-linear transformations for all massless worldvolume fields (vector, scalars, fermion)

can indeed be described by constrained multiplets.

The full understanding of anti-D3-branes in flux backgrounds should introduce correc-

tions to the description in the flat background of [24]. Anti-D3-branes at the bottom of a

warped throat can polarize into NS5-branes under the influence of background flux [18].

In this paper we show that one source of corrections is due to such polarization effects.1

We write down the supersymmetric version of the action for the polarized brane and con-

sider small fluctuations around the metastable minimum from the four-dimensional point

of view. This reveals that supersymmetry is indeed, to leading order in fluctuations, non-

linearly realized at the minimum. The central question is at what scale the first leading

corrections to the standard four-dimensional non-linear description appear. We find that

this scale is not set by the mass of the scalar fluctuations, but is instead smaller by a factor

p/M , with p the number of anti-branes and M the flux number of the Klebanov-Strassler

background. Interestingly, the strict limit that would decouple these corrections does not

exist. That limit is equivalent to sending the dimensionless ratio p/M to infinity, while

anti-D3-branes only settle into a metastable state for sufficiently small p/M .

The rest of this paper is organized as follows. We review the potential for polarized

anti-D3 branes from the perspective of the NS5 worldvolume theory in section 2, with

special emphasis on the expected scale at which this description is valid. In section 3, we

construct the supersymmetric completion of the polarized NS5-brane action. We analyze

the four-dimensional supersymmetry transformations in section 4. Finally, in section 5 we

comment on our findings and the relation to the use of anti-branes in de Sitter uplifts.

Appendix A contains a technical derivation of the fermionic terms in the action and the

supersymmetry transformations, based on the S-dual D5-brane action in a flux background

of [29].

2 The bosonic KPV potential

Let us start with a short review of some of the results of Kachru, Pearson and Verlinde

(KPV) [18]. KPV added p anti-D3-branes to the warped deformed conifold geometry of

Klebanov and Strassler [30]. The throat of this geometry is supported by M units of flux

through the A-cycle and K units through the B-cycle.

1

4π2

∫
A
F3 = M

1

4π2

∫
B
H3 = −K (2.1)

The Klebanov-Strassler geometry is an example of a GKP background [17] that experiences

a high degree of warping near the bottom of the throat in the six-dimensional geometry.

1In recent years the literature has been divided on whether metastable anti-D3 probes are robust beyond

probe level, for recent work see [25–28] and references. We want to discuss the appearance of non-linear

supersymmetry and possible corrections first at probe level and do not discuss back-reaction in this paper.
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Figure 1. The NS5-brane polarization potential for p/M = 0.03 and B0 ≡ e4A0p µ3/gs. At the

north pole (ψ = 0) there are p anti-D3-branes that polarize into an NS5-brane carrying charge

Q(ψ) at the metastable minimum (ψmin). This configuration can decay non-perturbatively to the

supersymmetric minimum at the south pole (ψ = π), where the p anti-D3-branes annihilated and

the final configuration contains (M − p) D3-branes.

Since probe anti-D3 branes in the Klebanov-Strassler background feel a net force towards

the bottom of the throat we can describe the relevant physics by focusing on the region

near the tip of the throat, with topology R4 × S3. The metric near the tip is [18]

ds2 = e2A0ηµνdx
µdxµ + gsMb20(dψ2 + sin2 ψ dΩ2

2) , b20 ≈ 0.93266 . (2.2)

with e2A0 = ε4/3/gsM the constant warp factor at the tip and ε the deformation pa-

rameter of the deformed conifold. Anti-branes carry opposite charge with respect to the

supersymmetric background, breaking all supersymmetry. By brane polarization [31], the

anti-branes can blow up to form an NS5-brane wrapping an S2 inside the S3. Depending on

the value of p/M the NS5-brane either settles at a metastable minimum at a fixed radius of

the S2, or shrinks all the way to the opposite south pole of the S3, brane-flux annihilation

takes place and the final configuration becomes supersymmetric, see figure 1. Since the

non-supersymmetric and supersymmetric states are continuously connected by moving the

NS5-brane from the north pole to the south pole on the S3, one expects the breaking of

supersymmetry in the metastable vacuum to be spontaneous and supersymmetry to be

realized non-linearly. We opt to describe the dynamics from the perspective of the effec-

tive NS5-brane worldvolume theory. The bosonic action describing the NS5 worldvolume

theory is given by2

SNS5 =
µ5

g2
s

∫
d6ξ
√
− detG‖

√
det(G⊥ + 2πgsF) + µ5

∫
B6 . (2.3)

We wrote the DBI term in terms of the metric components G‖ spanned by the (anti-)D3

brane coordinates (Minkowski coordinates plus possibly motion in ψ) and G⊥, spanned by

2The effective action on the NS5-brane is obtained by S-duality of the D5-brane DBI theory. Strictly

speaking this description is therefore only valid for large gs, but some (supersymmetric) properties and

structures are expected to be invariant.
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the coordinates on the S2. The form fields in the action are

2πF2 = 2πF2 − C2 , dB6 = − 1

gs
dV4 ∧ F3 . (2.4)

The gauge field A on the worldvolume has field strength dA = F2 and gives the anti-D3

charge p carried by the NS5-brane: ∫
S2

F2 = 2πp , (2.5)

and F3 = dC2.

We are specifically interested in the effective dynamics in the angular direction ψ on

the S3, which is transverse to the NS5-brane wrapped on an S2 inside the S3. The action

becomes3

S =
µ3

gs
e4A0

∫
d4ξ

[√
P 2 +Q2

√
1 + e−2A0gψψ∂µψ∂µψ −Q

]
, (2.6)

where we used 4π2µ5 = µ3 and we introduced shorthand notation for the following integrals

over the S2:

Q(ψ) ≡ − 1

2π

∫
S2

F2 = −p+
M

π

(
ψ − 1

2
sin(2ψ)

)
, (2.7)

P (ψ) ≡ 1

4π2gs

∫
S2

√
G⊥ =

b20M

π
sin2 ψ . (2.8)

Q describes the effective D3-charge at position ψ.

From the action one can find the potential (the Hamiltonian at zero momentum):

V (ψ) =
µ3

gs
e4A0

(√
Q2 + P 2 −Q

)
=
µ3

gs
e4A0

√
Q2 + P 2 (1 + cos(α)) , (2.9)

where for later convenience we introduced the position-dependent angle α(ψ), which takes

values α = ±1 at the poles of the S3:

cos(α(ψ)) ≡ − Q(ψ)√
P (ψ)2 +Q(ψ)2

, sin(α(ψ)) ≡ − P (ψ)√
P (ψ)2 +Q(ψ)2

. (2.10)

We plot the potential in figure 1. It has a metastable minimum for relatively small values

of ψ.

By expanding for small values of ψ up to fourth order we find

V (ψ) ' pµ3

gs
e4A0

(
2− 4M

3πp
ψ3 +

b40M
2

2π2p2
ψ4

)
. (2.11)

Around the north pole of the S3 (ψ = 0) the scalar field fluctuations are massless and we

note that this state is unstable. For p/M < 0.08 there is a metastable minimum at

ψmin =
2πp

b40M
. (2.12)

3Where we added a constant to the action such that the potential is zero at the supersymmetric minimum.
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In a moment we will expand the action in fluctuations δψ around the minimum ψmin. A

general expansion of an arbitrary potential in fluctuations δφ up to cubic order can be

written as

V (φmin + δφ) = V (φmin) +
1

2
m2
φ(δφ)2 +

λ3

3
(δφ)3 . (2.13)

Using the standard normalization in four dimensions, a scalar field φ and the cubic cou-

pling λ3 have mass dimension 1. For fluctuations δφ < m2
φ/λ3 the quadratic term is a

good approximation of the relevant physics, but for larger fluctuations the cubic term

dominates, signaling a breakdown of the quadratic approximation. For natural couplings

(λ3 ∼ mφ ∼ Λ), where Λ is some (high-energy) cut-off scale, this would just restrict the

field fluctuations to values below mφ ∼ Λ, but for ‘unnaturally’ large cubic couplings the

quadratic approximation would only be valid for fluctuations significantly smaller than the

mass scale mφ.

The second situation is exactly what we observe in the Klebanov-Strassler throat.

Expanding (2.11) up to cubic order around ψmin we obtain

V (ψmin + δψ) =
pµ3

gs
e4A0

(
2− 2

3
b−4
0 ψ2

min + 4b−4
0 (δψ)2 +

16

3
b−4
0

(δψ)3

ψmin

)
. (2.14)

From this expression, we see that λ3/mψ = 4
√

2/(b20ψmin). The cubic coupling is O(M/p)

larger than the quadratic coupling. In the remainder of this article, we are interested

in the quadratic approximation. We are then forced to restrict to fluctuations that are

not only small compared to the dimensionless mass parameter mψ = 2
√

2/b20, which is of

order one, but small compared to a dimensionless parameter set by the field value in the

metastable minimum:

δψ � ψmin ∼ p/M . (2.15)

The importance of this basic observation will become clear when we discuss the corrected

supersymmetry transformations in the metastable vacuum.

In the rest of this paper, we continue with the discussion of the fermions on the NS5

worldvolume. We will be concerned with the leading behaviour at a fixed but small value of

p/M . Then we consider the small ψ expansion, and discuss small field fluctuations around

a fixed background position for small ψ. We consider up to quadratic order in the scale

ψmin ∼ p/M and consider quadratic fluctuations in fields only.

From the action it is straightforward to obtain the potential for the canonically nor-

malized field. For small fluctuations around a minimum at ψ � 1, the kinetic term gets a

constant prefactor as
√
P 2 +Q2 = p+O(ψ3). We then find

SNS5 = e4A0
pµ3

gs

∫
d4ξ

(
1

2
∂µψ∂

µψ + Ṽ (ψ)

)
, (2.16)

with the potential

Ṽ (ψ) = p−1
(√

Q(ψ)2 + P (ψ)2 −Q(ψ)
)
. (2.17)

We will arrange the kinetic terms of the fermions to have the same constant prefactor (for

small fluctuations at least), such that we can consistently compare mass scales.

– 6 –
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3 The fermionic KPV potential

Since we expect the metastable minimum to break supersymmetry spontaneously, there

should exist an associated massless goldstino. For a single anti-D3-brane on top of an

orientifold plane, the goldstino was identified as the 4d fermion on the worldvolume of the

anti-brane, which is a singlet under the SU(3) holonomy of the 6d internal space [21, 22].

Removing the orientifold plane, we now want to revisit the situation for the polarized NS5-

brane. Based on the physical picture of the previous section, we expect the effective 4d

worldvolume description to reduce to the known results for p anti-D3-branes at the north

pole and M − p D3-branes at the south pole, both probing the GKP background.

3.1 The fermionic action up to second order

Just as for the bosonic action, we formally obtain the fermionic NS5-brane worldvolume

action from S-duality of a D5-brane. The action up to quadratic order in fermions is given

by [29] (notice that we have a background with a constant dilaton)

SNS5 =
1

2

µ5

g2
s

∫
d6ξ
√
− det(g + 2πgsF)θ̄(1− ΓNS5)

[
(M̃−1)αβΓ̂βDα −∆

]
θ , (3.1)

where

M̃αβ = gαβ + 2πgsσ3Fαβ ,

Dα = ∇α +Wα ,

Wα =
1

8

(
−FαnpΓnpσ3 +

1

3!
g−1
s HmnpΓ

mnpΓ̂ασ1

)
,

∆ =
1

24

(
−Fmnp σ3 − g−1

s Hmnp σ1

)
Γmnp . (3.2)

We only included terms in the action that are non-zero at the tip of the throat, because we

are not interested in dynamics taking us away from the tip (we dropped terms with five-

form and one-form field strengths). The indices m,n are ten-dimensional curved indices,

α, β indicate worldvolume indices. To avoid confusion with the equations below, we wrote

the pullbacks of gamma matrices on the worldvolume with hats: Γ̂α = Γmem
m∂αx

m and

we underline tangent space indices (m,n . . .). The fermion θ is a doublet of Majorana-Weyl

spinors with positive chirality.

We now use the specific embedding of the NS5-brane of the previous section and use

the leg structure of the three-forms to simplify the expressions. The F3 flux is fully along

the S3 spanned by (θ, φ, ψ) while H3 is orthogonal to F3 in the internal space. This means

we can drop H3 terms with legs along the worldvolume of the NS5-brane. Also we will

drop the terms with ∂αψ coming from the pullbacks of gamma matrices, as those do not

contribute to the mass matrix. We only highlight the main points of the calculation here.

For more general expressions and more detailed information, see appendix A.

– 7 –
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The combination in right brackets of (3.1) gives:

(M̃−1)αβΓβDα −∆

= (M̃−1)αβΓβ∇α −
1

24

(
− cos(2α)Fmnpσ3 + (1 + sin2 α)g−1

s Hmnpσ1

)
Γmnp

+ cos2(α)((2πgsσ3F)−1)αβ
(
− 1

8 · 3!
g−1
s Hnpqσ1Γαβnpq −

1

4
Fαβqσ3Γq

)
, (3.3)

with the position-dependent angle α defined in (2.10).

It is important for our calculations to note that ΓNS5 is off-diagonal. As explained in

appendix A, at the tip of the deformed conifold, this projector takes on a fairly simple form:

ΓNS5 = −

(
0 β−
β+ 0

)
, β± = Γ0123(± cos(α)− Γ45 sin(α)) . (3.4)

We still need to gauge fix the kappa-symmetry on the brane. We do this by taking the

gauge fixing condition on the doublet θ = (θ1, θ2)

σ3θ = −θ ⇒ θ1 = 0 . (3.5)

Now we can express the action in terms of the spinor θ2 only. This gauge fixing condition

is convenient due to its simplicity, but it is not suitable when one also wants to perform

an orientifold projection. The calculation for the mass matrix can also be done in a gauge

where we set (1 + ΓNS5)θ = 0, compatible with an orientifold. We show in the appendix

that this choice of gauge does not change the mass matrix.

We introduce the notation for the remaining spinor components

λ ≡ θ2 . (3.6)

Taking care of the off-diagonal matrix ΓNS5 and using that for a 10d Majorana-Weyl spinor

λ the only fermion bilinears that are non-zero have three or seven gamma matrices, we find

the result

SNS5 =
pµ3

gs
e4A0

∫
d4ξ

∫
dΩ

4π
λ̄[(M̃−1)µνΓν∇µ +M]λ , (3.7)

with dΩ the volume element on the unit two-sphere.

The only terms that contribute to the mass matrix M are

M =
1

24

(
cos(2α)Fmnp − g−1

s cos(α)HmnpΓ0123

)
Γmnp . (3.8)

This is the mass matrix on the six-dimensional world volume. The reduction to four

dimensions could also pick up extra mass terms coming from the reduction of the kinetic

term [32]. To determine if these extra mass terms still allow for a massless fermion, we

have to make sure the internal piece of the modified Dirac operator together with the mass

matrix [(M̃−1)αβΓα∇β +M] has a zero mode.

In the remainder of this section we show that this is indeed the case and the low-

est Kaluza-Klein modes reveal the existence of a massless fermionic mode, which we will

identify as the massless goldstino.

– 8 –
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3.2 Reduction to four dimensions

In the previous section we obtained the action for the worldvolume fermions from the six-

dimensional point of view. We now discuss the four-dimensional interpretation. When

we perform the reduction to four dimensions, we will write λ in terms of four fermions:

a singlet λ0 and a triplet λi under the SU(3) holonomy of the six-dimensional transverse

internal space. This decomposition can for instance be found in [22].

Let us first focus on the reduction of the mass matrix. We observe that, up to angles

that parameterize the position of the NS5 on the S3, it is completely determined by the

flux of the background, which can be written in terms of the complexified three-form

G3 = F3 − ig−1
s H3 . (3.9)

Supersymmetry of the Klebanov-Strassler background dictates that ?6H3 = −gsF3 or

equivalently that the complex three-form is imaginary self-dual (ISD) G3 = i ?6 G3 [18].

This immediately implies that the only relevant structure for the fermionic mass matrix

we have to reduce to four dimensions is the real part of the complex three-form:

M =
1

48
(cos(2α) + cos(α)) (G3 + Ḡ3)mnpΓ

mnp (3.10)

Up to the coordinate-dependent prefactor (cos(2α) + cos(α)), this is the known mass term

for anti-D3 branes in a supersymmetric background with fluxes that carry only D3-brane

charges, as reviewed in [22]. The general discussion of our mass terms also carries through

directly as in [22]. The background three-form is (2,1) and primitive, and therefore we find

that the only non-zero contributions to the mass matrix come from the triplet:

λ̄Mλ = mij λ̄
i
+λ

j
+ + m̄ı̄̄λ̄

ı̄
−λ

̄
− , (3.11)

where the mij are linear in the components of the background flux and ± subscripts denote

4d Weyl spinors λ± = 1
2(1 + iΓ0123)λ. We thus find that the mass matrix only leaves λ0

massless, similar to a single anti-D3-brane that does not polarize [22].

The kinetic term of the fermions still contains a ‘modified Dirac operator’

(M̃−1)αβΓα∇βλ = ((g + 2πgsσ3F)−1)αβΓα∇βλ (3.12)

that could contribute to the mass matrix in four dimensions. We can ask whether there is a

fermion that remains massless and signals the spontaneous breaking of supersymmetry. The

flux is crucial. If we would reduce the Dirac operator on an S2 without worldvolume flux

F , this would leave no fermion massless, as the 2-sphere admits no covariantly constant

spinors. However, we have a non-zero worldvolume flux F on the S2 that induces the

(anti-)D3 brane charge. This allows for the possibility that the gauge field twists the Dirac

operator on the S2 such that the modified Dirac operator can have a zero mode on the

2-sphere, along the lines of [33]. If that zero mode agrees with the λ0 direction, we can

identify λ0 as the four-dimensional goldstino, as was suggested in [19].

Instead of explicitly solving (M̃−1)αβΓα∇βλ = 0, we will opt to describe this massless

mode from the dual perspective of the non-abelian gauge theory on the anti-D3 branes.

– 9 –
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From this point of view the situation is more transparent because a reduction to four di-

mensions is not needed. In the non-abelian theory all fields become matrix-valued. The

transverse scalars φi have a potential that describes the brane polarization. One finds that

the local minimum of this potential occurs when the scalars take an irreducible representa-

tion of SU(2) [18], which agrees with the metastable minimum of the wrapped NS5-brane.

In the non-abelian theory, the analogue of the abelian 2-sphere with coordinates θ, φ is a

non-commutative fuzzy 2-sphere.

The non-abelian theory is studied in detail in [19], with a decomposition of the 10d

worldvolume fermion λ (which is promoted to a matrix) to the 4d fields λ0 (‘gaugino’)

and λi (‘modulini’), analogous to the abelian theory. For supersymmetry preserving ISD

G3-flux, the gaugino mass terms vanish and only the modulini are massive, in agreement

with our NS5 mass matrix M. An additional mass contribution might come from Yukawa

couplings between φi, λ0 and λi:

[φ̄, λi]λ0 + h.c. (3.13)

The scalars φi have a vacuum expectation value in the metastable minimum such that the

Yukawa coupling can be viewed as an off-diagonal contribution to the mass matrix. To

find the massless goldstino, we expand the fermions in terms of eigenfunctions on the fuzzy

sphere (the non-commutative analogue of spherical harmonics [34]). One finds that the

lowest (` = 0) mode of λi commutes and that its corresponding Yukawa coupling vanishes,

leaving λ0 massless. Higher (` > 0) modes correspond to a Kaluza-Klein tower [33] and can

be ignored when the radius of the fuzzy sphere is sufficiently small. Clearly, ignoring ` > 0

modes we are left with an abelian truncation of the non-abelian fermionic action where

we can identify λ0 as a goldstino. This verifies the idea that in this setup spontaneous

supersymmetry breaking should come with a massless fermion.

3.3 Mass matrix in four dimensions

To facilitate comparison with similar treatments in the literature, we will now explicitly

compute the mass matrix M at the three relevant positions: the two poles of the S3 and

the metastable minimum at ψ = ψmin. As mentioned before, we can rewrite the mass

matrix in terms of the complexified three-form G3. The general form of the mass matrix

then becomes

M =
1

48
(cos(2α) + cos(α)) (G3 + Ḡ3)mnpΓ

mnp (3.14)

We now give the four-dimensional reduction and discuss the fermionic mass matrix on the

positions of interest.

3.3.1 Mass matrix at the poles

At the North pole, ψ = 0, we have p anti-D3 branes with cos(α) = +1. At the South pole,

we have M − p D3-branes at the supersymmetric minimum and cos(α) = −1.

The mass matrix M becomes

M(ψ = 0) =
1

24

(
G3 + Ḡ3

)
mnp

Γmnp , (3.15)

M(ψ = π) = 0 . (3.16)
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These match earlier results for anti-D3 branes or D3 branes on GKP backgrounds derived

in [22, 35] (note that we are working in an S-dual frame compared to those references, so

one should take G3 → −ig−1
s G3 for comparison to those references.)

3.3.2 Mass matrix at the metastable minimum

To obtain the mass matrix in the metastable minimum, we expand cos(α) to lowest non-

trivial order and we evaluate this expression at the minimum:

M =
1

24

(
1− 5

4
α2

)(
G3 + Ḡ3

)
mnp

Γmnp . (3.17)

From the small ψ expansion of α we have α =
b20
π
M
p ψ

2 + O(ψ)4. To lowest order in p/M

we find

α(ψmin) =
4π

b60

p

M
. (3.18)

In terms of G3 flux we have the mass matrix

M =

(
1

24
− 5

6

π2

b12
0

p2

M2

)(
G3 + Ḡ3

)
mnp

Γmnp . (3.19)

4 Supersymmetry transformations

In the previous section we argued that in the metastable minimum supersymmetry is spon-

taneously broken by identifying the corresponding massless goldstino. This also suggests

that the effective low-energy dynamics can be described in terms of a nilpotent super-

field [11]. In this section we analyze the supersymmetry transformations to verify this

picture and identify the leading corrections.

To begin we need the expressions for the supersymmetry transformations in non-trivial

flux backgrounds, which can be found in short in appendix A, adapted from [29]. Super-

symmetry of the background requires that

(1 + iσ2Γ0123) ε = 0 ⇔ ε2 = Γ0123ε1 . (4.1)

With a slight abuse of notation, we will write the 32-component Majorana-Weyl spinor

again as ε ≡ −2ε2. We have the following supersymmetry transformations:

δελ = −1

2
[1− β]ε+O(λ)2 , (4.2)

δεψ =
1

2
λ̄Γψ[1 + β]ε+ ξµ∂µψ +O(λ)3 , (4.3)

δεAµ = −1

2
λ̄(Γµ + Γψ∂µψ)[1 + β]ε+

1

2
Cµmλ̄Γm[1 + β]ε+ ξνFνµ +O(λ)3 , (4.4)

with ξµ = −1
2 λ̄Γµ(1 + β)ε and the operator β defined as β = Γ0123β+, see eq. (A.12):

β = −
(

cos(α)− Γ45 sin(α)
)(

1 +
1

2
FµνΓµν + ∂µψΓψµ −

1

2
gψψ∂µψ∂

µψ − 1

4
FµνF

µν

+
1

4
Fµν(?4F )µνΓ0123 +

1

2
∂ρψFµνΓψρµν + . . .

)
(4.5)
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We do not write fermion terms in β, as those result in transformations that take use beyond

the quadratic fermion order in the action.

More details on these transformations can be found in appendix A. From here, we can

already see the general form of the transformations around the poles, since

at ψ = 0 : β = −1 + . . . ,

at ψ = π : β = +1 + . . . , (4.6)

where the ellipses denote terms with field fluctuations. So around ψ = 0 we find non-linear

transformations and at ψ = π linear ones.

To obtain four-dimensional supersymmetry transformations, in the end we always de-

compose the spinor into the singlet λ0 and the triplet λi under the SU(3) holonomy. More-

over we can focus on just one of the triplet fermions, say i = 3, due to the arbitrary

orientation of the S2 inside the transverse S3, corresponding to the superpartner of the

scalar ψ at the south pole where supersymmetry is restored. The other directions come

along for the ride and we will ignore them throughout. We are also interested in the

supersymmetry transformations with parameter ε0, the SU(3) singlet component of the

32-component Majorana-Weyl spinor ε, as this is the supersymmetry preserved by the

background.

With all the relevant information in place, we present a summary of the four-

dimensional fermionic, scalar and gauge field supersymmetry transformations at the differ-

ent locations of interest: both poles and most importantly the metastable minimum.

4.1 At the south pole

Let us first analyze the south pole ψ = π, where the D3-branes do not break the background

N = 1 supersymmetry. We obtain to leading order in fluctuations the expression for β:

β = 1 +
1

2
FµνΓµν + ∂µψΓψΓµ , (4.7)

and the reduction of the supersymmetry transformations to four dimensions gives

δελ
0 =

1

4
γµνFµνε

0 , (4.8)

δελ
3 =

1√
2
γµ∂µψ̃ε

0 , (4.9)

δεψ̃ =
1√
2
λ̄3ε0 , (4.10)

δεAµ = −1

2
λ̄0γµε

0 , (4.11)

where we redefined the scalar as follows.

ψ̃ = −eψψ ψ = −(gsMb20)1/2ψ , (4.12)

and rescaled spinors as λ → 1√
2
λ, ε → 1√

2
ε. We conclude that, as expected, at ψ = π a

linearly realized N = 1 supersymmetry exists under which (λ0, Aµ) form a vector multiplet
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and (λ3, ψ) correspond to a chiral multiplet. If we would have included the other two

directions on the S2 that we now have ignored, they would form two additional chiral

multiplets. Those correspond to the decomposition of the spectrum of the N = 4 SYM

multiplet on the D3-brane transforming under the N = 1 of the background.

4.2 At the north pole

At the (unstable) north pole we expect the effective description to formally reduce to

the results for a supersymmetry breaking anti-D3-brane in a GKP background. We will

write the transformations to at most quadratic order in field fluctuations. Since sin(α) =

O(ψ2), cos(α) = 1+O(ψ4), we set cosα = 1, as the subleading terms will come in at higher

order in the supersymmetry transformations. Then we indeed reproduce to quadratic order

the results of [24].

We will expand the supersymmetry transformations up to the first non-trivial order in

the fields. Then we only have to expand the operator β to first order:

β = −1− 1

2
FµνΓµν − ∂µψΓψµ + . . . . (4.13)

The supersymmetry transformations around ψ = 0 are

δελ = −ε− 1

4
FµνΓµνε− 1

2
(∂µψ)ΓψΓµε+O(φ2) ,

δεψ = −1

2
(λ̄Γµε)∂µψ −

1

4
(λ̄Γψµνε)Fµν +O(φ3) ,

δεAµ = −1

2
(λ̄Γρε)Fρµ −

1

2
(λ̄Γψε)∂µψ +

1

4
(λ̄Γµρσε)F

ρσ +
1

2
(λ̄Γψρµε)∂

ρψ +O(φ3) , (4.14)

with φ the collection of all fields φ = {ψ, λ,Aµ}. We recognize the first terms as the

standard non-linear transformations. By requiring the fields to transform non-linearly

under the supersymmetry we can perform appropriate field redefinitions of the spinors,

scalar and gauge field, that fix the transformations uniquely:

λ̃ = −λ+
1

4
FµνΓµνλ+

1

2
(∂µψ)ΓψΓµλ+O(φ3) ,

ψ̃ = ψ − 1

8
(λ̄Γψµνλ)Fµν +O(φ4) ,

Ãµ = Aµ −
1

4
(λ̄Γψλ)∂µψ +

1

8
(λ̄Γµρσλ)F ρσ +

1

4
(λ̄Γψρµλ)∂ρψ +O(φ4) , (4.15)

and we have the standard-looking transformations

δελ̃ = ε+O(φ2) ,

δεψ̃ =
1

2
(
¯̃
λΓµε)∂µψ̃ +O(φ3) ,

δεÃµ =
1

2
(
¯̃
λΓρε)F̃ρµ +O(φ3) . (4.16)

With an additional rescaling of the spinors λ̃ →
√

2λ̃, ε →
√

2ε, we then find the fol-

lowing supersymmetry transformations in terms of the appropriate four-dimensional fields
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around ψ = 0

δελ̃
0 = ε0 +O(φ2) (4.17)

δελ̃
3 = 0 +O(φ2) (4.18)

δεψ̃ = (
¯̃
λ0γµε0)∂µψ̃ +O(φ3) (4.19)

δεÃµ = (
¯̃
λ0γµε0)F̃µν +O(φ3) . (4.20)

We conclude that indeed, as anticipated by the physical interpretation in terms of brane-

flux decay, this seems to describe an exact non-linear realization of (broken) supersymmetry

when adding anti-D3-branes to the GKP background and ignoring the (higher order) dy-

namics describing the polarization in the transverse S3 directions. This matches the results

for anti-D3 branes in supersymmetric backgrounds of [21–24]. Note that this (direct) ex-

pansion of the theory around the north pole is only a formal result: since the scalar field ψ

sits at the maximum of its potential, this is an expansion around an unstable configuration.

4.3 At the metastable minimum

Now let us include the polarization dynamics and determine the transformations at the

true metastable minimum ψmin, which should include corrections due to the dynamics on

the S3. We first expand in ψ and then in the fluctuations around the metastable minimum.

The expansion for α around the metastable minimum is then

α(ψmin + δψ) =
4π

b60

p

M
+

4

b20
δψ +

b20
π

M

p
δψ2 + . . . (4.21)

The leading corrections in the expansions of ψ-fluctuations and powers of p/M are then

captured by expanding β in powers of α:

β =

(
1− αΓ45 −

1

2
α2 + . . .

)
β|ψ=0 , (4.22)

where β|ψ=0 is given by (4.13).

We find that after the field redefinition (4.15) and the spinor rescalings the transfor-

mations (4.16) are corrected by the α-expansion (or equivalently ψ-expansion):

δελ̃ = δελ̃|ψ=0 −
1

2
αΓ45ε−

1

4
α2ε+ . . . ,

δεψ̃ = δεψ̃|ψ=0 − α¯̃
λΓ45ψε− 1

2
α2 ¯̃
λΓψε+ . . . ,

δεÃµ = δεÃµ|ψ=0 + α
¯̃
λΓ45Γµε+

1

2
α2 ¯̃
λΓµε+ . . . . (4.23)

The transformations in the metastable minimum become

δελ̃
0 = ε0 − 1

4
α2ε0 + . . . , (4.24)

δελ̃
3 = 0− αε0 + . . . , (4.25)

δεψ̃ = (
¯̃
λ0γµε0)∂µψ̃ − 2

√
2eψψ

(
α

¯̃
λ0ε0 +

1

4
α2 ¯̃
λ3ε0

)
+ . . . , (4.26)

δεÃµ = (
¯̃
λ0γµε0)F̃µν + 2α

¯̃
λ0γµε

0 +
1

2
α2 ¯̃
λ3γµε

0 + . . . (4.27)

– 14 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
9

The first terms correspond to the standard non-linear transformations. Remember that the

expansion of α around ψmin is given by (4.21). We identify two types of corrections. First

of all we observe that there are corrections that vanish in the probe limit p/M → 0. These

terms are just proportional to (the square of) ψmin ∼ p/M and reflect the shift towards

the metastable minimum. In fact, if we could ignore the field δψ (as well as the spinor λ3),

the probe limit would consistently reproduce a subset of the non-linear supersymmetry

transformations at the north pole. In other words, if the δψ and λ3 fields were infinitely

massive, the probe limit takes you to the north pole and a constrained superfield description

of the goldstino and the gauge field would be adequate.

However, it can be seen from (2.14) that the mass of the scalar ψ is always of the same

order of the potential energy scale in the metastable vacuum, so fluctuations in ψ can never

be decoupled. Interestingly the corrections that are proportional to δψ2 are all, except for

the goldstino, proportional to M/p suggesting that in the probe limit corrections become

large and one should include (all) higher order terms. This is in line with the discussion of

section 2: at order δψ ∼ p/M the quadratic approximation of the action breaks down. We

are forced to conclude that a strict decoupling limit in which the effective description in

terms of non-linearly realized supersymmetry becomes UV independent does not exist. As

a consequence the validity of a constrained superfield description is restricted. Just how

restricted can be estimated by observing that the corrections become comparable to the

shift term when the fluctuation δψ is of order p/M or equivalently δψ ∼ ψmin. This should

not come as a complete surprise, since this is where the expansion in δψ breaks down. We

can translate this into a corresponding mass scale using the potential, giving a scale that is

a factor of order p/M smaller than the mass scale mψ, for any value of the string coupling.

In other words, the description in terms of non-linearly realized supersymmetry seems to

break down at scales far below the mass scale of relevance in the metastable vacuum.

Closing this section, we would like to make a final comment. It is important to realize

that one should not perform an additional field redefinition at ψmin that would remove the

leading corrections. For instance, an additional field redefinition of λ3 that removes the

corrections at the same time modifies the form of the transformations at the north pole and

also changes the fermionic mass matrix for λ0. In this case, the redefined spinor cannot be

identified with the massless goldstino.

5 Comments and conclusions

Constrained superfields provide a powerful technique in the context of a universal (UV

insensitive) low-energy description of spontaneously broken supersymmetry. A crucial re-

quirement is a stable and large enough hierarchy between the scale of the fields that are

projected out by the constraints and the relevant scale of the low energy effective theory. In

some cases such a hierarchy might not be achievable, precluding the existence of a standard

constrained superfield description. In general however the appropriate constrained super-

field description is valid up to some energy scale that should be identified and compared

to the supersymmetry breaking scale. In this work we studied the leading corrections to

the nilpotent goldstino superfield description of anti-D3-branes in the GKP background
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from polarization effects. Our main observation is that the (non-linear) supersymmetry

transformations in the metastable vacuum receive corrections that cannot be ‘decoupled’

and actually become large in the probe limit p→ 0.

To arrive at that result we constructed, to leading order in the fields, the supersym-

metric completion of the effective theory on an NS5-brane wrapped on an S2 inside the

transverse S3 at the tip of the KS throat geometry of [18]. We identified the massless

goldstino of spontaneous supersymmetry breaking as well as the gauge field and transverse

scalar ψ that describes the position of the S2 inside the S3. In the absence of an orien-

tifold plane that projects out the bosonic degrees of freedom, they should also transform

non-linearly. In the metastable state we again identified λ0, the singlet under the SU(3)

holonomy of the ‘internal’ space, as the massless goldstino associated with the sponta-

neously broken supersymmetry. We argued this from the non-abelian point of view, which

should hold provided we keep the radius of the S2 small (p/M � 1). From the abelian

perspective this should correspond to twisting the Dirac operator with a gauge field on

the 2-sphere, as was done in [36]. A full treatment of the modified Dirac operator on the

4d reduced abelian NS5-brane should also reveal this zero mode at the position of the

metastable minimum. We hope to come back to this question in future work.

We found that fluctuations of the ψ scalar field around the metastable minimum cannot

be decoupled. Moreover, corrections to the non-linear supersymmetry transformations

become large at a scale far below the mass scale set by the scalar fluctuations in the

metastable vacuum. The reduction factor is controlled by the ratio p/M of the anti-

brane number and the background flux. This limits a finite parameter window where

an effective low-energy description of the metastable vacuum in terms of a constrained

superfield is appropriate.

This might not come as a total surprise. When the source of spontaneous super-

symmetry breaking is intrinsically higher-dimensional, it might not admit any low-energy

description in terms of (simple) constrained superfields. This is clearest for more energetic

fluctuations around the metastable minimum, with δψ ∼ p/M . Those fluctuations are not

localized around the metastable minimum, as they exceed the energy difference between

the metastable state and the north pole (left maximum in figure 1). However, they are still

localized on the northern hemisphere of the S3, as they have less energy than the abso-

lute maximum of the potential. Those fluctuations describe full 6-dimensional fluctuations

around the nilpotent superfield description of anti-D3 branes, governing the non-linear

transformations around the north pole ψ = 0. Increasing the scale of fluctuations even

further will invalidate the non-linear description altogether, and will lead to a restoration

of the linear transformations by higher-dimensional excitations.

The fluctuations we study in this paper are of a different nature. They capture excita-

tions very close to the metastable minimum and obey δψ � p/M . They can be captured

in a four-dimensional language (albeit not with standard constrained superfields). Deter-

mining the relevant fluctuations in the KK reduction to four dimensions is subtle, since we

discussed two different descriptions with opposite regimes of validity. The polarized NS5-

brane point of view is only valid for a large S2 and is hence intrinsically 6-dimensional.

In section 3.2, we argued however from the dual non-abelian anti-D3 point of view that
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the set of lowest mass states of the KK spectrum in four-dimensions contains the mass-

less goldstino.

It is straightforward to check that the requirement δψ � p/M is a direct consequence of

the relevance of higher order terms in the DBI action around the metastable vacuum. The

expansion of the polarization potential around the metastable minimum (2.14) shows that

the higher order terms become important when δψ ∼ ψmin ∼ p/M , as we also concluded

from the supersymmetry transformations. From the low-energy effective field theory point

of view the theory becomes strongly coupled as soon as δψ ∼ ψmin ∼ p/M .

Our observations appear to be in line with the discussion of [14]. The mass of the

fluctuations δψ around the minimum of the potential is in fact of the same order as the

supersymmetry breaking scale, as can easily be seen from (2.14)

m2
ψ =

4
√

2

b40

√
Vmin . (5.1)

As explained in [14], integrating out massive fields with masses of the order of the super-

symmetry breaking scale does not lead to universal couplings of the goldstino and instead

give rise to generalized holomorphic constraints on superfields. The UV dependence in our

setup becomes apparent at scales δψ ∼ ψmin ∼ p/M , where the cubic coupling starts to

correct the supersymmetry transformations. Whether and how this can be described in

terms of generalized (higher order) constrained superfields, or in another approach such as

the ‘goldstino brane’ [37, 38], is a question we hope to come back to in the future.

Let us finally briefly elaborate on what the general consequences of our findings might

be in the context of string cosmology. Following the arguments of [14], to allow for a

standard universal nilpotent superfield description one would require a stable hierarchy

between the scale of supersymmetry breaking and the mass of the transverse scalar ψ.

In the original KKLT scenario, the scale of supersymmetry breaking is set by the uplift

energy of the metastable anti-D3 brane and hence seems to remain of the order of the mass

of the ψ fluctuations around the metastable vacuum. As a consequence the uplift with

p metastable polarized branes might lead to a similar breakdown of a putative universal

constrained superfield description at energies far below the supersymmetry breaking scale.

An effective description of the metastable minimum by nilpotent superfields all the way up

to the supersymmetry breaking scale with polarized anti-branes would require a version

of the KKLT mechanism where the supersymmetry breaking scale and the uplift energy

can be decoupled. Broad classes of such models are available: for instance in [39], or anti-

brane uplifts of an AdS minimum where supersymmetry is already broken, as in the Large

Volume Scenario and related work [40–42]. We hope to address some of these questions in

future work.
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A Details on fermions

In this appendix we review and apply the relevant details of the fermionic action of a

Dp-brane of [29, 43, 44], its supersymmetry transformations and gauge fixing. We take

the results for a D5 brane with worldvolume flux in the S-dual background to Klebanov-

Strassler. We follow the conventions of [29]. For easy comparison with the literature on

gauge-fixed fermionic D-brane actions, we keep this appendix wholly in that ‘D5-frame’

and we adapt notation slightly to match as much as possible the related work for Dp-branes

in flat space [45] used in the recent literature on non-linear supersymmetries on anti-D3

branes [22–24, 46].

To transform the results of this appendix (‘app’) to the expressions used in the text,

one has to apply the following S-duality rules to the NS5-frame:

Happ
3 = −F text

3 , F app
3 = Htext

3 , eΦapp
= (g−1

s )text , Fapp = 2πgtext
s F text .

(A.1)

A.1 Projection matrix

We obtain the matrix ΓD5 from [29]:

ΓD5 = −

(
0 β−
β+ 0

)
, (A.2)

with

β± = Γ
(0)
D5

√
− det g√

− det(g + F)

∑
k

(±1)k

k!2k
Γ̂α1...α2k(F)α1α2 · · · (F)α2k−1α2k

. (A.3)

We have β+β− = 1 and the relation β−(F) = β+(−F). Note that hats on gamma matrices

denote pull-backs on the worldvolume Γ̂α = ∂αX
MΓM , and

Γ
(0)
D5 =

εα1...α6

6!
√
− det g

Γ̂α1...α6 . (A.4)
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We will split the field and the metric in a four-dimensional part (along the D3 worldvolume)

and a transverse part along the two-sphere as:

F = F‖ + F⊥ , ds2 = ds2
‖ + ds2

⊥ . (A.5)

It is not hard to see that the matrix in the projector splits as:

β+ = β⊥+β
‖
+ , (A.6)

with

β⊥+ =
εαβ

2!
√
G⊥

Γαβ

√
− detG⊥√

− det(G⊥ + F⊥)

(
1 +

1

2
F⊥αβΓαβ

)
, (A.7)

β
‖
+ =

εµ1...µ4

4!
√
G‖

Γ̂µ1...µ4

√
− detG‖√

− det(G‖ + F‖)

(
1 +

1

2
F‖µ1µ2Γ̂µ1µ2 +

1

8
F‖µ1µ2F

‖
µ3µ4Γ̂µ1µ2µ3µ4

)
(A.8)

where Greek letters still refer to worldvolume indices, but we make a split: the middle of

the alphabet to four dimensions (µ, ν . . . = 0, 1, 2, 3) and the beginning to the two-sphere

(α, β . . . = 4, 5).

The calculation of the term β⊥+ follows straightforwardly from the discussion of sec-

tion 2, with

F⊥ = −Q(ψ)volS2 . (A.9)

The four-dimensional part of the projector parallels that of the projector dubbed β in the

appendix of [24]. Note that we only consider the bosonic terms, as fermionic terms in β

would take us beyond the quadratic fermionic order in the action. The result for β
‖
+ is

β
‖
+ = Γ0123

(
1 +

1

2
FµνΓµν + ∂µXIΓIµ −

1

2
gIJ∂µX

I∂µXJ − 1

4
FµνF

µν

+
1

4
Fµν(?4F )µνΓ0123 −

1

2
∂µXI∂νXJΓIJµν +

1

2
∂ρX

IFµνΓIρµν + . . .

)
.

(A.10)

The ellipses indicates terms higher order in fields and indices have been raised and lowered

with the metric G‖ and XI are the transverse coordinates. This is the straightforward

covariantization of the kappa-symmetry matrix for a D3-brane.

Applied to one non-trivial transverse scalar X1 = ψ, we have

β⊥+ = cos(α)− Γ45 sin(α) (A.11)

β
‖
+ = Γ0123

(
1 +

1

2
FµνΓµν + ∂µψΓψµ −

1

2
gψψ∂µψ∂

µψ − 1

4
FµνF

µν

+
1

4
Fµν(?4F )µνΓ0123 +

1

2
∂ρψFµνΓψρµν + . . .

)
. (A.12)
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A.2 Fermionic action

We briefly describe how to get the mass terms of the action 3.1. After gauge fixing θ1 = 0,

and writing λ = θ2, he terms not involving derivatives define a mass matrix M as

λ̄Mλ ≡ λ̄(1− ΓD5)[(M̃−1)αβΓαWβ −∆]λ. (A.13)

We split the terms not involving a covariant derivative along the four-dimensions and the

two-sphere as

(M̃−1)αβΓαWβ −∆ = M‖ +M⊥ , (A.14)

with

M‖ = [Gµν‖ ΓνWµ −∆] , (A.15)

M⊥ = [(G⊥ + 2πgsσ3F)−1]αβΓαWβ . (A.16)

We find (using α, β for directions on the two sphere, and µ, ν for four-dimensions)

M‖ =
1

8

(
Hµpqσ3 + eΦFµpqσ1

)
Γµpq − 1

24

(
Hmnpσ3 + eΦFmnpσ1

)
Γmnp (A.17)

M⊥ = sin2(α)

(
1

8
(σ1F

αnp + σ3H
αnp)Γαnp −

1

8
σ1F

mnpΓmnp

)
+ cos2(α)((σ3F)−1)αβ

(
1

8
Hαpqσ3Γβ

pq − 1

8 · 3!
eΦFnpqσ1Γαβnpq

+
1

8

(
2Hαβqσ3 − eΦFαβqσ1

)
Γq
)

(A.18)

with

cos(α) = −
√

detF√
− det(G⊥ + F)

, sin(α) = −
√

detG⊥√
− det(G⊥ + F)

. (A.19)

The signs in these last two equations are chosen for later convenience.

Now we use that the flux H3 is fully along S3 and F is along S2, while F3 is orthogonal.

So the non-zero terms in M‖,M⊥ are

M‖ = − 1

24

(
Hmnpσ3 + eΦFmnpσ1

)
Γmnp (A.20)

M⊥ = sin2(α)

(
1

12
(σ3H

mnp)Γmnp −
1

4 · 3!
σ1e

ΦFmnpΓmnp

)
+ cos2(α)((σ3F)−1)αβ

(
− 1

8 · 3!
eΦFnpqσ1Γαβnpq +

1

4
Hαβqσ3Γq

)
, (A.21)

which gives the result (3.3).

From (A.2) and (A.12) we find that for vanishing F and neglecting the derivative terms

on ψ (as they are higher order in the action), we get

ΓD5 = −

(
0 β−
β+ 0

)
, β± = Γ0123(± cosα− sinαΓ45) . (A.22)
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Now we use that for Majorana-Weyl bilinears only terms with three or seven gamma

matrices are non-zero.

λ̄Γm1...mnλ = 0 for n /∈ {3, 7} (A.23)

We now see that the last term in M⊥ will not contribute at all and we find

λ̄(1− ΓD5)Mλ =

1

24
λ̄

[
cos(2α)Hmnp +

(
1 + sin2(α)− 1

2
cos2(α)(F−1)αβΓαβ

)
eΦβ+Fmnp

]
Γmnpλ .

(A.24)

With the identity (F−1)αβΓαβ = 2 tan(α)Γ45 and dropping again terms with the wrong

number of Γ matrices, we find

M =
1

24
λ̄
(
cos(2α)Hmnp + cos(α)eΦFmnpΓ0123

)
Γmnpλ . (A.25)

Finally we can use the Majorana-Weyl property Γ(10)λ = λ, to write:

FmnpΓ0123λ = (?6F )mnpλ , (A.26)

with ?6 the Hodge star operator on the six-dimensional internal manifold. This yields the

final result (3.8):

M =
1

24

(
cos(2α)Hmnp + eΦ cos(α)FmnpΓ0123

)
Γmnp . (A.27)

A.2.1 Fermionic action: orientifold compatible gauge choice

For completeness, we show that taking the alternative gauge choice

(1 + ΓD5)θ = 0 ⇔ θ1 = −Γ0123(cos(α) + sin(α)Γ45)θ2 , (A.28)

to fix the kappa-symmetry we obtain the same mass matrix. This gauge choice is useful

when one also wants to perform an orientifold projection, which has to be compatible with

the gauge fixing condition. Using this condition, we can write the terms appearing in M‖
and M⊥ completely in terms of λ ≡ θ2.

θ̄HmnpΓ
mnpθ = 0

θ̄HmnpΓ
mnpσ3θ = −2λ̄HmnpΓ

mnpλ

θ̄FmnpΓ
mnpσ1θ = −2 cos(α)λ̄FmnpΓ

mnpΓ0123λ (A.29)

We then find after some algebra that

λ̄M‖λ =
1

12
λ̄
(
Hmnp + eΦ cos(α)Fmnp

)
Γmnpλ (A.30)

λ̄M⊥λ = −1

6
sin2(α) λ̄HmnpΓ

mnpλ . (A.31)

Where we again used (A.23) to eliminate some terms. The total mass matrix is then

given by

λ̄Mλ =
1

12
λ̄
(
cos(2α)Hmnp + eΦ cos(α)FmnpΓ0123

)
Γmnpλ (A.32)

in agreement with the mass matrix in the gauge where θ1 = 0 up to a factor 2.
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A.3 Supersymmetry transformations

The fields on the brane enjoy a combination of supersymmetry transformations, kappa-

symmetry with spinorial parameter κ and diffeomorphisms (we leave out the possibility of

gauge transformations of the gauge field). To linear order in the fermions θ, these are:

δθ = ε+ [1 + ΓD5]κ+ ξα∂αθ , (A.33)

δXm = −θ̄Γmε+ θ̄Γm[1 + ΓD5]κ+ ξα∂αX
m , (A.34)

δAα = −θ̄Γ̂ασ3ε− Cαmθ̄Γmε+ θ̄Γ̂ασ3[1 + ΓD5]κ

+ Cαmθ̄Γ
m[1 + ΓD5]θ + ξβFβα . (A.35)

As explained in [29, 45], we can fix the gauge redundancy in the following way. We fix

kappa-symmetry by the spinor gauge choice θ1 = 0 or (1 + σ3)θ = 0, and requiring that

this remains valid under the combined transformation

(1 + σ3)δθ = 0 . (A.36)

The diffeomorphism invariance can be fixed by requiring static gauge, such that δXα = 0.

The background spinor obeys

ε2 = Γ0123ε1 . (A.37)

This sets

ε1 + κ1 − β−κ2 = 0 , and ξα = λ̄Γα[1 + β]ε2 . (A.38)

We will denote the transverse scalars by XI and with slight abuse of notation ε = −2ε2.

Then the SUSY transformations after fixing the kappa gauge that leave the quadratic

action (3.7) invariant are (see also [29])

δελ = −1

2
[1− β]ε+O(λ2) , (A.39)

δεX
I =

1

2
λ̄ΓI [1 + β]ε+ ξα∂αX

I +O(λ3) , (A.40)

δεAα = −1

2
λ̄(Γ̂α + ΓI∂αX

I)[1 + β]ε+
1

2
Cαmλ̄Γm[1 + β]ε+ ξβFβα +O(λ3), (A.41)

with

β = Γ0123β+ , ξα = −1

2
λ̄Γα[1 + β]ε . (A.42)
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